JPH0428961A - Freezer device - Google Patents

Freezer device

Info

Publication number
JPH0428961A
JPH0428961A JP13584890A JP13584890A JPH0428961A JP H0428961 A JPH0428961 A JP H0428961A JP 13584890 A JP13584890 A JP 13584890A JP 13584890 A JP13584890 A JP 13584890A JP H0428961 A JPH0428961 A JP H0428961A
Authority
JP
Japan
Prior art keywords
compressor
evaporator
opening
control valve
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13584890A
Other languages
Japanese (ja)
Inventor
Masaru Matsumoto
優 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13584890A priority Critical patent/JPH0428961A/en
Publication of JPH0428961A publication Critical patent/JPH0428961A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To enable a capacity of a compressor to be coincided with a load of an evaporator, i.e., a freezing load irrespective of a length of a refrigerant pipe to connect the evaporator with the compressor by a method wherein means for determing a degree of opening of a control valve in response to a load of the compressor is provided and a degree of opening of the control valve determined in response to a length of the refrigerant pipe to connect the evaporator with the compressor is corrected. CONSTITUTION:A length of a refrigerant pipe connecting an evaporator 33 with a compressor 30 is inputted from an input means 68 to a degree-ofopening correction means 66, where a degree of opening determined by a degree-of- opening determining means 64 is corrected in accordance with a control rule to be inputted from a memory means 67. The corrected degree of opening is outputted to the control valve 36 through an output means 45 and the control valve 36 has a corrected degree of opening. Accordingly, the compressor is operated at a load of the evaporator, i.e. a capacity corresponding to the freezing load irrespective of a length of the refrigerant pipe connecting the evaporator with the compressor.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は往復動型圧縮機を搭載した冷凍機、冷水機、空
気調和機、除湿機等の冷凍装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to refrigeration equipment such as refrigerators, water coolers, air conditioners, and dehumidifiers equipped with reciprocating compressors.

(従来の技術及びそのL1!題) この種冷凍装置においては、圧縮機から吐出された冷媒
が凝縮器、絞り機構、蒸発器をこの順に流過して上記圧
縮機に循環する。
(Prior art and its L1! title) In this type of refrigeration system, refrigerant discharged from a compressor passes through a condenser, a throttling mechanism, and an evaporator in this order, and is circulated to the compressor.

この冷凍装置においては、圧縮機の能力が冷凍負荷と合
致しない場合には、蒸発器に霜が付着したり、冷媒の蒸
発圧力が低くなり過ぎたりしてその運転効率が悪化する
In this refrigeration system, if the capacity of the compressor does not match the refrigeration load, frost may adhere to the evaporator or the evaporation pressure of the refrigerant may become too low, resulting in deterioration of the operating efficiency.

これに対処するため、インパークを用いて圧縮機の駆動
用電動機に供給される電流の周波数を変更することによ
り圧縮機の回転数、即ち、圧縮機の能力を連続して無段
階に制御することが提案されたが、これは圧縮機の容量
が大きくなるのに従ってインバータの価格が過大となる
という不具合があった。
To deal with this, impark is used to continuously and steplessly control the rotation speed of the compressor, that is, the capacity of the compressor, by changing the frequency of the current supplied to the drive motor of the compressor. However, this had the problem that the price of the inverter would become excessive as the capacity of the compressor increased.

また、圧縮機に吸入される冷媒ガスの温度又は圧力、即
ち、圧縮機の負荷を検知してこれに対応するように圧縮
機の容量を制御すると、蒸発器と圧縮機とをつなぐ冷媒
配管の長さが長い場合には、この冷媒配管内を冷媒ガス
が流過する際の流動抵抗が大きくなるので圧縮機の容量
を冷凍負荷に対応させることができなくなるという問題
があった。
In addition, if the temperature or pressure of the refrigerant gas sucked into the compressor, that is, the load on the compressor, is detected and the capacity of the compressor is controlled accordingly, the refrigerant piping connecting the evaporator and compressor can be controlled. If the length is long, there is a problem in that the flow resistance when the refrigerant gas flows through the refrigerant pipe increases, making it impossible to adjust the capacity of the compressor to the refrigeration load.

(課題を解決しようとする手段) 本発明は上記課題を解決するために発明されたものであ
って、その要旨とするところは、圧縮機から吐出された
冷媒が凝縮器、絞り機構、蒸発器をこの順に流過して上
記圧縮機に循環する冷凍装置において、制御弁の開度を
制御することによって上記圧縮機の容量を連続して無段
階に変更しうる容量制御機構を設けるとともに上記圧縮
機の負荷に応じて上記制御弁の開度を決定する手段と、
上記蒸発器と上記圧縮機とをつなぐ冷媒配管の長さに応
じて上記決定された制御弁の開度を補正する手段とを備
えた制御装置を設けたことを特徴とする冷凍装置にある
(Means for Solving the Problems) The present invention was invented to solve the above problems, and its gist is that the refrigerant discharged from the compressor is A refrigeration system in which the compressor is circulated through the compressor in this order is provided with a capacity control mechanism that can continuously and steplessly change the capacity of the compressor by controlling the opening degree of a control valve, and means for determining the opening degree of the control valve according to the load of the machine;
The refrigeration system is characterized in that it includes a control device including means for correcting the determined opening degree of the control valve in accordance with the length of the refrigerant pipe connecting the evaporator and the compressor.

〈作用) 本発明においては、上記構成を具えているため、圧縮機
の負荷に応じて決定された制御弁の開度は蒸発器と圧縮
機とをつなぐ冷媒配管の長さに応じて補正され、従って
、蒸発器と圧縮機とをつなぐ冷媒配管の長さの如何に拘
らず圧縮機は蒸発器の負荷、即ち、冷凍負荷に対応する
容量で運転される。
<Function> Since the present invention has the above configuration, the opening degree of the control valve determined according to the load of the compressor is corrected according to the length of the refrigerant pipe connecting the evaporator and the compressor. Therefore, regardless of the length of the refrigerant pipe connecting the evaporator and compressor, the compressor is operated at a capacity corresponding to the evaporator load, that is, the refrigeration load.

(実施例) 本発明の1実施例が第1図ないし第3図に示されている
Embodiment One embodiment of the invention is shown in FIGS. 1-3.

第1図には冷凍装置の系統図が示されている。FIG. 1 shows a system diagram of the refrigeration system.

圧縮機30から吐出された高温・高圧の冷媒ガスは、矢
印で示すように、凝縮器31に入り、ここで凝縮液化し
て高圧の液冷媒となる。この液冷媒はキャピラリチュー
ブ、膨張弁等からなる絞り機構32に入り、ここで絞ら
れることにより断熱膨張して気液二相となる。次いで、
この冷媒は蒸発器33に入り、ここで薄光気化して低温
のガス冷媒となり、しかる後、圧縮機30に循環する。
The high-temperature, high-pressure refrigerant gas discharged from the compressor 30 enters the condenser 31, as shown by the arrow, where it is condensed and liquefied to become a high-pressure liquid refrigerant. This liquid refrigerant enters a throttling mechanism 32 consisting of a capillary tube, an expansion valve, etc., where it is throttled and adiabatically expanded to become a gas-liquid two-phase. Then,
This refrigerant enters the evaporator 33 where it is vaporized into a low temperature gaseous refrigerant and then circulated to the compressor 30.

圧縮機30に内臓された後述する容量可変機構の作動室
と圧縮機30の吸入管34とを連結するバイパス管35
に制御弁36が介装されている。
A bypass pipe 35 that connects a working chamber of a variable capacity mechanism built into the compressor 30, which will be described later, and a suction pipe 34 of the compressor 30.
A control valve 36 is interposed therein.

吸入管34にはこの内部を流れる冷媒ガスの圧力又は温
度を検知するセンサ61と、この冷媒の流速を検知する
センサ37が取り付けられ、これらセンサ61及び37
の出力はコントローラ40に入力される。
A sensor 61 that detects the pressure or temperature of the refrigerant gas flowing inside the suction pipe 34 and a sensor 37 that detects the flow rate of this refrigerant are attached to the suction pipe 34.
The output is input to the controller 40.

また、蒸発器33と圧縮機30とをつなぐ冷媒配管の長
さが人力装置68によってコントローラ40に入力され
る。そして、コントローラ40からの指令によって制御
弁36の開度が制御され、かつ、圧縮機30の駆動用モ
ータ39が起動され又は停止されるようになっている。
Further, the length of the refrigerant pipe connecting the evaporator 33 and the compressor 30 is input to the controller 40 by the human power device 68 . The opening degree of the control valve 36 is controlled by a command from the controller 40, and the driving motor 39 of the compressor 30 is started or stopped.

圧縮機30の容量制御機構が第3図に示されている。A capacity control mechanism for compressor 30 is shown in FIG.

第3図において、lはシリンダ、2はピストン、3は弁
板、4はシリンダヘッド、5は吸入キャビティ、6は吸
入弁、7は吐出弁、8は吐出チャンバ、9はアンローダ
シリンダ、10はアンローダピストン、23はシールリ
ング、25ピストンリンク:26は座金である。
In Fig. 3, l is a cylinder, 2 is a piston, 3 is a valve plate, 4 is a cylinder head, 5 is a suction cavity, 6 is a suction valve, 7 is a discharge valve, 8 is a discharge chamber, 9 is an unloader cylinder, 10 is a An unloader piston, 23 is a seal ring, 25 is a piston link, and 26 is a washer.

アンローダシリンダ9の下端は弁板3に固定され、その
上端はカバー20によって掩蓋されている。
The lower end of the unloader cylinder 9 is fixed to the valve plate 3, and the upper end is covered by a cover 20.

このアンローダシリンダ9内にアンローダピストン10
を封密摺動自在に嵌装することによってアンローダピス
トン10の上方に作動室16が、下方に室19がそれぞ
れ限界されている。そして、この室19は開口18を介
してガス圧縮室12に連通し、作動室16はカバー20
に穿設された絞り穴24を介して吐出チャンバ8に連通
している。また、作動室16は導圧管I5、弁板3に穿
設された通821を介してバイパス管35に連通してい
る。
An unloader piston 10 is placed inside this unloader cylinder 9.
A working chamber 16 is defined above the unloader piston 10, and a chamber 19 is defined below the unloader piston 10 by fitting the unloader piston 10 in a sealed and slidable manner. This chamber 19 communicates with the gas compression chamber 12 through the opening 18, and the working chamber 16 is connected to the cover 20.
It communicates with the discharge chamber 8 through a throttle hole 24 bored in the discharge chamber 8 . Further, the working chamber 16 communicates with the bypass pipe 35 via the pressure guiding pipe I5 and a passage 821 bored in the valve plate 3.

しかして、ピストン2が復動すると、冷媒ガスが吸入キ
ャビティ5から弁板3に穿設された吸入通路11を通り
、吸入弁6を押し開いてガス圧縮室12内に吸入される
When the piston 2 moves back, the refrigerant gas passes through the suction passage 11 formed in the valve plate 3 from the suction cavity 5, pushes open the suction valve 6, and is sucked into the gas compression chamber 12.

ピストン2が往動すると、ガス圧縮室12内の冷媒ガス
が圧縮されて吐出弁7を押しσr1き、通llPt13
を通って吐出チャンバ8内に入り、ここから図示しない
吐出管を経て吐出される。
When the piston 2 moves forward, the refrigerant gas in the gas compression chamber 12 is compressed, pushing the discharge valve 7 and causing σr1 to flow through llPt13.
The liquid passes through the discharge chamber 8 and is discharged from there through a discharge pipe (not shown).

一方、室19には開口18を経てガス圧縮室12内のガ
スが流入し、作動室16には絞り穴24を経て吐出チャ
ンバ8内の吐出ガスが流入する。そして、作動室16内
のガスは導圧管15、通路21、制御弁36、バイパス
管35を通って圧縮機30の吸入管34に流出する。こ
のガスの流量を制御弁36によって制御することによっ
て作動室16内の圧力を任意の圧力に設定する。
On the other hand, the gas in the gas compression chamber 12 flows into the chamber 19 through the opening 18, and the discharge gas in the discharge chamber 8 flows into the working chamber 16 through the throttle hole 24. Then, the gas in the working chamber 16 flows out into the suction pipe 34 of the compressor 30 through the pressure guiding pipe 15, the passage 21, the control valve 36, and the bypass pipe 35. By controlling the flow rate of this gas by the control valve 36, the pressure within the working chamber 16 is set to an arbitrary pressure.

か(して、アンローダピストン10は作動室16内の圧
力と室19に作用するガス圧縮室12内の平均筒内圧力
との差に応じて上下に移動する。すると、室19と開口
18とによって構成されるトップクリアランスボリュー
ムが変化し、これに伴って圧縮機30の容量が連続して
無段階に変化する。
(Thus, the unloader piston 10 moves up and down according to the difference between the pressure in the working chamber 16 and the average cylinder pressure in the gas compression chamber 12 acting on the chamber 19. Then, the chamber 19 and the opening 18 The top clearance volume constituted by this changes, and the capacity of the compressor 30 changes continuously and steplessly accordingly.

コントローラ40の機能ブロック図が第2図に示されて
いる。
A functional block diagram of controller 40 is shown in FIG.

の センサ61によって検出された冷媒ガス温度又は圧力が
コントローラ40の比較手段62に入力され、ここで設
定手段63に設定された設定値と比較されて両者の偏差
が算出される。この偏差は開度決定手段64に入力され
、ここで記憶手段65から入力された制御ルールに従っ
て制御弁36の開度が決定される。なお、記t9手段6
5には偏差及びその変化率に対応じて開度を決定する制
御ルール(例えば、PID制御、テーブル対比制御、フ
ァジー制御など)が記憶されている。決定された開度は
開度補正手段66に入力される。
The refrigerant gas temperature or pressure detected by the sensor 61 is input to the comparison means 62 of the controller 40, and is compared here with the set value set in the setting means 63 to calculate the deviation between the two. This deviation is input to the opening determining means 64, where the opening of the control valve 36 is determined according to the control rule input from the storage means 65. Note that t9 means 6
5 stores control rules (for example, PID control, table comparison control, fuzzy control, etc.) for determining the opening degree in accordance with the deviation and its rate of change. The determined opening degree is input to the opening degree correction means 66.

一方、蒸発器33と圧縮830とをつなぐ冷媒配管の長
さが入力手段68から開度補正手段66に入力され、こ
こで開度決定手段64で決定された開度は記ta手段6
7から入力される制御ルールに従って補正される。そし
て、補正された開度は出力手段45を経て制御弁36に
出力され、制御弁36は補正された開度となる。
On the other hand, the length of the refrigerant pipe connecting the evaporator 33 and the compressor 830 is input from the input means 68 to the opening correction means 66, and the opening determined by the opening determining means 64 is recorded in the opening correction means 66.
It is corrected according to the control rule input from 7. Then, the corrected opening degree is outputted to the control valve 36 via the output means 45, and the control valve 36 has the corrected opening degree.

他方、センサ37で検出された冷媒ガスの流速はコント
ローラ40の比較手段47に入力され、ここで設定手段
48から入力された設定値と比較される。
On the other hand, the flow velocity of the refrigerant gas detected by the sensor 37 is input to the comparison means 47 of the controller 40, where it is compared with the set value input from the setting means 48.

圧1Iiia30の負荷が減少することによって冷媒の
流速が設定値を下回ると、出力手段49を経て圧縮機3
0の駆動用モータ39に運転停止指令が出力され、圧縮
機30は停止する。運転停止後、一定時間が経過したと
き又は吸入管54内の冷媒圧力が所定値を上回った時等
はコントローラ40からの指令によりモータ39が起動
され、圧縮機30の運転が再開される。
When the flow rate of the refrigerant falls below the set value due to a decrease in the load on the pressure 1Iiia 30, the refrigerant is transferred to the compressor 3 via the output means 49.
A stop command is output to the drive motor 39 of No. 0, and the compressor 30 is stopped. After the operation is stopped, when a certain period of time has elapsed or when the refrigerant pressure in the suction pipe 54 exceeds a predetermined value, the motor 39 is started by a command from the controller 40, and the operation of the compressor 30 is restarted.

上記実施例においては、センサ37によって冷媒の流量
を検知しているが、これに代えて圧縮機30の回転数や
モータ39に供給される電力等を検知しても良い。
In the embodiment described above, the flow rate of the refrigerant is detected by the sensor 37, but the rotation speed of the compressor 30, the electric power supplied to the motor 39, etc. may be detected instead.

(発明の効果) 本発明においては、圧縮機の負荷に応じて決定された制
御弁の開度を蒸発器と圧縮機とをつなぐ冷媒配管の長さ
に応じて補正するため、蒸発器と圧縮機とをつなぐ冷媒
配管の長さの如何に拘らず圧縮機の容量を蒸発器の負荷
、即ち、冷凍負荷に合致させることが可能となる。
(Effects of the Invention) In the present invention, in order to correct the opening degree of the control valve determined according to the load of the compressor according to the length of the refrigerant pipe connecting the evaporator and the compressor, It becomes possible to match the capacity of the compressor to the load of the evaporator, that is, the refrigeration load, regardless of the length of the refrigerant pipe connecting the compressor to the evaporator.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明のl実施例を示し、第1図は系統図、第2
図はコントローラの機能ブロック図、第3図は圧縮機の
容量可変機構の縦断面図である。
The drawings show an embodiment of the present invention, FIG. 1 is a system diagram, and FIG. 2 is a system diagram.
The figure is a functional block diagram of the controller, and FIG. 3 is a vertical sectional view of the variable capacity mechanism of the compressor.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機から吐出された冷媒が凝縮器、絞り機構、蒸発器
をこの順に流過して上記圧縮機に循環する冷凍装置にお
いて、制御弁の開度を制御することによって上記圧縮機
の容量を連続して無段階に変更しうる容量制御機構を設
けるとともに上記圧縮機の負荷に応じて上記制御弁の開
度を決定する手段と、上記蒸発器と上記圧縮機とをつな
ぐ冷媒配管の長さに応じて上記決定された制御弁の開度
を補正する手段とを備えた制御装置を設けたことを特徴
とする冷凍装置。
In a refrigeration system in which refrigerant discharged from a compressor passes through a condenser, a throttle mechanism, and an evaporator in this order and circulates to the compressor, the capacity of the compressor can be continuously adjusted by controlling the opening degree of a control valve. and a means for determining the opening degree of the control valve according to the load of the compressor, and a length of refrigerant piping connecting the evaporator and the compressor. A refrigeration system comprising a control device including means for correcting the opening degree of the control valve determined as described above.
JP13584890A 1990-05-25 1990-05-25 Freezer device Pending JPH0428961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13584890A JPH0428961A (en) 1990-05-25 1990-05-25 Freezer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13584890A JPH0428961A (en) 1990-05-25 1990-05-25 Freezer device

Publications (1)

Publication Number Publication Date
JPH0428961A true JPH0428961A (en) 1992-01-31

Family

ID=15161179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13584890A Pending JPH0428961A (en) 1990-05-25 1990-05-25 Freezer device

Country Status (1)

Country Link
JP (1) JPH0428961A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004099684A3 (en) * 2003-05-05 2005-02-03 Carrier Corp Vapor compression system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004099684A3 (en) * 2003-05-05 2005-02-03 Carrier Corp Vapor compression system
US7201008B2 (en) 2003-05-05 2007-04-10 Carrier Corporation Vapor compression system performance enhancement and discharge temperature reduction in the unloaded mode of operation

Similar Documents

Publication Publication Date Title
KR100360006B1 (en) Transcritical vapor compression cycle
US6047556A (en) Pulsed flow for capacity control
US20070144190A1 (en) Refrigerator
WO2005052468A1 (en) Refrigerator
JPH0526518A (en) Refrigerating cycle device
JP2003004316A (en) Method for controlling refrigeration unit
JPH0428961A (en) Freezer device
US20080034772A1 (en) Method and system for automatic capacity self-modulation in a comrpessor
JP4301546B2 (en) Refrigeration equipment
JPH0428960A (en) Freezer device
JPH10185343A (en) Refrigerating equipment
JPH0650614A (en) Freezing device
JPH01302072A (en) Heat pump type air conditioner
JPH0428965A (en) Freezer device
JP2006177598A (en) Refrigerating cycle device
JPH0428966A (en) Freezer device
JP2686128B2 (en) Refrigeration equipment
JPH02192544A (en) Freezer device
JP4690574B2 (en) Control method and control device for expansion valve in refrigerator
JPH0428963A (en) Freezer device
JPH02242050A (en) Refrigerator
JPH0452463A (en) Refrigerator
JPH02263053A (en) Refrigerating plant
JPH0439576A (en) Refrigerating device
JPS6144125Y2 (en)