JPH0428843A - Manufacture of stock for stainless steel extra fine wire - Google Patents

Manufacture of stock for stainless steel extra fine wire

Info

Publication number
JPH0428843A
JPH0428843A JP13428790A JP13428790A JPH0428843A JP H0428843 A JPH0428843 A JP H0428843A JP 13428790 A JP13428790 A JP 13428790A JP 13428790 A JP13428790 A JP 13428790A JP H0428843 A JPH0428843 A JP H0428843A
Authority
JP
Japan
Prior art keywords
wire
stainless steel
melting
ingot
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13428790A
Other languages
Japanese (ja)
Inventor
Ryuji Nakao
隆二 中尾
Wataru Murata
亘 村田
Shigeo Fukumoto
成雄 福元
Hidemaro Takeuchi
竹内 英麿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13428790A priority Critical patent/JPH0428843A/en
Publication of JPH0428843A publication Critical patent/JPH0428843A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture stock for a stainless steel extra fine wire having high cleanliness and extremely small disconnection at the time of wire drawing by subjecting stainless steel stock to electron beam melting into an ingot having specified content of O and Al. CONSTITUTION:Stainless steel stock such as SUS316 is irradiated with electron beams in vacuum of about <=10<-3>Torr and is locally subjected to melting treatment at a ultrahigh temp. of about >=2000 deg.C. Thus, O and impurities such as inclusions in the above stainless steel stock are evaporated away. Consequently, the components of the ingot after the melting are regulated to <=20ppm O and <=50ppm Al. In this way, the stock for a stainless steel extra fine wire having high cleanliness of inclusions and having extremely low frequency of disconnection at the time of wire drawing into an extra fine wire can be obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、介在物高清浄性の要求されるステンレス鋼極
細線用素材の製造方法に関するものである。 〔従来の技術〕 ステンレス鋼細線は伸線加工によって、所望の線径に仕
上げられるが、線径60〜80μmφ程度以下の極細線
を製造する場合には、介在物が存在すると伸線時に断線
が生じ易い。したがって、ステンレス鋼極細線用素材に
は極めて高い介在物清浄性が要求される。このために、
該素材はステンレス鋼の精錬法として一般に用いられる
VOD(Vacuum Oxygen Decarbu
rization)法やAOD(Argon Oxyg
en Decarburization)法による製造
は難しく、VAR(Vacuum Arc Remel
tingFurnace)法やESR(Electro
−Slag RemeltingFurnace)法な
どの特殊溶解法が適用されてきた。 その例としては、例えば、塑性と加工、Vol。 19、No、211(1978年)に示されている。 しかしながら、VAR法においては、溶解真空度が10
−3〜10−’Torrと低く、十分な低酸素化および
介在物清浄化がはかれないこと、またESR法において
は溶融フラックスの精錬効果により介在物清浄化をはか
っているが、長時間の溶解では溶融フラックスの組成が
変動するために、介在物の組成及び量の均一性がはかれ
ないことにより、極細線伸線時に介在物に起因する断線
が多発し、十分な品質の素材が得られていない。 これに対し、電子ビーム溶解法は、電子ビーム照射の特
性である超高温・高真空下での溶解により不純物元素の
蒸発除去が可能であり、鋳塊の高純化、高清浄化が可能
であると言われている。しかし、従来の電子ビーム溶解
法はニオブ、モリブデン、チタン、等の高融点金属への
適用が主体であり、l1%以上のクロムを含むステンレ
ス鋼への適用例は極めて少ない。 クロム含有鋼への適用例としては、例えば■ NKK技
報随127 (1989年)P、43〜P、52に記載
されたように、鋼の電子ビーム溶解では成分蒸発および
介在物の除去が進行することを確認したこと。 ■ 特開平1−212724号公報に記載されたように
、溶解エネルギーおよび溶解真空度を調整することによ
り合金鋼の成分含有量を調整する方法が示されているに
すぎず、介在物の除去に関して定量的に示されている知
見はなく、また、実際の素材の製造への適用について示
されているものはない。 〔発明が解決しようとする課題〕 VAR法及びESR法を用いたステンレス鋼極細線用素
材は介在物高清浄化がはかれないために極細線伸線時に
介在物に起因する断線の頻度を低下させることは難しい
。 本発明は、ステンレス鋼極細線用素材の製造に電子ビー
ム溶解法を適用し、しかも溶解後鋳塊の成分規制を行う
ことによって、介在物の極めて少ない高清浄鋼の安定製
造を可能として、介在物に起因する極細線伸線時の断線
が極めて少ない、ステンレス鋼極細線用素材を提供する
ことを目的とする。 〔課題を解決するための手段〕 本発明は、ステンレス鋼極細線用素材の製造に電子ビー
ム溶解法を適用し、かつ溶解後鋳塊の成分を
[Industrial Application Field] The present invention relates to a method for producing a stainless steel ultrafine wire material that requires high inclusion cleanliness. [Prior art] Stainless steel fine wire is finished to a desired wire diameter by wire drawing, but when producing ultra-fine wire with a wire diameter of about 60 to 80 μm or less, the presence of inclusions can cause wire breakage during wire drawing. Easy to occur. Therefore, materials for stainless steel ultrafine wires are required to have extremely high inclusion cleanliness. For this,
The material is VOD (Vacuum Oxygen Decarbu), which is generally used as a refining method for stainless steel.
oxidation) method and AOD (Argon Oxyg
It is difficult to manufacture using the Vacuum Arc Remel (VAR) method.
tingFurnace) method and ESR (Electro
Special melting methods such as -Slag Remelting Furnace method have been applied. Examples include, for example, Plasticity and Processing, Vol. 19, No. 211 (1978). However, in the VAR method, the melting vacuum degree is 10
-3 to 10 Torr, which makes it impossible to achieve sufficient oxygen reduction and inclusion cleaning.Also, in the ESR method, inclusion cleaning is attempted by the refining effect of molten flux, but it takes a long time. During melting, the composition of the molten flux fluctuates, making it impossible to measure the uniformity of the composition and amount of inclusions. This results in frequent wire breaks due to inclusions during ultra-fine wire drawing, making it difficult to obtain materials of sufficient quality. It has not been done. On the other hand, the electron beam melting method enables impurity elements to be evaporated and removed by melting under ultra-high temperature and high vacuum, which is a characteristic of electron beam irradiation, and it is possible to highly purify and clean the ingot. It is said. However, the conventional electron beam melting method is mainly applied to high melting point metals such as niobium, molybdenum, titanium, etc., and there are very few examples of its application to stainless steel containing 11% or more of chromium. As an example of application to chromium-containing steel, for example, as described in ■ NKK Technical Review 127 (1989) P, 43-P, 52, component evaporation and removal of inclusions progress in electron beam melting of steel. I have confirmed that I will do so. ■ As described in JP-A No. 1-212724, there is only a method of adjusting the component content of alloy steel by adjusting the melting energy and the degree of melting vacuum, and there is no information regarding the removal of inclusions. No knowledge has been shown quantitatively, nor has there been any evidence of application to the production of actual materials. [Problem to be solved by the invention] Since stainless steel ultra-fine wire materials using the VAR method and ESR method cannot be highly cleaned of inclusions, the frequency of wire breakage due to inclusions during ultra-fine wire drawing is reduced. That's difficult. The present invention applies the electron beam melting method to the production of materials for stainless steel ultra-fine wires, and by controlling the composition of the ingot after melting, it is possible to stably produce highly clean steel with extremely few inclusions. An object of the present invention is to provide a material for a stainless steel ultra-fine wire that has extremely few breakages during drawing of the ultra-fine wire due to objects. [Means for Solving the Problems] The present invention applies an electron beam melting method to the production of stainless steel ultrafine wire materials, and also melts the components of the ingot after melting.

〔0〕≦2
0ppm、(AIり≦50ppmとすることを特徴とす
るステンレス鋼極細線用素材の製造方法である。 次に、本発明における溶解後鋳塊の組成の限定理由につ
いて述べる。 第5図は5US316ステンレス鋼をVAR法、ESR
法及び電子ビーム溶解法により溶解した鋳塊内の
[0]≦2
0 ppm, (AI ≦ 50 ppm) This is a method for manufacturing a stainless steel ultrafine wire material. Next, the reason for limiting the composition of the melted ingot in the present invention will be described. Figure 5 shows 5US316 stainless steel. VAR method and ESR for steel
in the ingot melted by the electron beam melting method and the electron beam melting method.

〔0〕
濃度と大きさ2μm以上の介在物個数との関係を示す。 なお、介在物個数は光学顕微鏡により測定可能な2μm
以上の介在物を鋳塊内10mm”以上の面積について、
酸化物系介在物のみを測定して求めた値である。 第5図において電子ビーム溶解法はVAR法及びESR
法に比べ低C0w1化が可能であり、介在物個数の低減
をはかれる溶解法であることがわかる。 第2図は、電子ビーム溶解法により製造したCAl1)
≦50ppmを満足する5US316ステンレス鯛鋳塊
内の(0)濃度とこの鋳塊を用いて線径30μmφの極
細線を製造した場合の1断線当りの伸線量の関係を示す
。 ここで、1断線当りの伸線量とは50kg以上の極細線
用素材の伸線を行い、この時断線した回数で実際の伸線
量を割った値であり、この値が大きい程、伸線性が良好
であるという指標となる。第2図において示すように〔
0〕≦20ppmで急激に伸線量が向上する。 第3図は電子ビーム溶解法により製造した
[0]
The relationship between the concentration and the number of inclusions with a size of 2 μm or more is shown. The number of inclusions is 2 μm, which can be measured using an optical microscope.
The above inclusions should be removed for an area of 10 mm or more within the ingot.
This is a value obtained by measuring only oxide inclusions. In Figure 5, the electron beam melting method is the VAR method and the ESR method.
It can be seen that this dissolution method is capable of lowering C0w1 and reduces the number of inclusions compared to the method. Figure 2 shows CAl1) manufactured by electron beam melting method.
The relationship between the (0) concentration in a 5US316 stainless steel ingot that satisfies ≦50 ppm and the amount of wire drawn per wire breakage when an ultrafine wire with a wire diameter of 30 μmφ is manufactured using this ingot is shown. Here, the wire drawing amount per wire breakage is the value obtained by dividing the actual wire drawing amount by the number of wire breaks when drawing a material for ultra-fine wire of 50 kg or more, and the larger this value, the better the wire drawability. This is an indicator that it is in good condition. As shown in Figure 2,
0]≦20ppm, the amount of wire drawing increases rapidly. Figure 3 shows the product manufactured by electron beam melting method.

〔0〕≦20
ppmの5US316ステンレス鋼鋳塊内の(AIり濃
度と、この鋳塊を用いて線径30μmφの極細線を製造
した場合の1断線当りの伸線量との関係を示す。図にお
いて示すように(AIり≦50ppm”i’急激に伸線
量が向上する。 第1図は電子ビーム溶解法により製造した5US316
ステンレス鋼鋳塊から線径30μmφの極細線を製造し
た場合の該鋳塊内の(AI2)および
[0]≦20
The relationship between the (Al) concentration in a 5US316 stainless steel ingot of ppm and the amount of wire drawn per wire breakage when ultrafine wire with a wire diameter of 30 μmφ is manufactured using this ingot is shown in the figure. When AI ≤50ppm"i', the amount of wire drawn increases rapidly. Figure 1 shows 5US316 manufactured by electron beam melting method.
(AI2) and in the stainless steel ingot when ultrafine wire with a wire diameter of 30 μmφ is manufactured from the ingot.

〔0〕濃度の関係
と1断線当りの伸線量の関係を示す。図において、O印
は伸線量4.0 kg/ 1断線以上、Δ印は伸線量2
.1〜3、9 kg/ 1断線、X印は2.0 kg/
 1断線以下を示す。第1図において示すように〔0)
≦20pp■、(i)≦50ppmにおいて、伸線量4
.0kg/l断線以上の伸線が可能である。 なお、電子ビーム溶解に供する溶解用素材はVOD法、
AOD法等、いずれの製造法であってもよい。また、溶
解後鋳塊内の
[0] Shows the relationship between the concentration and the amount of wire drawn per wire breakage. In the figure, the O symbol indicates a wire drawing amount of 4.0 kg/1 wire breakage or more, and the Δ symbol indicates a wire drawing amount of 2.
.. 1 to 3, 9 kg/1 disconnection, X mark is 2.0 kg/
Indicates 1 disconnection or less. As shown in Figure 1 [0]
≦20pp■, (i)≦50ppm, wire drawing amount 4
.. Wire drawing with a wire breakage rate of 0 kg/l or higher is possible. The materials used for electron beam melting are VOD method,
Any manufacturing method such as the AOD method may be used. In addition, the inside of the ingot after melting

〔0〕および[Ajl!]の濃度制御は、
電子ビーム溶解条件および溶解用素材の組成の制御によ
って可能である。 以上のように、ステンレス鋼極細線を少ない断線で効率
よく製造するには、電子ビーム溶解法を適用し、かつ、
溶解後鋳塊の成分を
[0] and [Ajl! ] concentration control is
This is possible by controlling the electron beam melting conditions and the composition of the melting material. As mentioned above, in order to efficiently manufacture ultrafine stainless steel wires with fewer wire breaks, electron beam melting is applied, and
The composition of the ingot after melting

〔0〕≦20ppm、〔Al〕≦5
0ppm とすることが必要である。 〔作用〕 電子ビーム溶解法は一般に1O−3TOrr以下の高真
空度下で溶解を行い、しかも電子ビーム自体が高エネル
ギー密度を持つために、電子ビーム照射部は、局部的に
2000°C以上の高温が得られる。このことにより、
ステンレス鋼の電子ビーム溶解における脱酸反応および
介在物除去反応はCO脱ガス反応が主体であり、この反
応は(1)式で示され、反応平衡定数に、は(2)式で
示される。 (C)+ [0)  −→ Co (g)  ・・・・
・・(1)log  Kl  =10g  CP co
/ ac  ’ ao  )=1160/T+2.OO
3・・・・・・(2)ここで、pcoは雰囲気中の00
分圧、acおよびaoは溶鋼中の(C)および(0)の
活量、Tは溶鋼温度を示す。 (1)、 (2)式より脱酸反応を促進させ、溶解後の
鋳塊中の[03濃度を下げるにはpcoの低下、aeの
増大および溶鋼温度の上昇が必要である。 介在物除去反応は、介在物が解離して介在物中の
[0]≦20ppm, [Al]≦5
It is necessary to set it to 0 ppm. [Operation] The electron beam melting method generally performs melting under a high degree of vacuum of 10-3 TOrr or less, and since the electron beam itself has a high energy density, the electron beam irradiation part is locally heated to a temperature of 2000°C or more. A high temperature can be obtained. Due to this,
The deoxidation reaction and inclusion removal reaction in electron beam melting of stainless steel are mainly CO degassing reactions, and this reaction is expressed by equation (1), and the reaction equilibrium constant is expressed by equation (2). (C) + [0) −→ Co (g) ・・・・
... (1) log Kl = 10g CP co
/ac'ao)=1160/T+2. OO
3...(2) Here, pco is 00 in the atmosphere.
The partial pressure, ac and ao are the activities of (C) and (0) in the molten steel, and T is the molten steel temperature. According to equations (1) and (2), in order to promote the deoxidation reaction and lower the [03 concentration in the melted ingot, it is necessary to lower the pco, increase the ae, and increase the molten steel temperature. In the inclusion removal reaction, the inclusions dissociate and the

〔0〕
が溶鋼中の〔C〕と反応してCOとして除去される反応
およびCO気泡によって介在物が溶鋼表面へ浮上、分離
される反応によって進行するために、(1)式OCO脱
ガス反応の促進によって、促進される。また、溶解後鋳
塊内の酸化物系介在物個数は鋳塊内の(0)濃度の低下
によって減少する傾向にある。 電子ビーム溶解法はVAR法に比べ高温・高真空の条件
を達成できるために、
[0]
(1) By promoting the OCO degas reaction , promoted. Further, the number of oxide inclusions in the ingot after melting tends to decrease as the (0) concentration in the ingot decreases. Because the electron beam melting method can achieve higher temperature and higher vacuum conditions than the VAR method,

〔0〕濃度および介在物個数とも
に低減が可能である。また、ESR法による脱酸反応お
よび介在物除去反応は溶融フラックスと溶鋼との反応に
より決まるために、CO脱ガス反応に比べ小さい。以上
の結果より、第5図に示すように電子ビーム溶解法はV
AR法およびESR法より〔O〕濃度、介在物個数とも
低減できる。また、極細線伸線時の1断線当りの伸線量
は、介在物組成および介在物個数に依存するために、介
在物組成が同じであれば、介在物個数の少ない電子ビー
ム溶解法が断線の極めて少ない極細線用の素材を製造す
るための有効な手段である。 電子ビーム溶解法においても、溶解条件および溶解用素
材の組成により[0)濃度および介在物個数に若干のば
らつきを生じる。そのため極細線伸線時の1断線当りの
伸線量にばらつきを生じるが、第2図に示すように〔0
]≦20ppI11に鋳塊後成分を規制することにより
伸線量を高位に安定させることが可能である。 次に、溶解後鋳塊中の(AI!、)濃度は、介在物組成
を決定する大きな要素である。第4図に溶解後鋳塊内の
〔A!〕濃度と溶解後鋳塊内介在物中の(l□03)濃
度の関係を示す。なお、介在物中の(AI!、zO,)
濃度は10個以上の介在物の組成を測定し、その平均値
で求めた値である。図において、鋳塊内の[7/!]濃
度が50ppmを超えると介在物中の(Al2zOi 
)濃度が急激に上昇する。介在物中の(//!z(h 
)濃度が上昇すると、介在物の融点が上昇し、加工時の
介在物の展伸性が低下するために、極細線伸線時の1断
線当りの伸線量が低下する。 従って、第3図に示すように(Af)≦50ppmとす
ることにより、1断線当りの伸線量を高位安定させるこ
とが可能である。 〔実用例〕 線径30μmφの5US316ステンレス鋼極細線の製
造に本発明法を適用した実施例について説明する。 第1表に鋳塊の溶解法、溶解後鋳塊の組成、鋳塊内に存
在する2μm以上の介在物個数、鋳塊内の介在物中の平
均の(AI!、zOs )濃度および30μmφ極細線
伸線時の1断線当りの伸線量について、本発明例と比較
例を併せて示す。 なお、溶解用素材は真空誘導溶解法にて製造した素材を
用いた。また、溶解後鋳塊内の介在物は10個以上を測
定した。さらに、溶解後の鋳塊の極細線伸線までの工程
は全て同一とし、各々伸線を行った量は500kg以上
である。 本発明例は、いずれも介在物量が少なく、しかも、介在
物中の(Aj!zOz )濃度も低いために、1断線当
りの伸線量も4.0kg以上であり、非常に高い値が得
られている。 これに対し、比較例は溶解法或いは溶解後鋳塊内の組成
が極細線用素材の条件を満足していないために、1断線
当りの伸線量が2.0kg以下と低く、十分な値とはな
っていない。 〔発明の効果〕 以上述べたように、ステンレス鋼極細線用素材の製造に
、電子ビーム溶解法を適用し、かつ溶解後鋳塊内の組成
を規制する本発明法によって、極細線伸線時の断線頻度
の極めて少ない素材を製造することが可能になる。 このことにより、極細線伸線の作業能率が大幅に向上し
、生産性の向上および製造コストの大幅な低減が可能と
なる。
[0] Both the concentration and the number of inclusions can be reduced. Furthermore, the deoxidation reaction and inclusion removal reaction by the ESR method are determined by the reaction between molten flux and molten steel, and are therefore smaller than the CO degassing reaction. From the above results, as shown in Figure 5, the electron beam melting method
Both the [O] concentration and the number of inclusions can be reduced compared to the AR method and the ESR method. In addition, since the amount of wire drawn per wire breakage during ultra-fine wire drawing depends on the inclusion composition and the number of inclusions, if the inclusion composition is the same, the electron beam melting method with fewer inclusions will reduce wire breakage. This is an effective means for producing extremely small amounts of material for ultra-fine wires. Even in the electron beam melting method, slight variations occur in the concentration and number of inclusions (0) depending on the melting conditions and the composition of the melting material. Therefore, the amount of wire drawn per wire breakage during drawing of ultra-fine wire varies, but as shown in Figure 2,
]≦20ppI11 It is possible to stabilize the amount of wire drawing at a high level by regulating the components after the ingot. Next, the (AI!) concentration in the ingot after melting is a major factor determining the inclusion composition. Figure 4 shows [A!] inside the ingot after melting. ] The relationship between the concentration and the (l□03) concentration in inclusions in the ingot after melting is shown. In addition, (AI!, zO,) in the inclusion
The concentration is a value obtained by measuring the composition of 10 or more inclusions and taking the average value. In the figure, [7/! ] When the concentration exceeds 50 ppm, (Al2zOi
) concentration increases rapidly. (//!z(h
) When the concentration increases, the melting point of the inclusions increases and the malleability of the inclusions during processing decreases, resulting in a decrease in the amount of wire drawn per wire break during ultra-fine wire drawing. Therefore, as shown in FIG. 3, by setting (Af)≦50 ppm, it is possible to stabilize the amount of wire drawn per wire breakage at a high level. [Practical Example] An example in which the method of the present invention is applied to the production of a 5US316 stainless steel ultrafine wire with a wire diameter of 30 μmφ will be described. Table 1 shows the ingot melting method, the composition of the ingot after melting, the number of inclusions of 2 μm or more existing in the ingot, the average (AI!, zOs) concentration of inclusions in the ingot, and the 30 μm φ ultrafine The amount of wire drawn per wire breakage during wire drawing is shown for examples of the present invention and comparative examples. Note that the melting material used was a material manufactured by a vacuum induction melting method. Furthermore, 10 or more inclusions were measured in the ingot after melting. Furthermore, all the steps up to ultra-fine wire drawing of the ingot after melting were the same, and the amount of wire drawn in each case was 500 kg or more. In all of the examples of the present invention, the amount of inclusions is small and the concentration of (Aj!zOz) in the inclusions is also low, so the amount of wire drawn per wire breakage is 4.0 kg or more, which is a very high value. ing. On the other hand, in the comparative example, the amount of wire drawn per wire breakage was as low as 2.0 kg or less, which was a sufficient value because the melting method or the composition in the ingot after melting did not satisfy the conditions for materials for ultra-fine wires. It's not. [Effects of the Invention] As described above, by applying the electron beam melting method to the production of materials for stainless steel ultra-fine wires and by controlling the composition of the ingot after melting, It becomes possible to manufacture materials with extremely low disconnection frequency. This greatly improves the working efficiency of ultra-fine wire drawing, making it possible to improve productivity and significantly reduce manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、溶解後鋳塊内の(Af)と Figure 1 shows (Af) in the ingot after melting.

〔0〕の濃度と伸
線量の関係を示す図、第2図は溶解後鋳塊内の(0)濃
度と伸線量の関係を示す間第3図は溶解後鋳塊内の(A
jり濃度と伸線量の関係を示す図、第4図は溶解後鋳塊
内の[A f ]濃度と溶解後鋳塊内の介在物中(Af
、0.)濃度の関係を示す図、第5図は溶解後鋳塊内の
Figure 2 shows the relationship between the concentration of [0] and the amount of wire drawn, while Figure 2 shows the relationship between the concentration of (0) in the ingot after melting and the amount of wire drawn.
Figure 4 shows the relationship between the concentration of wire and the amount of wire drawing.
,0. ) Figure 5 shows the relationship between concentrations of the ingot after melting.

〔0〕濃度と介在物個数の関係に及ぼす溶解法の影響を
示す図である。 特許出願人  新日本製鐵株式会社
[0] It is a diagram showing the influence of the dissolution method on the relationship between the concentration and the number of inclusions. Patent applicant Nippon Steel Corporation

Claims (1)

【特許請求の範囲】 ステンレス鋼極細線用素材の製造に、電子ビーム溶解法
を適用し、かつ、溶解後鋳塊の成分を〔O〕≦20pp
m、〔Al〕≦50ppmとすることを特徴とするステ
ンレス鋼極細線用素材の製造方法。
[Claims] The electron beam melting method is applied to the production of stainless steel ultrafine wire material, and the composition of the ingot after melting is [O]≦20pp.
A method for producing a material for stainless steel ultra-fine wire, characterized in that m, [Al]≦50 ppm.
JP13428790A 1990-05-24 1990-05-24 Manufacture of stock for stainless steel extra fine wire Pending JPH0428843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13428790A JPH0428843A (en) 1990-05-24 1990-05-24 Manufacture of stock for stainless steel extra fine wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13428790A JPH0428843A (en) 1990-05-24 1990-05-24 Manufacture of stock for stainless steel extra fine wire

Publications (1)

Publication Number Publication Date
JPH0428843A true JPH0428843A (en) 1992-01-31

Family

ID=15124756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13428790A Pending JPH0428843A (en) 1990-05-24 1990-05-24 Manufacture of stock for stainless steel extra fine wire

Country Status (1)

Country Link
JP (1) JPH0428843A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228415A (en) * 1989-03-02 1990-09-11 Nkk Corp Melting and refining method by electron beam

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228415A (en) * 1989-03-02 1990-09-11 Nkk Corp Melting and refining method by electron beam

Similar Documents

Publication Publication Date Title
JP2003515672A (en) Martensitic stainless steel and steelmaking method
US4589916A (en) Ultra clean stainless steel for extremely fine wire
EP3202950B1 (en) Titanium cast product for hot rolling and method for producing the same
EP1080242B1 (en) Tantalum-silicon alloys and products containing the same and processes of making the same
JPH0428843A (en) Manufacture of stock for stainless steel extra fine wire
CN114058786B (en) Alloying method in IF steel refining process
JP7126103B2 (en) Melting method of high manganese steel
JPS6263626A (en) Production of low oxygen ti alloy
JPH046230A (en) Manufacture of high clean steel by electron beam melting
JPH11323426A (en) Production of high clean steel
JP2553967B2 (en) Ultra-high cleanliness stainless steel manufacturing method
JPH0641687A (en) Fe-ni alloy excellent in surface characteristic and its production
JP2864964B2 (en) Fe-Ni-based alloy cold rolled sheet excellent in plating property and solderability and method for producing the same
JPH0971827A (en) Production of industrial pure titanium ingot
JPH10152755A (en) Steel for steel sheet for can few in defect and its production
JPH10265866A (en) Production of vanadium-containing base alloy for producing titanium alloy
JPH07238344A (en) High cleanliness steel and production thereof
JP4220825B2 (en) Pure titanium rolled coil
CN116287556A (en) Method for controlling particle size of inclusion
JPH073350A (en) Vacuum arc remelting method
JPH07136740A (en) Casting method of ti alloy
JPH1112635A (en) Production of low manganese alloy
JPH06116685A (en) Stainless steel for single drawn wire and production thereof
JP2002001517A (en) PRODUCTION METHODS OF CAST INGOTS TO BE PROCESSED TO Fe-Ni SYSTEM ALLOY MATERIAL
JPH0543928A (en) Manufacture of superhigh cleanliness steel