JPH04288825A - Method of forming heat resistant contact - Google Patents

Method of forming heat resistant contact

Info

Publication number
JPH04288825A
JPH04288825A JP5271791A JP5271791A JPH04288825A JP H04288825 A JPH04288825 A JP H04288825A JP 5271791 A JP5271791 A JP 5271791A JP 5271791 A JP5271791 A JP 5271791A JP H04288825 A JPH04288825 A JP H04288825A
Authority
JP
Japan
Prior art keywords
melting point
layer
high melting
point metal
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5271791A
Other languages
Japanese (ja)
Inventor
Yuji Komatsu
裕司 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP5271791A priority Critical patent/JPH04288825A/en
Publication of JPH04288825A publication Critical patent/JPH04288825A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To provide a method for forming heat resistant contacts by which it becomes possible to easily form barrier layers for preventing transform into a silicide of high melting point metal such as tungsten. CONSTITUTION:A high melting point metal silicide layer 6 is formed on a silicon substrate 1 in a self-alignment manner, and an interlayer insulating film 7 is formed on all the surface. Then contact holes 8 for exposing at least part of the surface of the above-mentioned high melting point metal silicide layer 6 are formed in the above-mentioned interlayer insulating film 7, and nitride layers 9a of the above-mentioned high melting point metal are formed on the surfaces of the high melting point metal silicide layers 6 in the above-mentioned contact holes 8. After that, a high melting point metal layer 10 is formed on all the surfaces.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、耐熱性コンタクト形成
方法に係り、特に超LSI等のように高集積化を図るた
めに必要な電気抵抗が低い耐熱性コンタクトの形成方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming heat-resistant contacts, and more particularly to a method for forming heat-resistant contacts with low electrical resistance, which is necessary for achieving high integration such as in VLSIs.

【0002】0002

【従来の技術】サブミクロン以下の寸法の微細化が設計
上必要とされる超LSIでは、第1層の配線よりも上層
に負荷トランジスタ(Tr)等を形成することが考えら
れている。このために第1層の配線およびこの配線とそ
の近傍の拡散層とのコンタクトが、少なくともTr形成
のプロセスに耐える耐熱性(例えば900℃以上)を有
し、しかも電気抵抗が低いことを要する。
2. Description of the Related Art In ultra-LSIs whose design requires miniaturization of submicron dimensions or less, it has been considered to form load transistors (Tr) and the like in a layer above the first layer wiring. For this purpose, it is necessary that the first layer wiring and the contact between the wiring and the diffusion layer in the vicinity have heat resistance (for example, 900° C. or higher) that can at least withstand the process of forming the Tr, and have low electrical resistance.

【0003】0003

【発明が解決しようとする課題】900℃以上の耐熱性
を有し、電気抵抗が低い配線としては、高融点金属、特
にタングステン(W)を用いた配線が注目される。しか
し、LSIプロセスではWを例えば拡散層のシリコン(
Si)に直接被着させると、600℃以上の熱処理によ
りシリサイド化(WSi2)反応を生じ耐熱性コンタク
トが得られない。そこで、Wと拡散層との間に窒化チタ
ン(TiN)等のバリアメタル層を形成して、WとSi
のシリサイド化を防止する方法が考えられている。
Problems to be Solved by the Invention As wiring having heat resistance of 900° C. or higher and low electrical resistance, wiring using a high melting point metal, particularly tungsten (W), is attracting attention. However, in the LSI process, W is used, for example, in the silicon of the diffusion layer (
If it is directly deposited on Si), a silicidation (WSi2) reaction occurs due to heat treatment at 600° C. or higher, making it impossible to obtain a heat-resistant contact. Therefore, a barrier metal layer such as titanium nitride (TiN) is formed between W and the diffusion layer to
Methods are being considered to prevent silicide formation.

【0004】しかしながら、TiNをWとSi層に介在
させる方法も以下の如き問題があった。
However, the method of interposing TiN between the W and Si layers also has the following problems.

【0005】第1の問題は、バリアメタルとしてのTi
Nは、通常スパッタ法で形成されるために、W配線用コ
ンタクトホール開口の径が微細化し、なおかつその深さ
が深くなると、図3(a)に示すように、TiN12が
Si基板11上のSiO2層間絶縁膜17のコンタクト
ホール13下部では薄く被着し、上部ではオーバーハン
グ(上方になるにしたがって開口部が狭くなる)を形成
し、その後の全面W14被着がTiN12の被着形成状
態により図3(b)に示すようにコンタクトホール底部
でボイド等の空隙部15を形成することである。
The first problem is that Ti as a barrier metal
Since N is usually formed by a sputtering method, as the diameter of the contact hole opening for W wiring becomes finer and the depth becomes deeper, TiN12 is formed on the Si substrate 11 as shown in FIG. 3(a). The SiO2 interlayer insulating film 17 is thinly deposited at the bottom of the contact hole 13, an overhang is formed at the top (the opening becomes narrower as it goes upward), and the subsequent entire surface W14 is deposited depending on the state of TiN12 deposition. As shown in FIG. 3(b), a void 15 such as a void is formed at the bottom of the contact hole.

【0006】第2の問題は、TiNは上記スパッタ法の
他、CVD(化学気相成長)法で形成するプロセスが知
られている。しかし、まだ開発の段階であり、例えば塩
素(Cl)等の不純物をTiN内に取り込み、要求され
るバリア性を低下させることが課題として残されている
[0006] The second problem is that, in addition to the above-mentioned sputtering method, a process for forming TiN using a CVD (chemical vapor deposition) method is known. However, it is still in the development stage, and there remains the issue of incorporating impurities such as chlorine (Cl) into TiN and reducing the required barrier properties.

【0007】本発明は、タングステン(W)等の高融点
金属と、Siとのシリサイド化を防止するためのバリア
層を容易に形成しうる耐熱性コンタクトの形成方法を提
供することを目的とする。
An object of the present invention is to provide a method for forming a heat-resistant contact that can easily form a barrier layer for preventing silicidation between a high-melting point metal such as tungsten (W) and Si. .

【0008】[0008]

【課題を解決するための手段】上記課題は本発明によれ
ば、シリコン基板上に自己整合的に高融点金属シリサイ
ド層を形成し、全面に層間絶縁膜を形成し、前記高融点
金属シリサイド層表面の少なくとも1部を露出させるコ
ンタクトホールを前記層間絶縁膜に形成し、前記高融点
金属の窒化物層を前記コンタクトホールの高融点金属シ
リサイド層表面に自己整合的に形成した後、全面に高融
点金属層を配線として形成することを特徴とする耐熱性
コンタクトの形成方法によって解決される。
[Means for Solving the Problems] According to the present invention, the above problem is solved by forming a high melting point metal silicide layer on a silicon substrate in a self-aligned manner, forming an interlayer insulating film on the entire surface, and forming the high melting point metal silicide layer on the entire surface. A contact hole exposing at least a portion of the surface is formed in the interlayer insulating film, and the high melting point metal nitride layer is formed in a self-aligned manner on the surface of the high melting point metal silicide layer in the contact hole, and then a high melting point metal nitride layer is formed on the entire surface. The problem is solved by a method for forming a heat-resistant contact, which is characterized by forming a melting point metal layer as a wiring.

【0009】[0009]

【作用】本発明では、配線形成領域を含むシリコン基板
1全面に、例えばチタン、タングステン等の高融点金属
層を形成した後、所定の熱処理(アニール)を施すこと
によってシリコン基板上の配線形成領域に自己整合的に
、例えばチタンシリサイド(TiSix)、タングステ
ンシリサイド(WSix)等の高融点金属シリサイド層
6を形成することができる。また、本発明ではコンタク
トホール8を形成した後、NH3等の窒素雰囲気で熱処
理を行なうことによりコンタクトホール8の高融点金属
シリサイド層6表面に自己整合的にTiN、WN等の高
融点金属の窒化物層9を形成することができる。更に、
本発明では配線材料としての高融点金属としてTi、W
等が好ましく、その形成方法はカバレージのよいCVD
法が好ましい。
[Operation] In the present invention, after forming a high-melting point metal layer such as titanium or tungsten on the entire surface of the silicon substrate 1 including the wiring formation area, a predetermined heat treatment (annealing) is performed to form the wiring formation area on the silicon substrate. A high melting point metal silicide layer 6 such as titanium silicide (TiSix) or tungsten silicide (WSix) can be formed in a self-aligned manner. Further, in the present invention, after forming the contact hole 8, heat treatment is performed in a nitrogen atmosphere such as NH3 to nitride a high melting point metal such as TiN or WN in a self-aligned manner on the surface of the high melting point metal silicide layer 6 of the contact hole 8. A material layer 9 can be formed. Furthermore,
In the present invention, Ti and W are used as high melting point metals as wiring materials.
etc., and the forming method is CVD with good coverage.
law is preferred.

【0010】本発明によれば、コンタクトホール内にバ
リアメタル層として高融点金属窒化物をカバレージよく
容易に形成することができるため配線金属層とシリサイ
ド層との反応を抑制することができ、低抵抗化が図られ
、しかもコンタクトホール内の高融点金属層にはボイド
等の空隙部が発生しない。
According to the present invention, since a high melting point metal nitride can be easily formed as a barrier metal layer in a contact hole with good coverage, the reaction between a wiring metal layer and a silicide layer can be suppressed, and a low Resistance is achieved, and voids such as voids are not generated in the high melting point metal layer within the contact hole.

【0011】[0011]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0012】図1及び図2は本発明の方法の一実施例を
示す工程断面図であり、特に図1は前半工程、図2はそ
の後半の工程を示す。
FIGS. 1 and 2 are process cross-sectional views showing one embodiment of the method of the present invention, in particular, FIG. 1 shows the first half of the process, and FIG. 2 shows the second half of the process.

【0013】まず、図1(a)に示すように、通常の工
程によりシリコン(Si)基板1上にポリシリコンゲー
ト4を形成する。図中2,3はそれぞれ絶縁酸化膜のS
iO2膜である。ポリシリコンゲート4形成後、全面に
Tiをスパッタにより500オングストロームの厚さに
被着してTi層5を形成する。
First, as shown in FIG. 1(a), a polysilicon gate 4 is formed on a silicon (Si) substrate 1 by a normal process. 2 and 3 in the figure are insulating oxide films, respectively.
It is an iO2 film. After forming the polysilicon gate 4, Ti layer 5 is formed by sputtering Ti to a thickness of 500 angstroms over the entire surface.

【0014】次に図1(b)に示すように、約800℃
の温度でアニール処理を行い、シリコンと接する面すな
わち拡散層及びポリシリコンゲート4上のみを選択的に
反応させTiをシリサイド化して厚さ約500オングス
トロームのTiSix(チタンシリサイド)層6を形成
する。この時TiSixの最表面は約100オングスト
ロームのTiNが形成されている。
Next, as shown in FIG. 1(b), about 800°C
An annealing treatment is performed at a temperature of 200 nm to selectively react only on the surface in contact with silicon, that is, on the diffusion layer and polysilicon gate 4, to silicide Ti and form a TiSix (titanium silicide) layer 6 with a thickness of about 500 angstroms. At this time, about 100 angstroms of TiN is formed on the outermost surface of TiSix.

【0015】次に、図1(c)に示すように、Ti層5
のみをアンモニアと過酸化水素の混合溶液によるウエッ
トエッチングにより除去する。
Next, as shown in FIG. 1(c), the Ti layer 5
Only the wafer is removed by wet etching using a mixed solution of ammonia and hydrogen peroxide.

【0016】更に、図2(a)に示すように、全面にS
iO2をCVD法を用いて8000オングストロームの
厚さに堆積させSiO2層間絶縁膜7を形成し、続いて
TiN膜9を約1000オングストロームスパッタによ
り形成する。その後、図2(b)に示すように配線形成
部にコンタクトホール8を形成する。コンタクトホール
8形成時にオーバーエッチングによってTiSix層6
の表面のTiN膜9もエッチングされてしまうのでコン
タクトホール8を形成した後、例えばNH3雰囲気中で
800℃の温度で60秒間熱処理することにより、Ti
Six層6表面にセルフアラインで厚さ約1000オン
グストロームのTiN膜9aを形成する。TiN膜9a
は主にコンタクト部のバリア層として作用し、TiN膜
9は密着層として作用する。
Furthermore, as shown in FIG. 2(a), S is applied to the entire surface.
A SiO2 interlayer insulating film 7 is formed by depositing iO2 to a thickness of 8000 angstroms using the CVD method, and then a TiN film 9 is formed by sputtering to a thickness of about 1000 angstroms. Thereafter, as shown in FIG. 2(b), a contact hole 8 is formed in the wiring forming portion. TiSix layer 6 is removed by over-etching when forming contact hole 8.
Since the TiN film 9 on the surface of the TiN film 9 is also etched, after forming the contact hole 8, heat treatment is performed at a temperature of 800° C. for 60 seconds in an NH3 atmosphere.
A TiN film 9a having a thickness of about 1000 angstroms is formed on the surface of the Six layer 6 in a self-aligned manner. TiN film 9a
acts mainly as a barrier layer for the contact portion, and the TiN film 9 acts as an adhesion layer.

【0017】次に、図2(c)に示すように全面にタン
グステン(W)をCVD法を用いて厚さ5000オング
ストローム(SiO2層間絶縁膜7上で)に堆積させる
と同時にコンタクトホール8内に埋め込まれたW層10
を形成する。このCVD条件は温度475℃、圧力80
Torrとし、原料ガスWF6、還元性のガスH2を用
い、その流量はWF6/H2を60/360SCCMと
した。このようにしてSi基板1上にセルフアラインに
より形成されたチタンシリサイド上にセルフアラインに
よりバリアメタル層としてのTiN膜を形成した後、耐
熱性のW配線が形成される。
Next, as shown in FIG. 2C, tungsten (W) is deposited on the entire surface to a thickness of 5000 angstroms (on the SiO2 interlayer insulating film 7) using the CVD method, and at the same time, it is deposited in the contact hole 8. Embedded W layer 10
form. This CVD condition is a temperature of 475℃ and a pressure of 80℃.
Torr, source gas WF6 and reducing gas H2 were used, and the flow rates were WF6/H2 at 60/360 SCCM. After a TiN film as a barrier metal layer is formed by self-alignment on the titanium silicide formed on the Si substrate 1 by self-alignment in this manner, a heat-resistant W wiring is formed.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
Si基板と例えばW配線間にセルフアラインにより容易
にバリア層としてのTiN膜を形成することができ、耐
熱性コンタクトが形成される。しかも、本発明では例え
ばチタンシリサイドとWF6とが直接接触されないため
に絶縁物TiF3が形成されず、低抵抗コンタクトが実
現できる。
[Effects of the Invention] As explained above, according to the present invention,
A TiN film as a barrier layer can be easily formed between the Si substrate and, for example, W wiring by self-alignment, and a heat-resistant contact is formed. Moreover, in the present invention, for example, titanium silicide and WF6 are not in direct contact, so that insulator TiF3 is not formed, and a low resistance contact can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の方法の一実施例における前半の工程断
面図である。
FIG. 1 is a cross-sectional view of the first half of an embodiment of the method of the present invention.

【図2】本発明の方法の一実施例における後半の工程断
面図である。
FIG. 2 is a cross-sectional view of the latter half of an embodiment of the method of the present invention.

【図3】従来の技術を説明するための工程断面図である
FIG. 3 is a process sectional view for explaining a conventional technique.

【符号の説明】[Explanation of symbols]

1,11  Si基板 2,3  SiO2膜 4  ポリシリコンゲート 5  Ti層 6  TiSix(チタンシリサイド)層7,17  
SiO2層間絶縁膜 8,13  コンタクトホール 9,9a  TiN膜 10  W層 12  TiN 14  W
1, 11 Si substrate 2, 3 SiO2 film 4 Polysilicon gate 5 Ti layer 6 TiSix (titanium silicide) layer 7, 17
SiO2 interlayer insulating film 8, 13 Contact hole 9, 9a TiN film 10 W layer 12 TiN 14 W

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  シリコン基板上に自己整合的に高融点
金属シリサイド層を形成し、全面に層間絶縁膜を形成し
、前記高融点金属シリサイド層表面の少なくとも1部を
露出させるコンタクトホールを前記層間絶縁膜に形成し
、前記高融点金属の窒化物層を前記コンタクトホールの
高融点金属シリサイド層表面に自己整合的に形成した後
、全面に高融点金属層を配線として形成することを特徴
とする耐熱性コンタクトの形成方法。
1. A high melting point metal silicide layer is formed on a silicon substrate in a self-aligned manner, an interlayer insulating film is formed on the entire surface, and a contact hole is formed between the layers to expose at least a part of the surface of the high melting point metal silicide layer. The nitride layer of the refractory metal is formed on an insulating film, and after the nitride layer of the refractory metal is formed in a self-aligned manner on the surface of the refractory metal silicide layer of the contact hole, the refractory metal layer is formed as a wiring on the entire surface. How to form heat-resistant contacts.
JP5271791A 1991-03-18 1991-03-18 Method of forming heat resistant contact Pending JPH04288825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5271791A JPH04288825A (en) 1991-03-18 1991-03-18 Method of forming heat resistant contact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5271791A JPH04288825A (en) 1991-03-18 1991-03-18 Method of forming heat resistant contact

Publications (1)

Publication Number Publication Date
JPH04288825A true JPH04288825A (en) 1992-10-13

Family

ID=12922669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5271791A Pending JPH04288825A (en) 1991-03-18 1991-03-18 Method of forming heat resistant contact

Country Status (1)

Country Link
JP (1) JPH04288825A (en)

Similar Documents

Publication Publication Date Title
US6136705A (en) Self-aligned dual thickness cobalt silicide layer formation process
US6103610A (en) Integrated circuit structure with dual thickness cobalt silicide layers and method for its manufacture
EP0908934B1 (en) Method of manufacturing a gate electrode
US5397744A (en) Aluminum metallization method
US5877074A (en) Method for improving the electrical property of gate in polycide structure
JPH0736403B2 (en) How to attach refractory metal
JPH0529254A (en) Forming method of wiring
KR100281887B1 (en) Manufacturing Method of Semiconductor Device
US6930029B2 (en) Method of passivating an oxide surface subjected to a conductive material anneal
US20020050644A1 (en) Electrode structure and method for fabricating the same
US6451691B2 (en) Methods of manufacturing a metal pattern of a semiconductor device which include forming nitride layer at exposed sidewalls of Ti layer of the pattern
KR100290467B1 (en) Method of forming a metal barrier film in a semiconductor device
JPH06204170A (en) Semiconductor device and its manufacture
JP4347479B2 (en) Field effect transistor
KR100480582B1 (en) Fabricating method of barrier film of semiconductor device and fabricating method of metal wiring using the same
JPH05335330A (en) Embedding-formation of connection hole
US6087259A (en) Method for forming bit lines of semiconductor devices
KR0174878B1 (en) Diffusion Barrier Layer Formation Method
JP2972687B2 (en) Method for manufacturing semiconductor device
JPH065545A (en) Process and apparatus for depositing silicified fireproof metal
JP3018383B2 (en) Wiring formation method
JPH04288825A (en) Method of forming heat resistant contact
JPH04290425A (en) Formation of heat-resisting wiring
KR0156126B1 (en) Formation method of contact hole in semiconductor device
JP3451634B2 (en) Metal material deposition method