JPH04289103A - Production of press-compacted and sintered body - Google Patents

Production of press-compacted and sintered body

Info

Publication number
JPH04289103A
JPH04289103A JP5469191A JP5469191A JPH04289103A JP H04289103 A JPH04289103 A JP H04289103A JP 5469191 A JP5469191 A JP 5469191A JP 5469191 A JP5469191 A JP 5469191A JP H04289103 A JPH04289103 A JP H04289103A
Authority
JP
Japan
Prior art keywords
press
compacted body
weight
bulk density
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5469191A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Iwasaki
岩崎 義光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5469191A priority Critical patent/JPH04289103A/en
Publication of JPH04289103A publication Critical patent/JPH04289103A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To determine optimum pressing conditions and to enable stable mass production by measuring the weight of a press-compacted body as a sample immediately after compacting and the weight after drying and calculating the bulk density of the compacted body. CONSTITUTION:A slurry is press-compacted with a metal mold, the weight WG of the resulting molded body is immediately measured and the volume VG of the compacted body is calculated from the measured dimensions of the mold. The compacted body is then rapidly dried with a drier, the weight WD of the dried compacted body is measured and the apparent density rhoa of powder forming the compacted body is calculated by an equation rhoa=WD/[VG-(WG- WD)/rho0]. The bulk density rhob of the compacted body is also calculated by equation I. In the equations, rhoG=WG/VG and rho0 is the specific gravity of a liq. forming the slurry. Since the bulk density rhob of the compacted body can rapidly be calculated and exact evaluation of the porosity is enabled even in case of high press compacting pressure, optimum press compacting pressure can always be determined.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、スラリーをプレス成形
し、乾燥・焼成して焼結体を製造する粉末冶金製品の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing powder metallurgy products, in which a slurry is press-molded, dried and fired to produce a sintered body.

【0002】0002

【従来の技術】プレス成形焼結体の製造工程において、
プレス成形条件を最適化するために、成形体の嵩密度を
求め、それをフィードバックすることにより工程を管理
している。ところで、一般に成形体の嵩密度は成形体を
乾燥後秤量し、次いで該乾燥成形体に液体を飽和状態に
まで吸収させた状態で秤量し、次いで該飽和成形体を飽
和吸収に用いた同一の液体中に吊るし秤量することから
求めている。
[Prior Art] In the manufacturing process of press-formed sintered bodies,
In order to optimize the press molding conditions, the bulk density of the molded product is determined and the process is managed by feeding it back. By the way, the bulk density of a molded body is generally determined by weighing the molded body after drying it, then weighing it after the dry molded body absorbs the liquid to a saturated state, and then weighing the same saturated molded body used for saturated absorption. It is obtained by suspending it in a liquid and weighing it.

【0003】すなわち、適当なプレス成形圧で成形体を
得、次いで、例えば恒温槽にて約50℃で10時間程度
乾燥させ、まず成形体の乾重量W0 (g)を測り、次
いで乾燥成形体を水中に浸し、雰囲気圧を下げることに
より、成形体中の空気を脱気して水を徐々に湿潤させた
後、重量変化のなくなる時点で水分の飽和状態とみなし
、水中で秤量W2 (g)し、次に湿潤成形体を引き上
げ表面付着水分を除去した後の湿潤成形体重量をW1 
(g)とし、粉体の見かけ密度ρa (g/cm3 )
および成形体の嵩密度ρb (g/cm3 )をそれぞ
れ式(2)、式(3)より求めていた。
That is, a molded product is obtained using an appropriate press molding pressure, and then dried for about 10 hours at about 50° C. in a constant temperature bath.First, the dry weight W0 (g) of the molded product is measured, and then the dry molded product is is immersed in water and the atmospheric pressure is lowered to deaerate the air in the molded product and gradually moisten it with water.The time when there is no change in weight, it is considered to be saturated with water, and weighed in water W2 (g ), and then the wet molded body weight after removing the moisture adhering to the surface by pulling up the wet molded body is W1.
(g) and the apparent density of powder ρa (g/cm3)
and the bulk density ρb (g/cm3) of the molded body were determined from equations (2) and (3), respectively.

【0004】         ρa =ρ0 /(1−W2 /W0
 )                …(2)   
     ρb =ρ0 /(ρ0 /ρa +W1 
/W0 −1)    …(3)  ここに、ρ0 は
密度測定に用いた水の比重を表す。
[0004] ρa = ρ0 / (1-W2 /W0
)...(2)
ρb = ρ0 / (ρ0 / ρa + W1
/W0 −1) (3) Here, ρ0 represents the specific gravity of water used for density measurement.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来法
では成形後の乾燥、液体の湿潤に長時間を要し、プレス
成形条件の最適条件が迅速に得られず量産成形する場合
の安定性を確保するには適わしくなかった。第2の問題
点は、成形圧が高いと成形体の空隙率は低くなるが、同
一粉体を用いて成形しているにもかかわらず、図3に示
すように空隙率が40%未満では液体の湿潤が不充分で
見かけ密度が空隙率の低下とともに直線的に減少する傾
向にあった。従って、成形体の嵩密度に関して、空隙率
が40%以上となる低い成形圧の場合にしか妥当な嵩密
度を求めることができず、成形体の正当な評価が不可能
となり、プレス成形条件の最適化に嵩密度を適用できな
かった。
[Problem to be solved by the invention] However, in the conventional method, it takes a long time for drying and wetting of the liquid after molding, and it is difficult to quickly obtain the optimum press molding conditions to ensure stability during mass production molding. It wasn't suitable for me. The second problem is that when the molding pressure is high, the porosity of the molded body decreases, but as shown in Figure 3, the porosity of the molded body is less than 40%, even though the same powder is used for molding. Due to insufficient liquid wetting, the apparent density tended to decrease linearly as the porosity decreased. Therefore, regarding the bulk density of the molded product, it is only possible to obtain a reasonable bulk density at a low molding pressure where the porosity is 40% or more, making it impossible to properly evaluate the molded product and changing the press molding conditions. Bulk density could not be applied to optimization.

【0006】第3の問題点は、成形体は乾燥後強度が1
/5〜1/10に減少するので、ハンドリング中に割れ
や欠けが生ずることがあり、密度の測定誤差を著しく増
大させることである。そこで、本発明の目的は、スラリ
ーをプレスで成形し、乾燥・焼成して焼結体を製造する
工程において、迅速に最適なプレス成形条件を決定する
ことのできる精度の高い成形体の嵩密度の求め方を提案
し、大量生産に適した安定したプレス成形焼結体の製造
を可能とするものである。
The third problem is that the strength of the molded product after drying is 1.
Since the density decreases by 1/5 to 1/10, cracks or chips may occur during handling, which significantly increases the error in density measurement. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to obtain a high-precision bulk density of a molded body that can quickly determine the optimum press-forming conditions in the process of manufacturing a sintered body by molding slurry with a press, drying and firing. The present invention proposes a method for determining , which makes it possible to manufacture stable press-formed sintered bodies suitable for mass production.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明は、ス
ラリーをプレスで成形し、乾燥・焼成して焼結体を製造
する工程において、プレス成形後のサンプルを採取しそ
のままの重量WG と体積VG を測定し、次いで該成
形体を乾燥させその重量WD を求め、式(1)に基づ
いて該成形体の嵩密度ρb を計算し、これを用いてプ
レス成形条件の最適化を図ることを特徴とするプレス成
形焼結体の製造方法である。
[Means for Solving the Problems] That is, in the process of manufacturing a sintered body by molding slurry with a press, drying and firing, the present invention collects a sample after press molding and calculates the weight WG and volume of the slurry as it is. VG is measured, then the molded body is dried to determine its weight WD, the bulk density ρb of the molded body is calculated based on equation (1), and this is used to optimize the press forming conditions. This is a method for manufacturing a press-formed sintered body.

【0008】         ρb =ρa ・(ρG −ρ0 )
/(ρa −ρ0 )    …(1)  但し、ρa
 =WD /{VG −(WG −WD )/ρ0 }
        ρG =WG /VG       
  ρ0 :スラリーを構成する液体の比重である。
[0008] ρb = ρa ・(ρG − ρ0 )
/(ρa −ρ0) …(1) However, ρa
= WD / {VG - (WG - WD ) / ρ0 }
ρG = WG /VG
ρ0: Specific gravity of the liquid constituting the slurry.

【0009】因みに、 (成形体中粉体の占める体積)=(成形体の体積)−(
成形体中空隙体積)であるから、 (成形体中粉体の占める体積)=VG −(WG −W
D)/ρ0  と表される。
Incidentally, (volume occupied by the powder in the molded body) = (volume of the molded body) - (
(void volume in the molded body), (volume occupied by the powder in the molded body) = VG - (WG - W
D)/ρ0.

【0010】これにより、粉体の見かけ密度ρa は、
ρa =WD /{VG −(WG −WD )/ρ0
 }として容易に求まる。ところで、成形体の空隙率ε
は、ε≡(成形体中空隙の体積)/(成形体の体積)で
定義されるから、         ρb =ρa (1−ε)     
                     …(4)
と表せる。
[0010] Accordingly, the apparent density ρa of the powder is
ρa = WD / {VG − (WG − WD ) / ρ0
} is easily found. By the way, the porosity ε of the molded body
is defined as ε≡(volume of voids in the molded body)/(volume of the molded body), so ρb = ρa (1-ε)
…(4)
It can be expressed as

【0011】一方、成形体密度ρG を、ρG ≡WG
 /VG  と定義すると、 ρG =(1−ε)ρa +ερ0  で表せるから、 ε=(ρa −ρG )/(ρa −ρ0 )となり、
これを式(4)に代入して式(1)が得られる。
On the other hand, the compact density ρG is expressed as ρG ≡WG
/VG, it can be expressed as ρG = (1 - ε) ρa + ερ0, so ε = (ρa - ρG ) / (ρa - ρ0 ),
By substituting this into equation (4), equation (1) is obtained.

【0012】また、本発明では、成形体各部をカットす
ることにより、成形体各部の成形体嵩密度も求めること
ができ、密度の分布状況も容易に把握することができる
Furthermore, in the present invention, by cutting each part of the molded product, the bulk density of each part of the molded product can be determined, and the distribution of the density can also be easily grasped.

【0013】[0013]

【作  用】従来法では成形体の状態を保持するため緩
やかな乾燥をさせざるを得なったが、本発明では乾燥後
の測定が秤量のみであるので、急乾燥させることができ
る。また本発明では液体の湿潤を必要としないので、粉
体見かけ密度の空隙率依存性はなく、従って従来法では
求まらなかった高成形圧でも高精度で嵩密度を得ること
が可能となる。また、従来法では成形体の脱バインダ、
湿潤と余分のハンドリングを必要とする上に、特に脱バ
インダ後の成形体は脆く割れ欠けを招き易いので迅速な
処理ができなかったが、本発明ではこのような問題はな
く、迅速に高精度で成形体の嵩密度を求めることができ
るので、これに基づき最適なプレス条件が決定でき、安
定した大量プレスが可能となる。
[Function] In the conventional method, it was necessary to dry slowly in order to maintain the condition of the molded product, but in the present invention, the only measurement after drying is weighing, so rapid drying can be performed. Furthermore, since the present invention does not require liquid wetting, the apparent density of the powder does not depend on the porosity, and therefore it is possible to obtain the bulk density with high precision even at high molding pressures, which was not possible with conventional methods. . In addition, in the conventional method, the binder from the molded body is removed,
In addition to requiring wetting and extra handling, the molded product after debinding is brittle and prone to cracking and chipping, so it was not possible to process it quickly. However, the present invention does not have these problems and can quickly produce high precision. Since the bulk density of the molded body can be determined, the optimum pressing conditions can be determined based on this, and stable mass pressing becomes possible.

【0014】[0014]

【実施例】ストロンチウムハードフェライト磁粉の湿式
微粉砕後のスラリーを一軸圧縮型プレスに供給し、リン
グ形状の成形体を成形圧 100〜500 kg/cm
2 の範囲で成形し、38〜41%の範囲の空隙率を有
する成形体を得た。 従来法による成形体の乾燥には恒温槽にて60℃で12
時間乾燥させ、まず成形体の乾重量W0 (g)を測り
、次いで乾燥成形体を水中に浸し、雰囲気圧を下げるこ
とにより成形体中の空気を脱気して水を徐々に湿潤させ
た後、重量変化のなくなる時点で水分の飽和状態とみな
し水中で秤量W2 (g)した。次に湿潤成形体を引き
上げ表面付着水分を除去した後の湿潤成形体重量W1 
(g)を秤量し、粉体の見かけ密度ρa (g/cm3
 )および成形体の嵩密度ρb (g/cm3 )をそ
れぞれ式(5)、式(6)より求めた。
[Example] A slurry after wet pulverization of strontium hard ferrite magnetic powder is supplied to a uniaxial compression press, and a ring-shaped molded body is formed at a molding pressure of 100 to 500 kg/cm.
2 to obtain a molded body having a porosity in the range of 38 to 41%. To dry the molded body using the conventional method, dry at 60℃ for 12 hours in a constant temperature bath.
After drying for an hour, first measure the dry weight W0 (g) of the molded body, then immerse the dry molded body in water, lower the atmospheric pressure to deaerate the air in the molded body, and gradually moisten the water. When there was no change in weight, the sample was considered to be saturated with water and weighed in water (W2 (g)). Next, the wet molded body is pulled up and the weight of the wet molded body after removing the moisture adhering to the surface W1
(g), and the apparent density of the powder ρa (g/cm3
) and the bulk density ρb (g/cm3) of the molded body were determined from equations (5) and (6), respectively.

【0015】         ρa =ρ0 /(1−W2 /W0
 )                …(5)   
     ρb =ρ0 /(ρ0 /ρa +W1 
/W0 −1)    …(6)  ここに、ρ0 は
密度測定に用いた水の比重を表す。本発明法による成形
体の密度測定は、成形直後に成形体を秤量WG (g)
し、次いで金型の寸法測定から体積VG (cm3 )
を求め、 300℃に設定した乾燥器で20分の急乾燥
をさせ、乾燥成形体重量WD (g)を得、式(7)、
式(1)にて粉体の見かけ密度ρa および成形体の嵩
密度ρb を求めた。
ρa = ρ0 / (1-W2 /W0
)...(5)
ρb = ρ0 / (ρ0 / ρa + W1
/W0 −1) (6) Here, ρ0 represents the specific gravity of water used for density measurement. To measure the density of a molded body using the method of the present invention, the molded body is weighed immediately after molding (WG (g)).
Then, from the dimension measurement of the mold, the volume VG (cm3)
was then rapidly dried in a dryer set at 300°C for 20 minutes to obtain the dry molded weight WD (g), which is expressed by formula (7).
The apparent density ρa of the powder and the bulk density ρb of the molded body were determined using equation (1).

【0016】         ρa =WD /{VG −(WG 
−WD )/ρ0 }    …(7)       
 ρb =ρa ・(ρG −ρ0 )/(ρa −ρ
0 )    …(1)  但し、ρG は成形体密度
で、式(8)で定義する。         ρG ≡WG /VG       
                        …
(8)  図1は本発明法による測定の実施例で、粉体
の見かけ密度と空隙率の関係を示す。液湿潤が不要なの
で空隙率に依らず粉体の見かけ密度が一定となり、また
成形体の嵩密度ρb と成形体密度ρG に関して、図
2に示す如く式(4)の直線関係が得られた。
ρa =WD /{VG −(WG
−WD )/ρ0 } …(7)
ρb = ρa ・(ρG − ρ0 )/(ρa − ρ
0 )...(1) However, ρG is the compact density, which is defined by equation (8). ρG ≡WG /VG

(8) FIG. 1 is an example of measurement by the method of the present invention, and shows the relationship between the apparent density and porosity of powder. Since liquid wetting is not necessary, the apparent density of the powder is constant regardless of the porosity, and the linear relationship expressed by equation (4) as shown in FIG. 2 was obtained between the bulk density ρb of the compact and the density ρG of the compact.

【0017】また図3は従来法の測定結果を示すもので
ある。これによると同一粉体であるにもかかわらず、空
隙率が40%未満では粉体の見かけ密度が同一値からず
れ、直線関係を示す。従って、嵩密度と空隙率ε間の単
調減少の直線関係、 ρb =ρa (1−ε) はε=0のとき、ρb =3.82(g/cm3 )と
なり、図4に示すように粉体の見かけ密度4.87g/
cm3 から大幅にずれる。
FIG. 3 shows the measurement results of the conventional method. According to this, although the powders are the same, when the porosity is less than 40%, the apparent density of the powders deviates from the same value and shows a linear relationship. Therefore, the monotonically decreasing linear relationship between bulk density and porosity ε, ρb = ρa (1-ε), becomes ρb = 3.82 (g/cm3) when ε=0, and as shown in Figure 4, Apparent body density 4.87g/
It deviates significantly from cm3.

【0018】一方、本発明法は成形体乾燥後の液湿潤を
要しないので、空隙率に依らず粉体の見かけ密度は一定
で、嵩密度が従来法に比べ精度良く求まる。嵩密度と空
隙率の関係でも、本発明法は図5に示すように相関係数
(数1)と高い直線相関を示し、ε=0(%)において
もρb =4.85(g/cm3 )で粉体の見かけ密
度に近い値となる。
On the other hand, since the method of the present invention does not require liquid wetting after drying the compact, the apparent density of the powder is constant regardless of the porosity, and the bulk density can be determined with higher accuracy than the conventional method. Regarding the relationship between bulk density and porosity, the method of the present invention shows a high linear correlation with the correlation coefficient (Equation 1) as shown in Figure 5, and even when ε = 0 (%), ρb = 4.85 (g/cm3). ) has a value close to the apparent density of powder.

【0019】[0019]

【数1】[Math 1]

【0020】[0020]

【発明の効果】本発明では、上述したように成形体の嵩
密度を迅速に求めることができ、またプレス成形圧が高
い場合にも空隙率の正しい評価が可能となるので、常に
最適なプレス成形圧の決定が可能となる。その結果、大
量のプレス成形焼結体の良品を安定して製造することが
可能となった。
[Effects of the Invention] As described above, the present invention allows the bulk density of a molded body to be quickly determined, and also enables correct evaluation of porosity even when the press molding pressure is high, so that it is possible to always use the optimal press. It becomes possible to determine the molding pressure. As a result, it has become possible to stably produce a large quantity of press-formed sintered bodies of good quality.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の測定結果を示すグラフで、粉体の見か
け密度が空隙率に依らず一定であることを示している。
FIG. 1 is a graph showing the measurement results of the present invention, showing that the apparent density of the powder is constant regardless of the porosity.

【図2】本発明の測定結果を示すグラフで、嵩密度が成
形密度と相関係数R=0.91の直線関係にあることを
示している。
FIG. 2 is a graph showing the measurement results of the present invention, showing that the bulk density has a linear relationship with the molding density with a correlation coefficient R=0.91.

【図3】従来法の測定結果を示すグラフで、空隙率が4
0%未満で一定値にならないことを示している。
[Figure 3] A graph showing the measurement results of the conventional method, with a porosity of 4
This indicates that the value does not reach a constant value when it is less than 0%.

【図4】従来法の測定結果を示すグラフで、ε=0(%
)のとき粉体見かけ密度から大幅にずれることを示して
いる。
[Figure 4] A graph showing the measurement results of the conventional method, where ε = 0 (%
) indicates a significant deviation from the powder apparent density.

【図5】本発明法の測定結果を示すグラフで、空隙率と
嵩密度との相関がよいことを示している。
FIG. 5 is a graph showing the measurement results of the method of the present invention, showing that there is a good correlation between porosity and bulk density.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  スラリーをプレスで成形し、乾燥・焼
成して焼結体を製造する工程において、プレス成形後の
サンプルを採取しそのままの重量WG と体積VG を
測定し、次いで該成形体を乾燥させその重量WD を求
め、式(1)に基づいて該成形体の嵩密度ρb を計算
し、これを用いてプレス成形条件の最適化を図ることを
特徴とするプレス成形焼結体の製造方法。         ρb =ρa ・(ρG −ρ0 )
/(ρa −ρ0 )    …(1)  但し、ρa
 =WD /{VG −(WG −WD )/ρ0 }
        ρG =WG /VG       
  ρ0 :スラリーを構成する液体の比重である。
Claim 1: In the process of forming a slurry with a press, drying and firing it to produce a sintered body, a sample after press forming is taken and its weight WG and volume VG are measured, and then the formed body is Production of a press-formed sintered body, characterized in that the weight WD of the body is determined by drying, the bulk density ρb of the body is calculated based on equation (1), and this is used to optimize press-forming conditions. Method. ρb = ρa ・(ρG − ρ0 )
/(ρa −ρ0) …(1) However, ρa
= WD / {VG - (WG - WD ) / ρ0 }
ρG = WG /VG
ρ0: Specific gravity of the liquid constituting the slurry.
JP5469191A 1991-03-19 1991-03-19 Production of press-compacted and sintered body Pending JPH04289103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5469191A JPH04289103A (en) 1991-03-19 1991-03-19 Production of press-compacted and sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5469191A JPH04289103A (en) 1991-03-19 1991-03-19 Production of press-compacted and sintered body

Publications (1)

Publication Number Publication Date
JPH04289103A true JPH04289103A (en) 1992-10-14

Family

ID=12977824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5469191A Pending JPH04289103A (en) 1991-03-19 1991-03-19 Production of press-compacted and sintered body

Country Status (1)

Country Link
JP (1) JPH04289103A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005038161A2 (en) * 2003-08-08 2005-04-28 Dynabloc Technologies (Pty) Ltd. Method and apparatus for manufacturing compressed earthen blocks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005038161A2 (en) * 2003-08-08 2005-04-28 Dynabloc Technologies (Pty) Ltd. Method and apparatus for manufacturing compressed earthen blocks
WO2005038161A3 (en) * 2003-08-08 2006-03-23 Dynabloc Technologies Pty Ltd Method and apparatus for manufacturing compressed earthen blocks

Similar Documents

Publication Publication Date Title
US9321188B2 (en) Method for manufacturing of ceramic electro-insulating pipes
JPS63218581A (en) High strength ceramic for insulator and manufacture
JPH04289103A (en) Production of press-compacted and sintered body
JPS6350310B2 (en)
KR100491151B1 (en) Method and apparatus for controlling molding sand using optimum compaction
JP2001150092A (en) Ajusting method and device for kneading molding sand
RU2006822C1 (en) Method of determination of density of porous bodies
JPH07106423B2 (en) Method for adjusting compactability of foundry sand
CN115477532B (en) Preparation method of water-soluble precise ceramic core for casting aluminum alloy
Sato et al. A new near net-shape forming process for alumina
SU290202A1 (en) METHOD OF MEASURING A SPECIFIC SURFACE OF BULBS CONSTRUCTION MATERIAL
SU1502317A1 (en) Method of determining the optimum compacting pressure of piezoceramic powders
Keefe Comparison of Uniaxial and Isostatic Compaction Behavior
JPH05185414A (en) Cold isotropic pressure molding method of ceramics
JPH08300326A (en) Molding method for ceramic material
JP3175455B2 (en) Ceramics molding method
JP2997180B2 (en) Manufacturing method of ceramic products
JPH0377943B2 (en)
Park et al. Measurement of the effective thermal conductivities of molding sands at high temperatures
JPH034503B2 (en)
JPH05182521A (en) Manufacture of bzt sintered body
CN112924258A (en) Method for indirectly reflecting pore structure of mortar
CN107892553A (en) A kind of low deformation ceramic blank of material
SU123641A1 (en) The method of manufacturing electric products
SU137108A1 (en) A method of manufacturing filters of granular metal powders