JPH04289798A - Driving method and device for ac motor at the time of failure of converter - Google Patents

Driving method and device for ac motor at the time of failure of converter

Info

Publication number
JPH04289798A
JPH04289798A JP3054581A JP5458191A JPH04289798A JP H04289798 A JPH04289798 A JP H04289798A JP 3054581 A JP3054581 A JP 3054581A JP 5458191 A JP5458191 A JP 5458191A JP H04289798 A JPH04289798 A JP H04289798A
Authority
JP
Japan
Prior art keywords
phase
motor
converter
current
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3054581A
Other languages
Japanese (ja)
Inventor
▲高▼橋 潤一
Junichi Takahashi
Hidekazu Horiuchi
堀内 英一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3054581A priority Critical patent/JPH04289798A/en
Publication of JPH04289798A publication Critical patent/JPH04289798A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress fluctuation of speed by switching to driving through other sound phase, upon failure of one phase converter driving an AC motor, thereby quickly generating same torque as that prevailing before failure. CONSTITUTION:When a faulty phase converter 1U is stopped, neutral points of a motor 2 and a converter 1 are connected each other, current phases of other sound phase converters 1V, 1W are modified in predetermined relation and then the firing angle is controlled according to thus modified AC current command and AC voltage command to sustain operation of the motor 2, a command for compensating the zero-phase current component flowing through the motor 2 during faulty operation is added to the AC voltage command (23) in order to compensate for the influence onto the vector control. Furthermore, terminal voltage of the motor 2 is detected until the firing angle control resumes and thus detected terminal voltage is employed, as the AC voltage command, in the control of firing angle(21, 22) thus matching the voltage phases of the converter 1 and the motor 2 and suppressing the surge current. At the same time, a predetermined current is fed quickly to the motor thus suppressing fluctuation of speed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、サイクロコンバータや
インバータ周波数変換器によって駆動される多相交流電
動機の駆動方法及び装置に関し、特に、周波数変換器の
うちある相の変換器が故障した場合に、残った健全相の
変換器を使用して運転を継続させる駆動方法及び装置に
関する。
[Field of Industrial Application] The present invention relates to a method and device for driving a polyphase AC motor driven by a cycloconverter or an inverter frequency converter, and particularly relates to a method and apparatus for driving a multiphase AC motor driven by a cycloconverter or an inverter frequency converter. The present invention relates to a driving method and apparatus for continuing operation using the remaining healthy phase converter.

【0002】0002

【従来の技術】多相交流電動機(以下、単に電動機とい
う)の可変速駆動装置は、サイクロコンバータやインバ
ータ等の周波数変換器(以下、単に変換器という)を使
用し、大容量かつ重要な設備に適用されつつある。また
、設備の信頼性向上のため、一部の変換器が故障しても
残りの変換器を使用して、運転継続又は他の正常な交流
可変速駆動装置と揃速性を持たせて運転を停止させたい
、等のニーズがある。これらのニーズに答える方法とし
て、従来、特公昭63−10679号公報に記載されて
いるような方法がある。
[Prior Art] A variable speed drive device for a polyphase AC motor (hereinafter simply referred to as an electric motor) uses a frequency converter (hereinafter simply referred to as a converter) such as a cycloconverter or an inverter, and uses large-capacity and important equipment. It is being applied to In addition, in order to improve the reliability of the equipment, even if some converters fail, the remaining converters can be used to continue operation or to maintain speed consistency with other normal AC variable speed drives. There are needs such as wanting to stop. As a method to meet these needs, there is a conventional method as described in Japanese Patent Publication No. 10679/1983.

【0003】同公報に記載された方法は、故障相の変換
器を切り離し、電動機の中性点と変換器の中性点とを接
続した後、他の健全相の変換器の電流位相を電動機に円
形磁界を発生させる所定関係に変更し、この変更された
電流位相に基づいた電圧指令により健全相の変換器の点
弧角制御を再開して交流電動機の運転を継続するように
したものである。
[0003] The method described in the publication disconnects the converter of the faulty phase, connects the neutral point of the motor to the neutral point of the converter, and then connects the current phase of the converter of the other healthy phase to the motor. The current phase is changed to a predetermined relationship that generates a circular magnetic field, and the firing angle control of the converter in the healthy phase is restarted using the voltage command based on this changed current phase to continue the operation of the AC motor. be.

【0004】0004

【発明が解決しようとする課題】しかし、上記従来の技
術によれば、変換器故障運転モードのときに、中性点回
路に零相電流が流れるが、電動機が誘導電動機の場合で
あって、その誘導電動機をベクトル制御する場合、すな
わち電動機の電流指令をトルク電流と励磁電流に分離し
それぞれの指令信号に応じて電動機電流を制御する場合
に、それらの電流制御に零相電流が影響を与えるという
問題についてはなんら配慮されていない。
However, according to the above-mentioned conventional technology, a zero-sequence current flows in the neutral point circuit when the converter is in the failure operation mode, but when the motor is an induction motor, When vector controlling the induction motor, that is, when separating the motor current command into torque current and excitation current and controlling the motor current according to each command signal, the zero-sequence current affects these current controls. No consideration was given to this issue.

【0005】また、ベクトル制御か否かにかかわらず、
変換器の1つに故障発生すると、通常、今まで通流して
いた電流を零に絞るために、全ての相の点弧位相が最大
点弧角αmaxに変更されるので、電動機の磁束の大き
さと位相が制御信号に対してずれてくる。しかも、中性
点接続用の開閉器が閉路され、電動機への駆動電流の供
給が再開される迄の間、電動機の逆起電力は電動機の2
次時定数に従って低下する。このため、健全相の変換器
による駆動を再開するタイミングのとき、少なくとも電
動機の端子電圧の位相と変換器の出力電圧位相とが合わ
ず、突入電流が流れたり、逆にしばらくの間電流が流れ
なかったりするという問題がある。
[0005] Also, regardless of whether vector control is used or not,
When a failure occurs in one of the converters, the firing phase of all phases is changed to the maximum firing angle αmax in order to reduce the current that has been flowing until now to zero, so the magnetic flux of the motor decreases. and the phase will shift with respect to the control signal. Moreover, until the neutral point connection switch is closed and the supply of drive current to the motor is restarted, the back electromotive force of the motor is
It decreases according to the following time constant. For this reason, when it is time to restart drive by the converter in a healthy phase, at least the phase of the terminal voltage of the motor and the output voltage phase of the converter do not match, and an inrush current flows, or conversely, a current flows for a while. The problem is that sometimes there isn't.

【0006】このような問題は、結果的に、故障発生前
と同一トルクを出力するまでに時間を要し、速度変動が
大きくなるという問題をもたらす。また、最悪な場合は
、大きな突入電流が流れ過電流保護回路が動作して継続
運転に失敗するという問題をもたらす。
[0006] Such a problem results in the problem that it takes time to output the same torque as before the occurrence of the failure, and speed fluctuations become large. In the worst case, a large inrush current flows, causing the overcurrent protection circuit to operate and failure to continue operation.

【0007】本願発明の目的は、ある変換器が故障し、
他の健全相による駆動に切り替えた後、速やかに故障前
のトルクと同一トルクを発生させ、速度変動の少ない良
好な変換器故障時の交流電動機の駆動方法及び装置を提
供することにある。
[0007] The object of the present invention is to solve the problem when a certain converter malfunctions.
It is an object of the present invention to provide a method and device for driving an AC motor when a converter fails, which can quickly generate the same torque as before the failure after switching to drive by another healthy phase, and can reduce speed fluctuations.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の変換器故障時の交流電動機の駆動方法及び
装置は、多相交流電動機を駆動する変換器のある相の変
換器が故障した場合に、故障相の変換器を切り離し、前
記電動機の中性点と前記変換器の中性点とを接続した後
、他の健全相の変換器の電流位相を前記電動機に円形磁
界を発生させる所定関係に変更し、該変更された電流位
相の交流電流指令と交流電圧指令とに基づいて前記健全
相の変換器の点弧角を制御して前記電動機の運転を継続
する変換器故障時の交流電動機の駆動方法において、故
障運転時の前記電動機に流れる零相電流分を補償する指
令を前記健全相の交流電圧指令に加えること、又は前記
点弧角制御が再開されるまでの間前記電動機の端子電圧
の大きさと位相とを検出し、該検出値を前記電圧指令と
して前記健全相の変換器の点弧角を制御すること、又は
それらを組合せることを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the method and device for driving an AC motor when a converter fails according to the present invention provides a method and an apparatus for driving an AC motor when a converter fails. In the event of a failure, the converter of the faulty phase is disconnected, the neutral point of the motor is connected to the neutral point of the converter, and then the current phase of the converter of the other healthy phase is applied to the motor by applying a circular magnetic field. converter failure, in which the firing angle of the converter of the healthy phase is controlled based on the alternating current command and the alternating voltage command of the changed current phase to continue operation of the motor; In the method for driving an AC motor, adding a command to compensate for the zero-sequence current flowing through the motor during failure operation to the AC voltage command of the healthy phase, or until the firing angle control is restarted. The present invention is characterized in that the magnitude and phase of the terminal voltage of the electric motor are detected, and the detected value is used as the voltage command to control the firing angle of the converter of the healthy phase, or a combination thereof is used.

【0009】[0009]

【作用】このように構成されることから、本発明によれ
ば、次の作用により上記目的が達成される。
[Operations] With the above structure, according to the present invention, the above object is achieved by the following operations.

【0010】まず、健全相変換器による駆動を再開する
と、中性点回路に電流が流れ健全相に零相電流が流れる
が、この零相電流を流すに必要な零相電圧に相当する零
相電圧指令を交流電圧指令に加算することにより、電動
機をベクトル制御する場合に、トルク電流と励磁電流の
それぞれの指令値に基づく制御への影響をなくすことが
でき、所定のトルクを速やかに発生させることができる
First, when driving by the healthy phase converter is resumed, a current flows through the neutral point circuit and a zero-sequence current flows into the healthy phase. By adding the voltage command to the AC voltage command, when performing vector control of the motor, it is possible to eliminate the influence on control based on the respective command values of torque current and excitation current, and quickly generate the specified torque. be able to.

【0011】また、変換器に故障が発生し残りの健全相
変換器による駆動に切り替わるまでの間、電動機の端子
電圧の大きさと位相とを検出し、該検出値を電圧指令と
して健全相の変換器の点弧角を制御することにより、変
換器出力電圧と電動機の端子電圧の位相が一致する。そ
の結果、健全相による駆動再開時に突入電流が流れるよ
うなことはなく、速やかに電動機に所定の電流を流すこ
とができる。
[0011] Furthermore, until a failure occurs in a converter and the drive is switched to the remaining healthy phase converter, the magnitude and phase of the terminal voltage of the motor are detected, and the detected value is used as a voltage command to convert the healthy phase. By controlling the firing angle of the converter, the phases of the converter output voltage and the motor terminal voltage match. As a result, no inrush current will flow when driving is restarted in a healthy phase, and a predetermined current can be quickly passed through the motor.

【0012】0012

【実施例】以下、本発明の詳細を実施例により説明する
。図1〜図4に本発明の一実施例の構成図を示す。本実
施例は、図1に示す全体構成図のように、三相誘導電動
機をサイクロコンバータを用いてなる駆動装置により駆
動する例である。図示のように、多相交流電動機として
三相誘導電動機2の各相巻線にはサイクロコンバータ1
U,1V,1Wから正弦波電流が供給される。三相誘導
電動機2の速度は速度検出器3により検出され、その検
出速度は加算器により速度指令回路4から出力される速
度指令との偏差が求められ、速度偏差増幅器5へ入力さ
れている。また、前記検出速度は周波数指令演算器7に
も入力されている。速度偏差増幅器5は入力される速度
偏差に応じたトルク電流指令信号It*を生成して出力
する。周波数指令演算回路7は前記トルク電流指令It
*から求まるすべり周波数指令信号ωs*に検出速度を
加算し、これを1次周波数指令信号ω1*として出力す
る。周波数指令演算回路7の出力ω1*は二相正弦波発
生回路8に入力され、ここから二相正弦波信号cosθ
、sinθが出力される。交流電流指令演算回路9は、
励磁電流指令回路6の出力である励磁電流指令Im*と
トルク電流指令It*と二相正弦波信号cosθ、si
nθを入力とし、誘導電動機がトルク電流指令It*に
相当するトルクを出力するに必要な各相の交流電流指令
iu*,iv*,iw*を生成して出力する。各相の交
流電流指令iu*,iv*,iw*は電流制御手段とし
ての電流偏差増幅器11U,11V,11Wに入力され
、ここでサイクロコンバータ1U,1V,1Wの各相出
力に設けられた電流検出器10U,10V,10Wから
入力される検出電流との偏差がとられ、この電流偏差を
零にするに必要な交流電圧指令が自動パルス移相器12
U,12V,12Wに出力される。この自動パルス移相
器12U,12V,12Wによりサイクロコンバータ1
の各相の点弧位相の制御が行われ、誘導電動機2は速度
指令に応じた速度で駆動される。
[Examples] The details of the present invention will be explained below with reference to Examples. FIGS. 1 to 4 show configuration diagrams of an embodiment of the present invention. This embodiment is an example in which a three-phase induction motor is driven by a drive device using a cycloconverter, as shown in the overall configuration diagram shown in FIG. As shown in the figure, a cycloconverter 1 is connected to each phase winding of a three-phase induction motor 2 as a polyphase AC motor.
A sine wave current is supplied from U, 1V, 1W. The speed of the three-phase induction motor 2 is detected by a speed detector 3, and the deviation of the detected speed from the speed command output from the speed command circuit 4 is determined by an adder and inputted to a speed deviation amplifier 5. Further, the detected speed is also input to the frequency command calculator 7. The speed deviation amplifier 5 generates and outputs a torque current command signal It* according to the input speed deviation. The frequency command calculation circuit 7 calculates the torque current command It.
The detected speed is added to the slip frequency command signal ωs* determined from *, and this is output as the primary frequency command signal ω1*. The output ω1* of the frequency command calculation circuit 7 is input to the two-phase sine wave generation circuit 8, from which the two-phase sine wave signal cosθ
, sin θ are output. The AC current command calculation circuit 9 is
The excitation current command Im*, which is the output of the excitation current command circuit 6, the torque current command It*, and the two-phase sinusoidal signal cos θ, si
Using nθ as input, the induction motor generates and outputs alternating current commands iu*, iv*, iw* for each phase necessary for outputting torque corresponding to torque current command It*. The alternating current commands iu*, iv*, iw* of each phase are input to current deviation amplifiers 11U, 11V, 11W as current control means, where the currents provided at the outputs of each phase of the cycloconverters 1U, 1V, 1W are The deviation from the detected current input from the detectors 10U, 10V, and 10W is taken, and the AC voltage command necessary to make this current deviation zero is sent to the automatic pulse phase shifter 12.
Output to U, 12V, 12W. With this automatic pulse phase shifter 12U, 12V, 12W, the cycloconverter 1
The ignition phase of each phase is controlled, and the induction motor 2 is driven at a speed according to the speed command.

【0013】ここで、前記交流電流指令演算回路9の詳
細構成を図2に示す。同図において、交流電流指令演算
回路13は、電流指令It*,Im*及び二相正弦波信
号(cosθ,sinθ)を入力し、三相の交流電流指
令iu**,iv**,iw**を出力する。平常運転
時は、この交流電流指令が電流指令切替回路14を素通
りして、iu*,iv*,iw*信号として出力される
。サイクロコンバータ1の1相が故障した場合は、電流
指令切替回路14が切替られ、故障相の電流指令が健全
相の電流指令に逆極性で加算される。例えば、図示例の
ように、U相故障発生時には、図示していない故障制御
手段の指令によりスイッチ15がオンし、健全時のU相
電流指令iu**がV相、W相の電流指令iv**,i
w**に逆極性で加算され、新しいV相、W相電流指令
(故障時電流指令)iv*,iw*が出力される。この
結果、誘導電動機2のV相、W相には、変更された電流
指令iv*,iw*に応じた電流が流れ、V相、W相電
流により作られる合成起磁力はU相正常時に作られる起
磁力と同じとなり、故障相以外の残り健全相による運転
が継続されるのである。なお、図2の交流電流指令切替
回路14は、U相故障の場合の状態図を示しており、他
のV相、W相故障時は同様の考えの回路となるがここで
は図示しない。
FIG. 2 shows a detailed configuration of the alternating current command calculation circuit 9. In the figure, an AC current command calculation circuit 13 inputs current commands It*, Im* and two-phase sine wave signals (cos θ, sin θ), and receives three-phase AC current commands iu**, iv**, iw*. Output *. During normal operation, this AC current command passes through the current command switching circuit 14 and is output as iu*, iv*, and iw* signals. When one phase of the cycloconverter 1 fails, the current command switching circuit 14 is switched, and the current command of the failed phase is added to the current command of the healthy phase with opposite polarity. For example, as shown in the illustrated example, when a U-phase failure occurs, the switch 15 is turned on by a command from a failure control means (not shown), and the U-phase current command iu** in the normal state changes from the V-phase and W-phase current command iv. **,i
It is added to w** with the opposite polarity, and new V-phase and W-phase current commands (failure current commands) iv* and iw* are output. As a result, currents according to the changed current commands iv*, iw* flow in the V-phase and W-phase of the induction motor 2, and the composite magnetomotive force created by the V-phase and W-phase currents is generated when the U-phase is normal. The magnetomotive force is the same as that of the failed phase, and operation continues using the remaining healthy phases other than the failed phase. Note that the AC current command switching circuit 14 in FIG. 2 shows a state diagram in the case of a U-phase failure, and in the case of other V-phase and W-phase failures, circuits with the same concept are used, but are not shown here.

【0014】以上の構成は、従来と同一であり、以下本
発明の特徴部分について説明する。誘導電動機2の端子
電圧を検出する電圧検出器20U,20V,20Wが設
けられ、それらの電圧検出器により検出された各相の電
動機端子電圧vu,vv,vwが電圧ベクトル検出器2
1に入力されている。この電圧ベクトル検出器21は、
二相正弦波発生回路8から出力される二相正弦波信号c
osθ、sinθを入力し、前記端子電圧vu,vv,
vwを、周知の処理法によりd,q軸成分電圧VdFB
,VqFBに分離して検出する。ベクトル成分電圧指令
回路22は前記トルク電流指令Im*と励磁電流指令I
t*,1次周波数指令信号ω1*、及び電圧ベクトル検
出信号VdFB、VqFBを入力とし、d,q軸成分電
圧指令Vd*,Vq*を生成して出力する。交流電圧指
令演算回路23は前記d,q軸成分電圧指令Vd*,V
q*と二相正弦波信号cosθ、sinθとを入力とし
、各相の交流電圧指令vu*,vv*,vw*を生成し
て出力する。この交流電圧指令vu*,vv*,vw*
は、加算器24により前記電流偏差増幅器11U,11
V,11Wの出力信号に加算される。
The above configuration is the same as the conventional one, and the features of the present invention will be explained below. Voltage detectors 20U, 20V, and 20W are provided to detect the terminal voltages of the induction motor 2, and the motor terminal voltages vu, vv, and vw of each phase detected by these voltage detectors are detected by the voltage vector detector 2.
1 is entered. This voltage vector detector 21 is
Two-phase sine wave signal c output from two-phase sine wave generation circuit 8
Input osθ, sinθ, and calculate the terminal voltages vu, vv,
vw is converted to d and q axis component voltage VdFB using a well-known processing method.
, VqFB and detected. The vector component voltage command circuit 22 outputs the torque current command Im* and the excitation current command I.
t*, primary frequency command signal ω1*, and voltage vector detection signals VdFB, VqFB are input, and d and q axis component voltage commands Vd* and Vq* are generated and output. The AC voltage command calculation circuit 23 calculates the d and q axis component voltage commands Vd*, V
q* and two-phase sine wave signals cos θ, sin θ are input, and AC voltage commands vu*, vv*, vw* of each phase are generated and output. These AC voltage commands vu*, vv*, vw*
is the current deviation amplifier 11U, 11 by the adder 24.
It is added to the output signal of V, 11W.

【0015】図3に、ベクトル成分電圧指令回路22の
詳細を示す。図示のように、電動機電圧演算回路25と
ベクトル電圧指令切替回路26から構成される。電動機
電圧演算回路25は、後述する数式1により、誘導電動
機2がベクトル制御されている状態のd,q軸の電圧指
令をVd**,Vq**を生成して出力する。平常運転
時は、このVd**,Vq**がベクトル電圧指令切替
回路26を素通りして、電圧指令Vd*,Vq*として
出力される。ベクトル電圧指令切替回路26のスイッチ
27は、図示していない故障制御手段により、サイクロ
コンバータ1の1相が故障してから、残りの健全相のサ
イクロコンバータによる運転再開時まで電圧ベクトル検
出信号VdFB、VqFB側に切り替えられる。
FIG. 3 shows details of the vector component voltage command circuit 22. As shown in the figure, it is composed of a motor voltage calculation circuit 25 and a vector voltage command switching circuit 26. The motor voltage calculation circuit 25 generates voltage commands Vd** and Vq** for the d and q axes in a state where the induction motor 2 is vector-controlled and outputs them using Equation 1, which will be described later. During normal operation, these Vd** and Vq** pass through the vector voltage command switching circuit 26 and are output as voltage commands Vd* and Vq*. The switch 27 of the vector voltage command switching circuit 26 controls the voltage vector detection signal VdFB by a failure control means (not shown) after one phase of the cycloconverter 1 fails until the remaining healthy phase of the cycloconverter resumes operation. Switched to VqFB side.

【0016】図4に、交流電圧指令演算回路23の詳細
を示す。図示のように、三相電圧指令演算28と交流電
圧指令切替回路29と零相電圧演算回路30により構成
されている。交流電圧指令切替回路29と零相電圧演算
回路30により零相電圧補償手段が構成される。三相電
圧指令演算28は、周知のように、前記ベクトル成分電
圧指令回路22から出力される電圧指令Vd*,Vq*
を、二相正弦波信号cosθ、sinθにより三相の交
流電圧指令vu**,vv**,vw**に変換する。 これは、正常運転時は交流電圧指令切替回路29を素通
りして出力され、加算器24にて前記電流偏差増幅器1
1U,11V,11Wの出力と合成され、自動パルス位
相器12U,12V,12Wを介してサイクロコンバー
タ2の各相の点弧角制御が行なわれる。零相電圧演算回
路30は図2の交流電流指令演算回路13から出力され
る三相電流指令iu**から、後述する数式15により
、零相電圧を推定し、零相電圧指令v0*を出力する。 交流電圧指令切替回路29は、零相電圧指令v0*をス
イッチ15を介して前記交流電圧指令vu**,vv*
*,vw**に加算して、交流電圧指令vu*,vv*
,vw*を出力する。スイッチ15は図示していない故
障制御手段により、健全相のサイクロコンバータによる
駆動再開に合わせてオンされる。
FIG. 4 shows details of the AC voltage command calculation circuit 23. As shown in the figure, it is composed of a three-phase voltage command calculation circuit 28, an AC voltage command switching circuit 29, and a zero-phase voltage calculation circuit 30. The AC voltage command switching circuit 29 and the zero-phase voltage calculation circuit 30 constitute a zero-phase voltage compensating means. As is well known, the three-phase voltage command calculation 28 calculates voltage commands Vd*, Vq* output from the vector component voltage command circuit 22.
is converted into three-phase AC voltage commands vu**, vv**, vw** using two-phase sine wave signals cos θ and sin θ. During normal operation, this signal passes through the AC voltage command switching circuit 29 and is outputted, and is passed through the adder 24 to the current deviation amplifier 1.
It is combined with the outputs of 1U, 11V, and 11W, and the firing angle of each phase of the cycloconverter 2 is controlled via automatic pulse phasers 12U, 12V, and 12W. The zero-sequence voltage calculation circuit 30 estimates the zero-sequence voltage from the three-phase current command iu** output from the AC current command calculation circuit 13 in FIG. do. The AC voltage command switching circuit 29 converts the zero-phase voltage command v0* into the AC voltage commands vu**, vv* via the switch 15.
*, vw**, AC voltage commands vu*, vv*
, vw* are output. The switch 15 is turned on by a failure control means (not shown) when the cycloconverter in the healthy phase resumes driving.

【0017】このように構成される実施例の動作につい
て次に説明する。まず、本実施例の動作の原理について
説明する。平常運転時は、交流電流指令演算回路9から
三相正弦波の交流電流指令iu*,iv*,iw*が出
力され、電流偏差増幅器11U,11V,11Wの働き
により誘導電動機2に三相電流が流れ、トルク電流指令
It*に応じたトルクを発生して、速度指令に応じた速
度制御が行われる。ここで、誘導電動機に、トルク電流
It、励磁電流Imを流してベクトル制御を行なってい
るとき、電動機の端子電圧V1をd,q軸座標系の電圧
Vd,Vqで表わすと数式1〜3となる。
The operation of the embodiment thus constructed will now be described. First, the principle of operation of this embodiment will be explained. During normal operation, three-phase sinusoidal AC current commands iu*, iv*, iw* are output from the AC current command calculation circuit 9, and three-phase current is supplied to the induction motor 2 by the action of the current deviation amplifiers 11U, 11V, and 11W. flows, a torque is generated according to the torque current command It*, and speed control is performed according to the speed command. Here, when vector control is performed by flowing torque current It and excitation current Im through the induction motor, if the terminal voltage V1 of the motor is expressed by voltages Vd and Vq in the d and q axis coordinate system, Equations 1 to 3 are obtained. Become.

【0018】[0018]

【数1】[Math 1]

【0019】[0019]

【数2】[Math 2]

【0020】[0020]

【数3】[Math 3]

【0021】ここで、    r1  ;電動機1次抵
抗L1,L2;電動機1次、2次漏れインダクタンスL
m ;電動機励磁インダクタンス ω1  ;1次角周波数 φ   ;電動機磁束 T2  ;電動機2次時定数 ベクトル制御が行なわれている場合、Im,ItとVd
,Vqの関係は、図5のベクトル図となる。したがって
、端子電圧V1をItと同相成分のVq、Imと同相成
分のVdに分離して検出することにより電圧の大きさと
位相が検出できる。
[0021] Here, r1; Motor primary resistance L1, L2; Motor primary and secondary leakage inductance L
m; Motor excitation inductance ω1; Primary angular frequency φ; Motor magnetic flux T2; When motor secondary time constant vector control is performed, Im, It and Vd
, Vq is shown in the vector diagram of FIG. Therefore, the magnitude and phase of the voltage can be detected by separating and detecting the terminal voltage V1 into It and the in-phase component Vq, and Im and the in-phase component Vd.

【0022】いま、サイクロコンバータ1の故障が発生
し、出力電流を零とした場合を考える。数式1において
、Im=0,It=0,とすると、Vd=0,Vq=ω
1×φとなり、端子電圧には、ω1×φの項が残る。こ
の項を誘起起電力(EMF)と考えると、EMFは数式
4となる。
Now, let us consider a case where a failure occurs in the cycloconverter 1 and the output current is reduced to zero. In formula 1, if Im=0, It=0, Vd=0, Vq=ω
1×φ, and the term ω1×φ remains in the terminal voltage. If this term is considered as an induced electromotive force (EMF), the EMF will be expressed as Equation 4.

【0023】[0023]

【数4】[Math 4]

【0024】したがって、故障発生後、残り健全相によ
る二相駆動再開までの間、電動機端子電圧は数式4に従
って変化する。すなわち、Im=0となるため磁束φが
T2の時定数で減少し、これによる速度低下つまりω1
の低下等によりEMFは変化する。したがって、二相駆
動に切り替える間、数式1に示すVd,Vqを検出し、
これをサイクロコンバータ1の電圧指令として与えると
、点弧角制御信号を実際の電動機端子電圧の位相に一致
させて待期させることができる。
Therefore, after the failure occurs, the motor terminal voltage changes according to Equation 4 until the two-phase drive is restarted using the remaining healthy phases. In other words, since Im=0, the magnetic flux φ decreases with the time constant of T2, and the speed decreases due to this, that is, ω1
The EMF changes due to a decrease in the amount of energy. Therefore, while switching to two-phase drive, Vd and Vq shown in Formula 1 are detected,
When this is given as a voltage command to the cycloconverter 1, it is possible to make the firing angle control signal match the phase of the actual motor terminal voltage and wait.

【0025】一方、平常時、Im,Itの電流を流しベ
クトル制御が行なわれているとき、各相電動機電流iu
,iv,iwと零相電流i0は、数式5〜7の関係にあ
る。
On the other hand, under normal conditions, when vector control is performed by flowing currents Im and It, each phase motor current iu
, iv, iw and the zero-sequence current i0 have the relationships shown in Equations 5 to 7.

【0026】[0026]

【数5】[Math 5]

【0027】[0027]

【数6】[Math 6]

【0028】[0028]

【数7】[Math 7]

【0029】数式6を変形すると数式8になる。[0029] Equation 6 is transformed into Equation 8.

【0030】[0030]

【数8】[Math. 8]

【0031】このとき、電動機相電圧vu,vv,vw
と、零相電圧v0は、同様に数式9〜11となる。
At this time, motor phase voltages vu, vv, vw
Similarly, the zero-phase voltage v0 is expressed by Equations 9 to 11.

【0032】[0032]

【数9】[Math. 9]

【0033】[0033]

【数10】[Math. 10]

【0034】[0034]

【数11】[Math. 11]

【0035】数式10を変形すると数式12になる。[0035] Equation 10 is transformed into Equation 12.

【0036】[0036]

【数12】[Math. 12]

【0037】次に、例えば、U相のサイクロコンバータ
1Uが故障し、V相、W相にて平常時と同じ起電磁力を
発生させるような電流ivf,iwfを求める。数式7
,8でiu=0とし、ivf,iwf及びi0を求める
と数式13,14式となる。
Next, for example, when the U-phase cycloconverter 1U fails, currents ivf and iwf are determined so that the same electromotive force as in normal times is generated in the V-phase and W-phase. Formula 7
, 8, iu=0 and ivf, iwf, and i0 are obtained as Equations 13 and 14.

【0038】[0038]

【数13】[Math. 13]

【0039】[0039]

【数14】i0=−iα ここで、数式13の第1項は健全時のV相、W相電流で
あり、第2項は故障相の健全時における電流に相当する
。また、零相電流i0は故障相の健全時の逆極性電流が
流れることが判る。零相電流i0が流れることにより零
相電圧v0が発生するがその値は、数式15式となる。
[Formula 14] i0=-iα Here, the first term in Equation 13 is the V-phase and W-phase currents when healthy, and the second term corresponds to the current when the faulty phase is healthy. Furthermore, it can be seen that the zero-sequence current i0 is a reverse polarity current when the faulty phase is healthy. When the zero-sequence current i0 flows, a zero-sequence voltage v0 is generated, and its value is expressed by Equation 15.

【0040】[0040]

【数15】v0=(r1+L1S)×i0同様に、U相
故障時に上記電流ivf,iwfを流しているときの電
動機端子電圧を数式11,12から求めると、数式16
となる。
[Formula 15]v0=(r1+L1S)×i0Similarly, when the motor terminal voltage when the above currents ivf and iwf are flowing at the time of a U-phase failure is calculated from Equations 11 and 12, Equation 16
becomes.

【0041】[0041]

【数16】[Math. 16]

【0042】数式16の第1項は健全時の各相電圧であ
り、第2項は零相電圧である。
The first term in Equation 16 is the voltage of each phase during normal operation, and the second term is the zero-phase voltage.

【0043】前述したように、電動機各相の電流、電圧
は、各電流指令信号及び電圧指令信号に比例する如く制
御されるから、該各指令信号を数式13、及び数式16
の関係に従い加算し、得られた信号を故障時の電流指令
及び電圧指令信号として制御することにより上述の制御
が可能となる。つまり、故障時の電流指令は、健全時の
電流指令に故障相の健全時における電流指令を逆極性で
加算すればよい。また、故障時の電圧指令は、健全時の
電圧指令に零相分電圧指令v0*を加算したものとすれ
ばよいことになる。
As mentioned above, the current and voltage of each phase of the motor are controlled to be proportional to each current command signal and voltage command signal, so each command signal can be expressed by equations 13 and 16.
The above-mentioned control becomes possible by adding the signals according to the relationship and controlling the obtained signals as the current command and voltage command signals at the time of failure. In other words, the current command at the time of failure can be obtained by adding the current command at the normal state of the failed phase to the current command at the normal state with opposite polarity. Further, the voltage command at the time of failure may be the voltage command at the time of normal operation plus the zero-phase voltage command v0*.

【0044】そこで、図1の実施例では、サイクロコン
バータ1を構成するサイリスタ変換器1U〜1Wのいず
れかが万一故障した場合、主回路は、故障した変換器と
誘導電動機2とを電気的に開放され、図示していない故
障制御手段が動作して、他の残り健全相の変換器は中性
点を誘導電動機2の中性点Nと開閉器16にて接続し、
二相の回路構成に切替える。そして制御回路は、故障相
以外の健全な相の電流指令の位相が変更され、平常時に
作る起磁力と等しい円形磁界を発生させて、残りの健全
相にて運転を継続させている。
Therefore, in the embodiment shown in FIG. 1, if any of the thyristor converters 1U to 1W constituting the cycloconverter 1 should fail, the main circuit connects the failed converter and the induction motor 2 electrically. The fault control means (not shown) operates, and the other remaining healthy phase converters connect their neutral points to the neutral point N of the induction motor 2 through the switch 16.
Switch to two-phase circuit configuration. Then, the control circuit changes the phase of the current command of the healthy phases other than the faulty phase, generates a circular magnetic field equal to the magnetomotive force generated under normal conditions, and continues operation with the remaining healthy phases.

【0045】ここで、U相のサイクロコンバータ1Uが
故障した場合を例にとり、図6に示したタイムチャート
を参照しながら動作を説明する。図6の横軸は時間を示
し、時刻t1点は故障発生点、t2点は同図(b)に示
すように中性点回路接続用の開閉器16が閉路する点、
t3点は同図(d)に示すように誘導電動機2が故障発
生前と同一トルクを出力する時点を示す。また、同図中
、実線は本発明の動作であり、点線は従来の動作である
[0045] Here, taking as an example a case where the U-phase cycloconverter 1U fails, the operation will be explained with reference to the time chart shown in FIG. The horizontal axis of FIG. 6 indicates time, the time t1 is the failure occurrence point, the t2 point is the point at which the neutral point circuit connection switch 16 closes, as shown in FIG. 6(b),
Point t3 indicates the point in time when the induction motor 2 outputs the same torque as before the failure occurred, as shown in FIG. 2(d). Furthermore, in the figure, the solid line represents the operation of the present invention, and the dotted line represents the conventional operation.

【0046】いま、時刻t1にてサイクロコンバータ1
Uに故障が発生すると、今まで通流していた電流を零に
絞るために(同図(c))、全ての相の点弧位相が点弧
角でαmaxの位置に変更される。このため、誘導電動
機2の磁束の大きさと位相が制御信号に対してずれてく
る。一方、中性点接続用の開閉器16が閉路されて二相
駆動が再開されるまでの間(時刻t1〜t2間)、速度
の低下とともに誘導電動機2の逆起電力は電動機2次時
定数で低下してくる。したがって、時刻t2にて二相制
御を再開するとき、電動機電圧位相と制御出力電圧位相
が合わず、突入電流が流れたり、逆にしばらくの間電流
が流れなかったりするのである。この点本実施例によれ
ば、図3のベクトル電圧指令切替回路26のスイッチ2
7が二相駆動開始迄の間のみオンし、d,q軸電圧指令
Vd*,Vq*として、誘導電動機2の誘起起電力の検
出値を表す電圧ベクトル検出信号VdFB、VdFBが
出力される。その結果、自動パルス位相器12U,12
V,12Wには、変化中の電動機端子電圧と同位相の交
流電圧指令信号vu*,vv*,vw*が入力されるこ
とになり、サイクロコンバータ1の出力電圧位相は、誘
導電動機2の誘起起電力に合った位置で待期される。し
たがって、二相駆動開始時に突入電流が流れたり、逆に
電流が流れなかったりする不都合を解消できる。これに
より、速やかに故障発生前のトルクを出力させることが
できるとともに、突入電流による保護回路の動作を回避
できる。
Now, at time t1, cycloconverter 1
When a failure occurs in U, the firing phases of all phases are changed to the position αmax in terms of firing angle in order to reduce the current that has been flowing to zero (FIG. 4(c)). For this reason, the magnitude and phase of the magnetic flux of the induction motor 2 are shifted from the control signal. On the other hand, until the neutral point connection switch 16 is closed and the two-phase drive is restarted (between times t1 and t2), as the speed decreases, the back electromotive force of the induction motor 2 increases due to the motor secondary time constant. It starts to decline. Therefore, when two-phase control is resumed at time t2, the motor voltage phase and the control output voltage phase do not match, and an inrush current may flow, or conversely, no current may flow for a while. In this regard, according to this embodiment, the switch 2 of the vector voltage command switching circuit 26 in FIG.
7 is turned on only until the start of two-phase drive, and voltage vector detection signals VdFB and VdFB representing detected values of the induced electromotive force of the induction motor 2 are output as d and q axis voltage commands Vd* and Vq*. As a result, automatic pulse phasers 12U, 12
AC voltage command signals vu*, vv*, vw* having the same phase as the changing motor terminal voltage are input to V and 12W, and the output voltage phase of the cycloconverter 1 is determined by the induced voltage of the induction motor 2. It is expected to wait at a position that matches the electromotive force. Therefore, it is possible to eliminate the inconvenience that an inrush current flows at the start of two-phase drive, or conversely, that no current flows. As a result, it is possible to quickly output the torque before the occurrence of a failure, and it is also possible to avoid operation of the protection circuit due to rush current.

【0047】その後、時刻t2に開閉器16が実際に閉
路されることによって、残りの健全なサイクロコンバー
タ1V,1Wによる二相駆動が開始される。この場合、
従来方式と同様に、図2に示した交流電流指令演算回路
9のスイッチ15がオンされ、交流電流指令iv*,i
w*に逆極性のiu*が加算される。二相駆動開始によ
り、中性点回路に電流が流れ、この零相電流の影響で電
動機のベクトル制御が影響を受け、故障発生前と同一ト
ルクを出力するまでに時間を要したり、速度変動が大き
くなる。そこで、本実施例では、二相駆動が開始される
と、前記スイッチ27がオフされ、d,q軸電圧指令V
d*,Vq*は、ベクトル制御を行なう場合の電圧指令
Vd**,Vq**に切り替えられる。これと同時に、
交流電圧指令演算回路23内のスイッチ15がオンされ
、故障相であるU相の健全時の電流指令iu**より零
相電圧演算回路30にて、数式15に示したような零相
電圧指令v0*が演算され、健全時の電圧指令であるv
u**,vv**,vw**信号に、前記零相電圧指令
v0*を加算し、これを故障時の交流電圧指令vu*,
vv*,vw*として出力する。この結果、二相駆動に
切り替えとき、前述の数式13,16に示した電流、電
圧指令を与えることができ、直ちにベクトル制御による
所定トルクを出力させることができる。つまり、あたか
もU相が健全であるかの如く動作させることができる。 これにより、速やかに故障発生前のトルクを出力させる
ことができるとともに、速度変動を小さくできる。
Thereafter, at time t2, the switch 16 is actually closed, and two-phase drive by the remaining healthy cycloconverters 1V and 1W is started. in this case,
Similar to the conventional method, the switch 15 of the AC current command calculation circuit 9 shown in FIG. 2 is turned on, and the AC current commands iv*, i
iu* of opposite polarity is added to w*. When two-phase drive starts, current flows through the neutral point circuit, and this zero-phase current affects vector control of the motor, resulting in a delay in outputting the same torque as before the failure, and speed fluctuations. becomes larger. Therefore, in this embodiment, when two-phase drive is started, the switch 27 is turned off and the d and q axis voltage commands V
d* and Vq* are switched to voltage commands Vd** and Vq** when performing vector control. At the same time,
The switch 15 in the AC voltage command calculation circuit 23 is turned on, and the zero-phase voltage calculation circuit 30 generates a zero-phase voltage command as shown in Equation 15 based on the current command iu** when the U phase is healthy, which is the failed phase. v0* is calculated, and v is the voltage command during normal operation.
The zero-phase voltage command v0* is added to the u**, vv**, and vw** signals, and this is used as the AC voltage command vu*,
Output as vv*, vw*. As a result, when switching to two-phase drive, the current and voltage commands shown in Equations 13 and 16 above can be given, and a predetermined torque can be immediately output by vector control. In other words, it is possible to operate as if the U phase were healthy. As a result, it is possible to quickly output the torque before the occurrence of the failure, and it is possible to reduce speed fluctuations.

【0048】なお、以上説明した実施例では、故障発生
後、二相による駆動制御が再開されるまでの間、電圧指
令Vd*,Vq*として電圧検出値VdFB、VdFB
を与える方法としたが、励磁電流指令Im*と一次周波
数指令ω1*より誘起起電力EMFを前述の数式4の如
く演算にて求め、このEMFを電圧指令Vq*として与
え、電圧指令Vd*を「0」としても同一の結果が得ら
れる。
In the embodiment described above, after the occurrence of a failure, until the two-phase drive control is restarted, the voltage detection values VdFB, VdFB are used as the voltage commands Vd*, Vq*.
In this method, the induced electromotive force EMF is calculated from the excitation current command Im* and the primary frequency command ω1* as shown in Equation 4 above, and this EMF is given as the voltage command Vq*, and the voltage command Vd* is The same result can be obtained even if it is set to "0".

【0049】また、本発明は誘導電動機に限らず、同期
電動機の場合にも同様の考えが適用でき、さらにサイク
ロコンバータに限らず、インバータ等他の変換器の場合
にも適用できる。
Furthermore, the present invention is applicable not only to induction motors but also to synchronous motors, and is not limited to cycloconverters but can also be applied to other converters such as inverters.

【0050】[0050]

【発明の効果】以上説明したように、本発明によれば、
サイクロコンバータ等の変換器のある相が故障し、他の
健全相で交流電動機の運転を継続するにあたり、変換器
と交流電動機の中性点回路に流れる零相電流に対応する
零相電圧分を、ベクトル制御にかかる電圧指令に加算す
るようにしたことから、残りの健全相変換器によるベク
トル制御を支障なく行うことができ、速やかに故障発生
前のトルクを出力させることができるとともに、速度変
動を小さくできる。
[Effects of the Invention] As explained above, according to the present invention,
When a phase of a converter such as a cycloconverter fails and the AC motor continues to operate on another healthy phase, the zero-sequence voltage corresponding to the zero-sequence current flowing through the converter and the neutral point circuit of the AC motor is Since it is added to the voltage command related to vector control, vector control by the remaining healthy phase converters can be performed without any problems, and the torque before the failure can be output immediately. can be made smaller.

【0051】また、健全相による駆動制御再開迄の間、
交流電動機の誘起電圧の大きさと位相に合わせて変換器
の出力電圧を制御していることから、駆動再開時に突入
電流が流れたり、逆に電流が流れなかったりする不都合
を解消でき、速やかに故障発生前のトルクを出力させる
ことができるとともに、突入電流による保護回路の動作
を回避できる。
[0051] Furthermore, until the drive control is resumed due to the healthy phase,
Since the output voltage of the converter is controlled according to the magnitude and phase of the induced voltage of the AC motor, it is possible to eliminate the inconvenience of inrush current flowing when the drive is resumed, or conversely, that current does not flow, thereby quickly preventing failure. It is possible to output the torque before generation, and to avoid operation of the protection circuit due to rush current.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例のサイクロコンバータを用い
た交流電動機の駆動装置の構成図である。
FIG. 1 is a configuration diagram of an AC motor drive device using a cycloconverter according to an embodiment of the present invention.

【図2】本発明にかかる交流電流指令演算回路の一実施
例の構成図である。
FIG. 2 is a configuration diagram of an embodiment of an alternating current command calculation circuit according to the present invention.

【図3】本発明にかかるベクトル成分電圧指令回路の一
実施例の構成図である。
FIG. 3 is a configuration diagram of an embodiment of a vector component voltage command circuit according to the present invention.

【図4】本発明にかかる交流電流指令演算回路の一実施
例の構成図である。
FIG. 4 is a configuration diagram of an embodiment of an alternating current command calculation circuit according to the present invention.

【図5】本発明の動作を説明するタイムチャートである
FIG. 5 is a time chart explaining the operation of the present invention.

【図6】電流・電圧の位相関係を説明する図である。FIG. 6 is a diagram illustrating the phase relationship between current and voltage.

【符号の説明】[Explanation of symbols]

1U〜W  サイクロコンバータ 2  誘導電動機 4  速度指令回路 7  周波数指令演算回路 8  二相正弦波発生回路 9  交流電流指令演算回路 11U〜W  電流偏差増幅器 12U〜W  自動パルス移相器 15,27  スイッチ 21  電圧ベクトル検出器 22  ベクトル成分電圧指令回路 23  交流電圧指令演算回路 30  零相電圧演算回路 1U~W Cyclo converter 2 Induction motor 4 Speed command circuit 7 Frequency command calculation circuit 8 Two-phase sine wave generation circuit 9 AC current command calculation circuit 11U~W Current deviation amplifier 12U~W Automatic pulse phase shifter 15, 27 Switch 21 Voltage vector detector 22 Vector component voltage command circuit 23 AC voltage command calculation circuit 30 Zero-phase voltage calculation circuit

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】  多相交流電動機を駆動する変換器のあ
る相の変換器が故障した場合に、故障相の変換器を停止
し、前記電動機の中性点と前記変換器の中性点とを接続
した後、他の健全相の変換器の電流位相を前記電動機に
円形磁界を発生させる所定関係に変更し、該変更された
電流位相の交流電流指令と交流電圧指令とに基づいて前
記健全相の変換器の点弧角を制御して前記電動機の運転
を継続する変換器故障時の交流電動機の駆動方法におい
て、故障運転時の前記電動機に流れる零相電流分を補償
する指令を前記健全相の交流電圧指令に加えることを特
徴とする変換器故障時の交流電動機の駆動方法。
Claim 1: When a converter of a certain phase of a converter that drives a multi-phase AC motor fails, the converter of the failed phase is stopped and the neutral point of the motor is connected to the neutral point of the converter. After connecting, the current phase of the converter of the other healthy phase is changed to a predetermined relationship that generates a circular magnetic field in the motor, and the healthy phase is changed based on the AC current command and AC voltage command of the changed current phase. In a method for driving an AC motor when a converter fails, the firing angle of a phase converter is controlled to continue operation of the motor, in which a command to compensate for a zero-sequence current flowing through the motor during failure operation is set to A method for driving an AC motor when a converter fails, the method comprising adding the voltage command to a phase AC voltage command.
【請求項2】  多相交流電動機を駆動する変換器のあ
る相の変換器が故障した場合に、故障相の変換器を切り
離し、前記電動機の中性点と前記変換器の中性点とを接
続した後、他の健全相の変換器の電流位相を前記電動機
に円形磁界を発生させる所定関係に変更し、該変更され
た電流位相の交流電流指令に基づいて前記健全相の変換
器の点弧角を制御して前記電動機の運転を継続する変換
器故障時の交流電動機の駆動方法において、前記点弧角
制御が再開されるまでの間前記電動機の端子電圧の大き
さと位相とを検出し、該検出値を電圧指令として前記健
全相の変換器の点弧角を制御することを特徴とする変換
器故障時の交流電動機の駆動方法。
2. When a converter of a certain phase of a converter that drives a multiphase AC motor fails, the converter of the failed phase is disconnected, and the neutral point of the motor and the neutral point of the converter are separated. After the connection, the current phase of the converter of the other healthy phase is changed to a predetermined relationship that generates a circular magnetic field in the motor, and the point of the converter of the healthy phase is changed based on the alternating current command of the changed current phase. In a method of driving an AC motor when a converter fails, the motor continues to operate by controlling the firing angle, and the magnitude and phase of the terminal voltage of the motor are detected until the firing angle control is restarted. A method for driving an AC motor when a converter fails, characterized in that the detected value is used as a voltage command to control the firing angle of the converter in the healthy phase.
【請求項3】  多相交流電動機を駆動する変換器のあ
る相の変換器が故障した場合に、故障相の変換器を切り
離し、前記電動機の中性点と前記変換器の中性点とを接
続した後、他の健全相の変換器の電流位相を前記電動機
に円形磁界を発生させる所定関係に変更し、該変更され
た電流位相の交流電流指令と交流電圧指令とに基づいて
前記健全相の変換器の点弧角を制御して前記電動機の運
転を継続する変換器故障時の交流電動機の駆動方法にお
いて、前記点弧角制御が再開されるまでの間前記電動機
の端子電圧の大きさと位相とを検出し、該検出値を電圧
指令として前記健全相の変換器の点弧角を制御し、前記
点弧角制御が再開された後、故障運転時の前記電動機に
流れる零相電流分を補償する指令を前記健全相の交流電
圧指令に加えることを特徴とする変換器故障時の交流電
動機の駆動方法。
3. When a converter of a certain phase of a converter that drives a multiphase AC motor fails, the converter of the failed phase is disconnected, and the neutral point of the motor and the neutral point of the converter are separated. After the connection, the current phase of the converter of the other healthy phase is changed to a predetermined relationship that generates a circular magnetic field in the motor, and the current phase of the converter of the healthy phase is changed based on the AC current command and AC voltage command of the changed current phase. In the method of driving an AC motor when a converter fails, the firing angle of the converter is controlled to continue operation of the motor, the magnitude of the terminal voltage of the motor and the The phase is detected, the detected value is used as a voltage command to control the firing angle of the converter of the healthy phase, and after the firing angle control is restarted, the zero-sequence current flowing through the motor at the time of failure operation is A method for driving an AC motor when a converter fails, the method comprising: adding a command to compensate for the AC voltage command of the healthy phase to the AC voltage command of the healthy phase.
【請求項4】  多相交流電動機を駆動する変換器のあ
る相の変換器が故障した場合に、故障相の変換器を切り
離し、前記電動機の中性点と前記変換器の中性点とを接
続した後、他の健全相の変換器の電流位相を前記電動機
に円形磁界を発生させる所定関係に変更し、該変更され
た電流位相の交流電流指令と交流電圧指令とに基づいて
前記健全相の変換器の点弧角を制御して前記電動機の運
転を継続する構成を具備してなる交流電動機の駆動装置
において、前記ある相の変換器故障の故障運転時に前記
電動機に流れる零相電流分を補償する指令を前記健全相
の交流電圧指令に加える零相電圧補償手段を設けたこと
を特徴とする交流電動機の駆動装置。
4. When a converter of a certain phase of a converter that drives a multiphase AC motor fails, the converter of the failed phase is disconnected, and the neutral point of the motor and the neutral point of the converter are separated. After the connection, the current phase of the converter of the other healthy phase is changed to a predetermined relationship that generates a circular magnetic field in the motor, and the current phase of the converter of the healthy phase is changed based on the AC current command and AC voltage command of the changed current phase. In the AC motor drive device, the AC motor is configured to continue operating the motor by controlling the firing angle of the converter of the certain phase, in which a zero-sequence current flows through the motor during failure operation due to a converter failure of the certain phase. A driving device for an AC motor, comprising: zero-phase voltage compensating means for adding a command to compensate for the normal phase AC voltage command to the AC voltage command of the healthy phase.
【請求項5】  多相交流電動機の各相毎に設けられそ
れぞれ各相に電流を供給する変換器と、出力トルク指令
に応じて前記電動機の各相毎の電流指令信号を生成して
出力する電流指令演算手段と、該電流指令信号に対応す
る電流を前記電動機の各相に通流させる電圧指令信号を
生成して出力する電流制御手段と、前記電圧指令信号に
基づいて前記変換器の出力電圧を制御すべく前記変換器
の点弧角を制御する点弧角制御手段と、前記電動機の中
性点と前記変換器の中性点との接続線に挿入された中性
点開閉手段と、前記変換器のうちある相の変換器が故障
した場合に、前記電流指令信号を前記電動機に円形磁界
を発生させるべく健全な相に供給する電流位相を所定関
係に変更した故障時電流指令信号に切り替えるとともに
、前記中性点開閉手段を閉路させる故障制御手段とを有
してなる交流電動機の駆動装置において、前記故障制御
手段に、前記電動機に生ずる零相電圧に相当する零相電
圧指令求め、該零相電圧指令を前記健全相の電圧指令信
号に加える手段を設けてなることを特徴とする交流電動
機の駆動装置。
5. A converter provided for each phase of a polyphase AC motor and supplying current to each phase, and generating and outputting a current command signal for each phase of the motor according to an output torque command. current command calculation means; current control means for generating and outputting a voltage command signal that causes a current corresponding to the current command signal to flow through each phase of the motor; and an output of the converter based on the voltage command signal. firing angle control means for controlling the firing angle of the converter in order to control voltage; and neutral point switching means inserted into a connection line between the neutral point of the motor and the neutral point of the converter. , a failure current command signal in which the current phase of the current command signal to be supplied to a healthy phase is changed to a predetermined relationship in order to generate a circular magnetic field in the motor when a converter of a certain phase among the converters fails; In the drive device for an AC motor, the AC motor has a fault control means for switching the neutral point switching means to the neutral point switching means and closing the neutral point switching means. An alternating current motor drive device, comprising means for adding the zero-phase voltage command to the healthy phase voltage command signal.
【請求項6】  請求項5において、前記故障制御手段
に、前記故障時電流指令に基づいた点弧角制御が再開さ
れるまでの間、前記電動機の端子電圧の大きさと位相と
を検出し、該検出値を電圧指令として前記健全相の変換
器の点弧角を制御する手段を設けてなることを特徴とす
る交流電動機の駆動装置。
6. According to claim 5, the failure control means detects the magnitude and phase of the terminal voltage of the motor until the firing angle control based on the failure current command is restarted; A driving device for an AC motor, comprising means for controlling the firing angle of the healthy phase converter using the detected value as a voltage command.
【請求項7】  多相交流電動機の各相毎に設けられそ
れぞれ各相に電流を供給する変換器と、出力トルク指令
に応じて前記電動機の各相毎の電流指令を生成して出力
する電流指令演算手段と、出力トルク指令に応じて前記
電動機の各相毎の電圧指令を生成して出力する電圧指令
演算手段と、前記電流指令に対応する電流を前記電動機
の各相に通流させる制御指令を生成して出力する電流制
御手段と、該制御指令と前記電圧指令の合成指令に基づ
いて前記変換器の出力電圧を制御すべく前記変換器の点
弧角を制御する点弧角制御手段と、前記電動機の中性点
と前記変換器の中性点との接続線に挿入された中性点開
閉手段と、前記変換器のうちある相の変換器が故障した
場合に、前記電流指令信号を前記電動機に円形磁界を発
生させるべく健全な相に供給する電流位相を所定関係に
変更した故障時電流指令信号に切り替えるとともに、前
記中性点開閉手段を閉路させる故障制御手段とを有して
なる交流電動機の駆動装置において、前記故障制御手段
に、前記電動機に生ずる零相電圧に相当する零相電圧指
令求め、該零相電圧指令を前記健全相の電圧指令信号に
加える零相電圧補償手段を設けてなることを特徴とする
交流電動機の駆動装置。
7. A converter provided for each phase of a polyphase AC motor to supply current to each phase, and a current that generates and outputs a current command for each phase of the motor according to an output torque command. a command calculation means, a voltage command calculation means for generating and outputting a voltage command for each phase of the motor according to the output torque command, and control for causing a current corresponding to the current command to flow through each phase of the motor. Current control means for generating and outputting a command, and firing angle control means for controlling a firing angle of the converter to control the output voltage of the converter based on a composite command of the control command and the voltage command. and a neutral point switching means inserted in a connection line between the neutral point of the motor and the neutral point of the converter, and a neutral point switching means inserted in a connection line between the neutral point of the electric motor and the neutral point of the converter, and a neutral point switching means inserted in a connecting line between the neutral point of the motor and the neutral point of the converter, and a failure control means for switching the signal to a failure current command signal in which the phase of the current supplied to the healthy phase is changed to a predetermined relationship in order to generate a circular magnetic field in the electric motor, and for closing the neutral point switching means. In the drive device for an AC motor, the failure control means obtains a zero-sequence voltage command corresponding to the zero-sequence voltage generated in the motor, and adds the zero-sequence voltage command to the voltage command signal of the healthy phase for zero-sequence voltage compensation. 1. A drive device for an AC motor, comprising: means.
【請求項8】  請求項7において、零相電圧補償手段
は、前記電流指令演算手段から出力される故障相の電流
指令に基づいて前記零相電圧を求めることを特徴とする
交流電動機の駆動装置。
8. The AC motor drive device according to claim 7, wherein the zero-sequence voltage compensating means determines the zero-sequence voltage based on the current command of the failed phase output from the current command calculating means. .
【請求項9】  請求項7において、前記故障制御手段
に、前記故障時電流指令に基づいた点弧角制御が再開さ
れるまでの間、前記電動機の端子電圧の大きさと位相と
を検出し、該検出値を電圧指令として前記健全相の変換
器の点弧角を制御する手段を設けてなることを特徴とす
る交流電動機の駆動装置。
9. According to claim 7, the failure control means detects the magnitude and phase of the terminal voltage of the motor until the firing angle control based on the failure current command is restarted; A driving device for an AC motor, comprising means for controlling the firing angle of the healthy phase converter using the detected value as a voltage command.
JP3054581A 1991-03-19 1991-03-19 Driving method and device for ac motor at the time of failure of converter Pending JPH04289798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3054581A JPH04289798A (en) 1991-03-19 1991-03-19 Driving method and device for ac motor at the time of failure of converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3054581A JPH04289798A (en) 1991-03-19 1991-03-19 Driving method and device for ac motor at the time of failure of converter

Publications (1)

Publication Number Publication Date
JPH04289798A true JPH04289798A (en) 1992-10-14

Family

ID=12974668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3054581A Pending JPH04289798A (en) 1991-03-19 1991-03-19 Driving method and device for ac motor at the time of failure of converter

Country Status (1)

Country Link
JP (1) JPH04289798A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007082321A (en) * 2005-09-14 2007-03-29 Fuji Electric Fa Components & Systems Co Ltd Motor drive unit
JP2007099066A (en) * 2005-10-04 2007-04-19 Nsk Ltd Electric power steering device
JP2008509642A (en) * 2004-08-05 2008-03-27 シーメンス アクチエンゲゼルシヤフト Operation method of three-phase power regulator
US7607827B2 (en) * 2004-03-19 2009-10-27 Nissan Motor Co., Ltd. Temperature detection device, temperature detection method, and computer-readable computer program product containing temperature detection program
JP2016025720A (en) * 2014-07-18 2016-02-08 東芝三菱電機産業システム株式会社 Inverter system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7607827B2 (en) * 2004-03-19 2009-10-27 Nissan Motor Co., Ltd. Temperature detection device, temperature detection method, and computer-readable computer program product containing temperature detection program
JP2008509642A (en) * 2004-08-05 2008-03-27 シーメンス アクチエンゲゼルシヤフト Operation method of three-phase power regulator
JP2007082321A (en) * 2005-09-14 2007-03-29 Fuji Electric Fa Components & Systems Co Ltd Motor drive unit
JP2007099066A (en) * 2005-10-04 2007-04-19 Nsk Ltd Electric power steering device
JP4710528B2 (en) * 2005-10-04 2011-06-29 日本精工株式会社 Electric power steering device
JP2016025720A (en) * 2014-07-18 2016-02-08 東芝三菱電機産業システム株式会社 Inverter system

Similar Documents

Publication Publication Date Title
US6815924B1 (en) Method of controlling AC motor and controller
EP3163743B1 (en) Motor drive device
CN106067695B (en) Power distribution system
US10263559B2 (en) Synchronous machine controller
US5568034A (en) Fault-tolerant variable speed induction motor drive
Yeh et al. Induction motor-drive systems with fault tolerant inverter-motor capabilities
JPH09247805A (en) Electric car controller
JP2002233180A (en) Power converter
JPH05260792A (en) Current controller for multiwinding ac motor
JPH04289798A (en) Driving method and device for ac motor at the time of failure of converter
JP5085408B2 (en) Multi-phase motor drive
JPS6271496A (en) Induction generating electric device
JPH0880098A (en) Vector controller of motor
JPS6043084A (en) Controlling method of induction motor
JP2001037242A (en) Overcurrent protective device for inverter
JP2007089261A (en) Power conversion apparatus
WO2023223412A1 (en) Current control device and current control method for permanent magnet synchronous motor
JP2006254624A (en) Controller of ac-ac converter
JP3513413B2 (en) Induction motor control device
JPH1028398A (en) Controller for variable speed generator/motor
JP2000092879A (en) Motor drive
US20230412097A1 (en) Systems and methods for control of multi-phase machines
JPH04281387A (en) Controller for brushless dc motor
JP4553079B2 (en) AC / AC direct power converter
JP2002335700A (en) Vector control method and vector control device for induction motor