JPH04289492A - Pressure rise suppression device for reactor container - Google Patents

Pressure rise suppression device for reactor container

Info

Publication number
JPH04289492A
JPH04289492A JP3077166A JP7716691A JPH04289492A JP H04289492 A JPH04289492 A JP H04289492A JP 3077166 A JP3077166 A JP 3077166A JP 7716691 A JP7716691 A JP 7716691A JP H04289492 A JPH04289492 A JP H04289492A
Authority
JP
Japan
Prior art keywords
pressure
containment vessel
reactor
vessel
reactor vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3077166A
Other languages
Japanese (ja)
Inventor
Kazuharu Okabe
岡部 一治
Yoshiaki Makihara
義明 牧原
Hiroshi Sano
宏 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP3077166A priority Critical patent/JPH04289492A/en
Publication of JPH04289492A publication Critical patent/JPH04289492A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To provide a device for suppressing pressure rise in a containment which does not require exterior emergency electric power source in case of a loss-of-primary-coolant accident in a nuclear reactor facility and the like. CONSTITUTION:To a primary coolant pipe 2, a pipe 3 from a gravity injection tank 10 placed at higher elevation than a reactor vessel 1 is connected putting an isolation valve 5 and a check valve 7 on the line. Also, a pipe 4 from an accumulator tank 9 is connected to the reactor vessel wall at a downcomer part 11 in the reactor vessel 1 putting an isolation valve 6 and a check valve 8 on the line.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、原子炉施設等において
、一次冷却材喪失事故時の格納容器の内圧上昇を抑制す
るための原子炉格納容器圧力上昇抑制装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor containment vessel pressure rise suppressing device for suppressing an increase in internal pressure of a containment vessel in the event of a primary coolant loss accident in a nuclear reactor facility or the like.

【0002】0002

【従来の技術】従来のプラントでは、一次系配管破断事
故等の際に原子炉格納容器内に放出される蒸気による格
納容器内の圧力の上昇を抑制するために、格納容器内に
スプレイ設備等を設置している。
[Prior Art] In conventional plants, spray equipment is installed inside the reactor containment vessel in order to suppress the rise in pressure inside the containment vessel due to steam released into the reactor containment vessel in the event of a primary system piping rupture accident, etc. is installed.

【0003】従来の技術による格納容器圧力上昇抑制シ
ステムの例を図4に示す。スプレイ水源11からスプレ
イポンプ12によりスプレイ水をくみ出して、スプレイ
冷却器13で冷却したスプレイ水を格納容器内のスプレ
イリングヘッダ−から散水する。
An example of a conventional containment vessel pressure rise suppression system is shown in FIG. Spray water is pumped out from a spray water source 11 by a spray pump 12, and the spray water cooled by a spray cooler 13 is sprayed from a spray ring header in a containment vessel.

【0004】図4の設備を設置したプラントのLOCA
(Loss  of  CoolantAcciden
t)時の格納容器内の内圧変化を図5に示す。初期の段
階では、一次冷却材が原子炉格納容器10内に短時間で
放出されるので格納容器圧力は急速に上昇する。原子炉
格納容器10内に適切な空間容積を確保することにより
この段階の圧力上昇を抑制する。その後、炉心が再冠水
する段階で発生する蒸気が破断口から放出され、原子炉
格納容器の圧力は再び上昇する。放置しておくと原子炉
格納容器の圧力は上昇しつづけるので、図4に示したス
プレイ設備からのスプレイを開始し格納容器内の減圧を
行う。
LOCA of a plant equipped with the equipment shown in Figure 4
(Loss of Coolant Accident
Figure 5 shows the change in internal pressure inside the containment vessel at time t). In the initial stage, the primary coolant is released into the reactor containment vessel 10 in a short time, so that the containment vessel pressure increases rapidly. By ensuring an appropriate space volume within the reactor containment vessel 10, the pressure increase at this stage is suppressed. Thereafter, the steam generated during the re-submergence of the reactor core is released from the rupture, and the pressure in the reactor containment vessel rises again. If left as it is, the pressure in the reactor containment vessel will continue to rise, so spraying from the spray equipment shown in Figure 4 is started to reduce the pressure inside the containment vessel.

【0005】[0005]

【発明が解決しようとする課題】上述の通り、従来の方
法では、図4に示した様なスプレイ設備及び非常用電源
供給設備等の関連設備が必要である。ポンプが設置され
ているので、外部から電源を供給しないと本システムは
起動しない。又、スプレイシステムが誤作動すると、格
納容器内が水浸しになり、長期間プラントの停止が余儀
なくされる。
As mentioned above, the conventional method requires related equipment such as spray equipment and emergency power supply equipment as shown in FIG. Since a pump is installed, the system will not start unless power is supplied from outside. Furthermore, if the spray system malfunctions, the inside of the containment vessel will be flooded with water, forcing the plant to be shut down for a long period of time.

【0006】以上の問題点を解決するために、本発明で
は、一次系配管破断事故等の際に破断口を早期に水没さ
せ、破断口から流出する蒸気を水没水中で吸収し、格納
容器内に直接放出するのを防止することを可能とし、こ
れにより従来の格納容器内スプレイ設備を不要とした格
納容器圧力上昇抑制装置を提供することを目的とする。
In order to solve the above problems, in the present invention, in the event of a primary system piping rupture accident, the rupture port is submerged in water at an early stage, the steam flowing out from the rupture port is absorbed in the submerged water, and the steam inside the containment vessel is absorbed. It is an object of the present invention to provide a containment vessel pressure rise suppressing device that makes it possible to prevent direct release into the containment vessel, thereby eliminating the need for conventional spray equipment inside the containment vessel.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、この発明は  原子炉容器と蒸気発生器と一次冷
却材ポンプとからなる一次冷却材の循環系を構成し、こ
の一次冷却材の配管に、前記原子炉容器より高所に配置
された重力注入タンクからの配管を隔離弁及び逆止弁を
介して接続すると共に、蓄圧タンクからの配管を他の隔
離弁及び逆止弁を介して前記原子炉容器のダウンカマ−
部の原子炉容器壁に接続したものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention configures a primary coolant circulation system consisting of a reactor vessel, a steam generator, and a primary coolant pump, and Connect the piping from the gravity injection tank located higher than the reactor vessel to the piping via an isolation valve and check valve, and connect the piping from the pressure accumulation tank to the other isolation valve and check valve. downcomer of the reactor vessel through
It is connected to the wall of the reactor vessel.

【0008】[0008]

【作用】本発明による格納容器内圧力上昇抑制システム
を設置した場合の格納容器内圧力変化特性を図5に破線
で示す。尚図5中で実線は従来システムの例を示す。
[Operation] FIG. 5 shows the pressure variation characteristics in the containment vessel when the containment vessel pressure increase suppression system according to the present invention is installed. In addition, the solid line in FIG. 5 shows an example of a conventional system.

【0009】初期の段階には、一次冷却材が格納容器内
に短時間で放出されるので、格納容器圧力は急速に上昇
する。格納容器内に適切な空間容積を確保することによ
りこの段階の圧力上昇を抑制される。炉心が再冠水する
段階で再び破断口から蒸気が放出され格納容器の圧力は
上昇するが、炉心の再冠水終了により内圧上昇は停止し
(この時の圧力を再冠水ピ−ク圧力と呼ぶ)、一旦緩や
かに低下する。炉心での崩壊熱が全量蒸気となって破断
口から放出されると仮定すれば、格納容器の圧力は再び
上昇し続けるが、本発明による格納容器圧力抑制システ
ムでは、格納容器圧力が再冠水ピ−ク圧力以上になる前
に破断口を水没させることにより格納容器への蒸気の放
出を停止させるので、格納容器の圧力は図中破線で示し
た通り降下する。格納容器圧力が降下する原因は、破断
口からの蒸気放出が停止すると共に、格納容器内の構造
材に熱が吸収されるためである。
[0009] In the initial stage, the primary coolant is released into the containment vessel for a short time, so that the containment vessel pressure increases rapidly. The pressure increase at this stage can be suppressed by ensuring an appropriate space volume within the containment vessel. When the core is re-flooded, steam is released again from the rupture port and the pressure in the containment vessel increases, but once the core is re-flooded, the increase in internal pressure stops (the pressure at this time is called the re-flood peak pressure). , and then gradually decreases. If we assume that all of the decay heat in the reactor core becomes steam and is released from the rupture port, the pressure in the containment vessel will continue to rise again, but in the containment vessel pressure suppression system according to the present invention, the pressure in the containment vessel will continue to rise until re-flooding. - By submerging the rupture port in water before the pressure exceeds the maximum pressure, the release of steam into the containment vessel is stopped, so the pressure in the containment vessel drops as shown by the broken line in the figure. The cause of the drop in containment vessel pressure is that steam release from the rupture port stops and heat is absorbed by the structural materials inside the containment vessel.

【0010】この発明では、従来のシステムに比して原
子炉格納容器内圧力降下に若干の時間遅れは生じるもの
の、全体としてみた場合、圧力抑制効果の面では大きな
差異はない。
[0010] In the present invention, although there is a slight time delay in the pressure drop inside the reactor containment vessel compared to the conventional system, when viewed as a whole, there is no significant difference in pressure suppression effect.

【0011】[0011]

【実施例】本発明による格納容器圧力上昇抑制システム
の構成を図1に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the configuration of a containment vessel pressure rise suppression system according to the present invention.

【0012】大破断LOCA時に、炉心で発生した蒸気
が破断口から格納容器へ放出し続けるのを防止するため
に図2に基づいて以下に説明する。
A method for preventing the steam generated in the core from continuing to be released from the rupture port into the containment vessel during a large rupture LOCA will be explained below with reference to FIG.

【0013】本発明は加圧水型原子炉において、1次冷
却材ル−プ(原子炉容器1→蒸気発生器(SG)→1次
冷却材ポンプ20→原子炉容器1を結ぶ1次冷却材の循
環系)の1次冷却材の配管2に原子炉容器1より高所に
配置された重力注入タンク10からの配管3を隔離弁5
及び逆止弁7を介して接続すると共に蓄圧タンク9から
の配管4を隔離弁6及び逆止弁8を介して原子炉容器1
のダウンカマ−部11の原子炉容器壁に接続したことを
特徴としている。
The present invention provides a primary coolant loop (reactor vessel 1→steam generator (SG)→primary coolant pump 20→reactor vessel 1) in a pressurized water reactor. The isolation valve 5 connects the piping 3 from the gravity injection tank 10 located higher than the reactor vessel 1 to the primary coolant piping 2 of the circulation system).
and a check valve 7, and the pipe 4 from the pressure accumulation tank 9 is connected to the reactor vessel 1 through an isolation valve 6 and a check valve 8.
The downcomer section 11 is connected to the wall of the reactor vessel.

【0014】尚、隔離弁5及び6は通常開の状態で運転
される。また、逆止弁7及び8は配管1系統に複数(図
では2個)配置されているが、これはバックアップのた
めである。
Note that the isolation valves 5 and 6 are normally operated in an open state. In addition, a plurality of check valves 7 and 8 (two in the figure) are arranged in one piping system, but this is for backup purposes.

【0015】蓄圧タンク9内には非常用冷却水が張られ
ているが、上部の気相部には50Kg/cm2 の加圧
N2 ガスが充てんされる。
The pressure accumulator tank 9 is filled with emergency cooling water, and the upper gas phase is filled with pressurized N2 gas at 50 kg/cm2.

【0016】また、重力注入タンク10には水高10m
の冷却用水が蓄わえられており注入水圧は1Kg/cm
2 が得られる。
[0016] In addition, the gravity injection tank 10 has a water height of 10 m.
of cooling water is stored and the injection water pressure is 1Kg/cm.
2 is obtained.

【0017】通常運転時の原子炉容器1内の圧力は約1
60Kg/cm2であるが逆止弁7あるいは逆止弁8が
配置されているので重力注入タンク10あるいは蓄圧タ
ンク9への1次冷却材の逆流は阻止される。
During normal operation, the pressure inside the reactor vessel 1 is approximately 1
60 kg/cm2, but since the check valve 7 or the check valve 8 is arranged, backflow of the primary coolant to the gravity injection tank 10 or the pressure accumulation tank 9 is prevented.

【0018】1次冷却材配管破断事故(即ち、LOCA
)時には、原子炉容器1内の圧力が急激に下がり、圧力
が50Kg/cm2 以下に降下した時点で蓄圧タンク
9から圧力差により自動的に原子炉容器1内のダウンカ
マ−部11に非常用冷却水が注入される。この後、更に
圧力が低下し、1次冷却材循環系(即ち、1次冷却材ル
−プ)内圧力が1Kg/cm2 以下となった時点で自
動的に(水頭圧力により)重力注入タンク10内の冷却
用水が1次冷却材配管2に供給される。
[0018] Primary coolant pipe rupture accident (i.e., LOCA
) Sometimes, the pressure inside the reactor vessel 1 drops suddenly, and when the pressure drops below 50 kg/cm2, emergency cooling is automatically sent from the pressure storage tank 9 to the downcomer section 11 inside the reactor vessel 1 due to the pressure difference. Water is injected. After this, when the pressure further decreases and the pressure within the primary coolant circulation system (i.e., the primary coolant loop) becomes 1 Kg/cm2 or less, the gravity injection tank 10 is automatically The cooling water inside is supplied to the primary coolant pipe 2.

【0019】なお、図2中で1B、12Bは配管のおお
きさを示す単位である。■任意の箇所での1次冷却材配
管の破断の場合に、この破断口を水没させるのに必要な
水量を有する貯水タンク(重力注入タンク)を1次冷却
系よりも充分に高所部に設置し、外部からの非常用電源
を必要としないで、重力による水没水の供給を可能とす
る。■格納容器内の圧力上昇を許容範囲内に抑えられる
よう、破断口は炉心再冠水後早期に水没できること。■
原子炉出口側の破断口から水没水中に流出した熱水は水
没水中の温度を上昇させるが、この水没水はSG側の破
断口から流入してSGにより冷却される(図3)。水没
水の温度が上昇すると、SGで炉心の除熱量が増加する
ので、水没水がある温度まで上昇すると、SGで炉心崩
壊熱量の全量が除熱できるようになり温度上昇を制限す
る。SGでの冷却は自然循環(対流)により行われるの
で、動力源は全く不要である。■以上の通り、破断口か
ら格納容器に直接蒸気放出するのを防止し、蒸気発生器
の冷却により水没水を冷却し、格納容器の圧力上昇を抑
制する。■蒸気発生器室の配置をコンパクトにし、1次
冷却材配管を水没させるのに必要な水量を極力少なくし
早期の破断口水没を可能とする。
In FIG. 2, 1B and 12B are units indicating the size of the piping. ■In the event of a rupture in the primary coolant pipe at any location, place a water storage tank (gravity injection tank) with enough water to submerge the rupture in a location sufficiently higher than the primary cooling system. installed to enable the supply of submerged water by gravity without the need for an external emergency power source. ■The rupture port must be able to be submerged quickly after the core is re-flooded, so that the pressure rise in the containment vessel can be kept within the permissible range. ■
The hot water that flows into the submerged water from the fracture port on the reactor exit side increases the temperature of the submerged water, but this submerged water flows in from the fracture port on the SG side and is cooled by the SG (Figure 3). When the temperature of the submerged water rises, the amount of heat removed from the core by the SG increases, so when the submerged water rises to a certain temperature, the SG becomes able to remove the entire core decay heat, thereby limiting the temperature rise. Cooling in the SG is performed by natural circulation (convection), so no power source is required. ■As described above, direct steam release from the rupture port into the containment vessel is prevented, the submerged water is cooled by cooling the steam generator, and the pressure increase in the containment vessel is suppressed. ■The layout of the steam generator room is made compact, and the amount of water required to submerge the primary coolant pipes is minimized, allowing for early submersion of the break points.

【0020】図2に示された例では、LOCA後の急速
な1次系への注入を実施するための窒素加圧のためのラ
インを有する蓄圧タンク、及び蓄圧タンクから原子炉容
器への注入ライン、更に主な水没水源となる重力注入タ
ンクとそこから1次冷却材配管への注入ラインを設けた
In the example shown in FIG. 2, an accumulator tank with a line for nitrogen pressurization to carry out a rapid injection into the primary system after LOCA, and an injection line from the accumulator tank into the reactor vessel. In addition, we installed a gravity injection tank, which is the main source of submerged water, and an injection line from there to the primary coolant piping.

【0021】[0021]

【発明の効果】以上説明したとおり、本発明によれば、
従来技術で用いられていた大型で高性能の格納容器スプ
レイポンプ及び原子炉格納容器外に設置される格納容器
スプレイポンプから格納容器への長い配管等を除去する
ことができ、また、スプレイポンプ駆動用の非常用電源
供給設備も不用となる。さらに、事故時格納容器圧力の
上昇抑制や減圧の効果については従来技術と同等の能力
を有するので、コスト低減を実現することができる。
[Effects of the Invention] As explained above, according to the present invention,
It is possible to eliminate the long piping from the large, high-performance containment vessel spray pump used in conventional technology and the containment vessel spray pump installed outside the reactor containment vessel to the containment vessel. Emergency power supply equipment will also become unnecessary. Furthermore, since it has the same ability as the conventional technology in suppressing the increase in pressure in the containment vessel and reducing the pressure in the event of an accident, it is possible to reduce costs.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による格納容器圧力上昇抑制の方法を説
明したものである。
FIG. 1 illustrates a method of suppressing a pressure rise in a containment vessel according to the present invention.

【図2】本発明による圧力上昇抑制システムの構成例を
示したものである。
FIG. 2 shows a configuration example of a pressure rise suppression system according to the present invention.

【図3】水没水の冷却方式の例として、蒸気発生器によ
る冷却方法の概念を示したものである。
FIG. 3 shows the concept of a cooling method using a steam generator as an example of a submerged water cooling method.

【図4】従来の技術による格納容器内スプレイ方式によ
る格納容器圧力抑制システムの設計例を示したものであ
る。
FIG. 4 shows a design example of a containment vessel pressure suppression system using a spray method within the containment vessel according to the prior art.

【図5】格納容器圧力上昇抑制システムによる格納容器
圧力変化を示すもので、図中実線は従来技術、破線は本
発明による場合を示す。
FIG. 5 shows changes in containment vessel pressure due to the containment vessel pressure rise suppression system, in which the solid line indicates the conventional technique and the broken line indicates the case according to the present invention.

【符号の説明】[Explanation of symbols]

1    原子炉容器 2,3,4    配管 5,6    隔離弁 7,8    逆止弁 9    蓄圧タンク 10    重力注入タンク 1 Reactor vessel 2, 3, 4 Piping 5, 6 Isolation valve 7, 8 Check valve 9 Pressure accumulator tank 10 Gravity injection tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  加圧水型原子炉における原子炉格納容
器圧力上昇抑制装置において、原子炉容器と蒸気発生器
と一次冷却材ポンプとからなる一次冷却材の循環系を構
成し、この一次冷却材の配管に、前記原子炉容器より高
所に配置された重力注入タンクからの配管を隔離弁及び
逆止弁を介して接続すると共に、蓄圧タンクからの配管
を他の隔離弁及び逆止弁を介して前記原子炉容器のダウ
ンカマ−部の原子炉容器壁に接続しことを特徴とする原
子炉格納容器圧力上昇抑制装置。
Claim 1: In a reactor containment vessel pressure rise suppression device for a pressurized water reactor, a primary coolant circulation system consisting of a reactor vessel, a steam generator, and a primary coolant pump is configured, and Connect the piping from the gravity injection tank located higher than the reactor vessel to the piping via an isolation valve and check valve, and connect the piping from the pressure accumulation tank through another isolation valve and check valve. A reactor containment vessel pressure rise suppressing device, characterized in that the device is connected to a wall of the reactor vessel at a downcomer portion of the reactor vessel.
JP3077166A 1991-03-18 1991-03-18 Pressure rise suppression device for reactor container Pending JPH04289492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3077166A JPH04289492A (en) 1991-03-18 1991-03-18 Pressure rise suppression device for reactor container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3077166A JPH04289492A (en) 1991-03-18 1991-03-18 Pressure rise suppression device for reactor container

Publications (1)

Publication Number Publication Date
JPH04289492A true JPH04289492A (en) 1992-10-14

Family

ID=13626205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3077166A Pending JPH04289492A (en) 1991-03-18 1991-03-18 Pressure rise suppression device for reactor container

Country Status (1)

Country Link
JP (1) JPH04289492A (en)

Similar Documents

Publication Publication Date Title
CN103295656B (en) Diversified engineered safety system for nuclear reactor
RU2153201C2 (en) Nuclear reactor with stand-by cooling system and its cooling process
FI74833B (en) ANORDNING FOER NOEDKYLNING AV EN TRYCKVATTENKAERNREAKTOR.
US4587079A (en) System for the emergency cooling of a pressurized water nuclear reactor core
KR100419194B1 (en) Emergency Core Cooling System Consists of Reactor Safeguard Vessel and Accumulator
WO2002073625A2 (en) Integral pwr with diverse emergency cooling and method of operating same
JPH03502005A (en) Full-pressure passive emergency core cooling and residual heat removal equipment for water-cooled reactors
JPH04125495A (en) Nuclear reactor facility
CN109903863B (en) Safe injection system and nuclear power system
KR20160096718A (en) Reactor system with a lead-cooled fast reactor
JP2015509191A (en) Underwater power generation module
JP6203196B2 (en) Power generation module
JPH04289492A (en) Pressure rise suppression device for reactor container
JP2015509190A (en) Diving energy generation module
JP6305937B2 (en) Submersible or underwater power generation module
JPS5860293A (en) Emergency core cooling system
JP2020008541A (en) Cooling system of nuclear reactor during accident
WO2022233141A1 (en) Passive special safety system and water supply system for nuclear power plant
KR101456575B1 (en) In vessel boron injection system
KR20180079990A (en) Nuclear Power Plant having a passive core cooling function during loss of AC power
JPH04109197A (en) Reactor core decay heat removing device for pressurized water reactor
JP6307443B2 (en) Submersible power generation module
JPH05264774A (en) Emergency reactor cooling equipment
JPS6375691A (en) Natural circulation type reactor
JPH04157396A (en) Natural cooling type container

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990330