JP2002001517A - PRODUCTION METHODS OF CAST INGOTS TO BE PROCESSED TO Fe-Ni SYSTEM ALLOY MATERIAL - Google Patents

PRODUCTION METHODS OF CAST INGOTS TO BE PROCESSED TO Fe-Ni SYSTEM ALLOY MATERIAL

Info

Publication number
JP2002001517A
JP2002001517A JP2000179555A JP2000179555A JP2002001517A JP 2002001517 A JP2002001517 A JP 2002001517A JP 2000179555 A JP2000179555 A JP 2000179555A JP 2000179555 A JP2000179555 A JP 2000179555A JP 2002001517 A JP2002001517 A JP 2002001517A
Authority
JP
Japan
Prior art keywords
etching
ingot
less
producing
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000179555A
Other languages
Japanese (ja)
Inventor
Toru Taniguchi
徹 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000179555A priority Critical patent/JP2002001517A/en
Publication of JP2002001517A publication Critical patent/JP2002001517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Cathode-Ray Tubes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide production methods of cast ingot to be processed to Fe-Ni system alloy material, by which the material's press formability is improved without deteriorating etching quality unevenness, etching factor and etching velocity. SOLUTION: After refining raw material(s) by using at least a process selected from AOD, VOD and VIM processes, the refined melt is cast and solidified as (a) consumable electrode(s), which is (are) further refined by ESR process to get (a) cast ingot(s) that contain(s) C, not more than 0.005 mass%, O not more than 0.0025 mass% and N not more than 0.003 mass%. Or the cast ingot thus obtained is further processed to soaking treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主としてシャドウ
マスク材等エレクトロニクス関連製品の分野で使用さ
れ、質量で20−80%のNiを含むFe−Ni系合金
材料、とりわけフォトエッチング(以下エッチングと記
す)による加工およびプレス成形等の塑性加工を行って
使用される際に優れた性能を発揮するFe−Ni系合金
材料製造用鋳塊の製造方法の技術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is mainly used in the field of electronics-related products such as shadow mask materials and the like, and includes Fe-Ni based alloy materials containing 20-80% by mass of Ni, especially photoetching (hereinafter referred to as etching). ) And plastic working such as press forming and the like, which belong to the technical field of a method for manufacturing an ingot for manufacturing an Fe—Ni alloy material that exhibits excellent performance when used.

【0002】[0002]

【従来の技術】質量で20−80%、特に30−50%
のNiを含むFe−Ni系合金は、優れた低熱膨張特性
によりエッチング処理を経て、シャドウマスク材、リー
ドフレーム材等に広く使用されている。シャドウマスク
は、Fe−Ni系合金薄板材に、エッチングにより所定
の間隔、形状の多数の微細孔を穿孔し、軟化焼鈍後所定
の3次元曲面形状にプレス成形して製造され、また該薄
板材は鋳塊を分塊、熱間圧延、冷間圧延等を経て製造さ
れる。
2. Description of the Related Art 20-80%, especially 30-50% by mass
Fe-Ni-based alloys containing Ni are widely used in shadow mask materials, lead frame materials and the like after being subjected to an etching process due to excellent low thermal expansion characteristics. The shadow mask is manufactured by punching a large number of fine holes at a predetermined interval and shape in an Fe-Ni-based alloy thin plate material by etching, soft-annealing and press-forming into a predetermined three-dimensional curved surface shape. Is manufactured through ingot casting, hot rolling, cold rolling and the like.

【0003】エッチング後のシャドウマスク薄板材を反
射光または透過光で観察すると、「スジむら」と呼ばれ
る圧延方向に平行な多数のエッチングむらによるスジ模
様が見える場合がある。また該スジむら以外にも種々の
エッチングむらが知られている。これらのむらの部分
は、微細孔が所定の径あるいは形状から偏倚したり、エ
ッチング面の荒れ等を呈しており、これらは、画像の部
分的な色調や明るさの乱れを生じたり電子線を散乱する
等の原因となる。特に近年普及の著しいコンピュータの
モニタ用に使用される高精細なブラウン管では、これら
のエッチングむらによる乱れ等の影響が顕著となる。以
上に述べたように、エッチング特性のうち、局部的なエ
ッチングむらの無さ、つまりエッチングの全体的均一性
が最も重要な指標である。
When the shadow mask thin plate material after etching is observed with reflected light or transmitted light, a stripe pattern due to a large number of etching unevenness parallel to the rolling direction called "streak unevenness" may be seen. In addition to the line unevenness, various etching unevennesses are known. In these uneven portions, the fine holes are deviated from a predetermined diameter or shape, the etched surface is rough, and the like, which causes partial color tone and brightness disturbance of an image and scatters an electron beam. Doing so may cause a problem. In particular, in the case of a high-definition cathode ray tube used for a monitor of a computer which has been widely spread in recent years, the influence of the irregularities due to the unevenness of etching becomes remarkable. As described above, among the etching characteristics, local unevenness in etching, that is, overall uniformity of etching is the most important index.

【0004】エッチングむらは、圧延方向に展伸された
微細な線状あるいは連鎖状の非金属介在物や、Ni、M
n等の偏析がエッチング特性にミクロ的な差を生じ、そ
の結果肉眼でスジ状に見えるものである。従来から、エ
ッチングむらの発生原因の一つである非金属介在物に対
して、出発原料の厳選や、アルゴン酸素脱炭法(以下A
ODと記す)、真空酸素脱炭法(以下VODと記す)、
真空誘導溶解法(以下VIMと記す)などの各種精錬法
によってFe−Ni系合金が溶製されてきた(AOD、
VODは特開昭62−174351号が例示し、またV
IMは特開平5−222451号が実施例に示してい
る)。また、本出願人は特開平8−143939号で、
予め真空下で予備精錬した溶湯をガスプラズマ加熱しつ
つ、CaOを含むスラグ存在下で脱硫精錬する方法(以
下プラズマ加熱スラグ精錬法と記す)を提案した。
[0004] Etching unevenness is caused by fine linear or chained non-metallic inclusions spread in the rolling direction, Ni, M
Segregation such as n causes a microscopic difference in the etching characteristics, and as a result, it looks like streaks with the naked eye. Conventionally, non-metallic inclusions, which are one of the causes of uneven etching, have been carefully selected for starting materials and argon oxygen decarburization (hereinafter referred to as A).
OD), vacuum oxygen decarburization method (hereinafter referred to as VOD),
Fe-Ni alloys have been produced by various refining methods such as a vacuum induction melting method (hereinafter referred to as VIM) (AOD,
VOD is exemplified in JP-A-62-174351.
IM is described in the embodiment in JP-A-5-222451). Also, the applicant of the present invention is disclosed in JP-A-8-143939,
A method of performing desulfurization refining in the presence of slag containing CaO while gas plasma heating a molten metal preliminarily refined under vacuum (hereinafter referred to as a plasma heating slag refining method) has been proposed.

【0005】例えば、代表的なアンバー合金であるFe
−36%Ni系合金から、シャドウマスク材を製造する
には、従来、エッチングむらの抑制等の目的から、不純
物元素として、例えばC≦0.01%、S≦0.005
%、Al≦0.05%、O≦0.005%等の規定を設
け、これを達成するために前述の精錬法が実施されてい
た。このうち、AOD法やVOD法によれば、前述の不
純物元素の規定は一応満足できるるものの、凝固に伴な
う成分偏析等により、エッチングむらの発生を十分解消
するには至らなかった。また、Ni、Mn等の成分偏析
によるエッチングむらに対して、特開昭61−2231
88号等のような拡散熱処理が提案されている。
For example, a typical invar alloy such as Fe
To manufacture a shadow mask material from a −36% Ni-based alloy, conventionally, for the purpose of suppressing etching unevenness, for example, C ≦ 0.01% and S ≦ 0.005 as impurity elements.
%, Al ≦ 0.05%, O ≦ 0.005%, etc., and the above-mentioned refining method has been implemented to achieve this. Among these, according to the AOD method and the VOD method, although the above-mentioned definition of the impurity element is satisfactorily satisfied, it has not been possible to sufficiently eliminate the occurrence of uneven etching due to component segregation accompanying solidification and the like. Also, Japanese Patent Application Laid-Open No. 61-2231 discloses a method for preventing uneven etching due to segregation of components such as Ni and Mn.
No. 88 etc. have been proposed.

【0006】さらに、前述の精錬法等による溶湯を消耗
電極に鋳造し、該消耗電極を真空アーク再溶解法(以下
VARと記す)またはエレクトロスラグ再溶解法(以下
ESRと記す)により、さらに精錬して鋳塊とすること
が提案されている(特許第2795703号、特開平6
−128662号等)。前記の特開平6−128662
号は、Fe−Ni系合金のインゴットの造塊方法におい
て、Cが0.005重量%以下である消耗電極を作る第
1の工程と、最終的な鋳塊のSが0.002重量%以
下、およびOが0.005重量%以下である再溶解鋳塊
を作る第2の工程とで構成することを提案しており、第
1および第2の望ましい工程として、それぞれVIMお
よびESRを挙げている。
[0006] Further, the molten metal obtained by the refining method or the like is cast into a consumable electrode, and the consumable electrode is further refined by a vacuum arc remelting method (hereinafter referred to as VAR) or an electroslag remelting method (hereinafter referred to as ESR). (Japanese Patent No. 2795703, Japanese Unexamined Patent Application Publication No.
No. 128662). JP-A-6-128662 mentioned above.
No. 1 is a method for making an ingot of an ingot of a Fe—Ni alloy, the first step of producing a consumable electrode having a C of 0.005% by weight or less, and a final ingot having a S of 0.002% by weight or less. , And a second step of producing a remelted ingot having O of 0.005% by weight or less. The first and second desirable steps include VIM and ESR, respectively. I have.

【0007】[0007]

【発明が解決しようとする課題】前述のように種々の精
錬法、再溶解法、拡散熱処理が採用されているが、エッ
チングむらを十分解消するには至らず、これがFe−N
i系合金製シャドウマスク等の普及を妨げており、さら
なる改善が望まれている。一方、シャドウマスクは、前
記のようにエッチング加工後の薄板材を所定形状にプレ
ス成形されるから、プレス成形性、つまり成形形状の正
確性の点から、降伏点が低くプレス成形時のスプリング
バックが小さいことが要求される。このプレス成形性は
シャドウマスク以外の用途でも要求されることが多い。
本発明が解決しようとする課題は、従来のエッチングむ
ら品位およびエッチング速度を低下することなく、プレ
ス成形性を改善するFe−Ni系合金材料製造用鋳塊の
製造方法を提供することである。
As described above, various refining methods, re-melting methods, and diffusion heat treatments have been adopted, but the etching unevenness has not been sufficiently solved.
This has hindered the spread of i-type alloy shadow masks and the like, and further improvement is desired. On the other hand, since the shadow mask is formed by press-forming the etched thin sheet material into a predetermined shape as described above, the yield point is low from the viewpoint of press-formability, that is, the accuracy of the formed shape, and the springback during press-forming is low. Is required to be small. This press formability is often required for applications other than shadow masks.
The problem to be solved by the present invention is to provide a method for producing an ingot for producing an Fe—Ni-based alloy material, which improves press formability without lowering the conventional etching unevenness quality and etching rate.

【0008】[0008]

【課題を解決するための手段】本発明は、ESRにより
非金属介在物の低減とNiやMnの偏析の抑制を達成
し、同時にCの含有量を規制してエッチングむら品位お
よびエッチング速度を保証し、またNおよびOの含有量
を併せて低減することにより、新たな問題を発生するこ
となく軟化焼鈍後の硬さを低下してプレス成形性を向上
したFe−Ni系合金材料製造用鋳塊の製造方法であ
る。
SUMMARY OF THE INVENTION The present invention achieves the reduction of nonmetallic inclusions and the suppression of segregation of Ni and Mn by ESR, and at the same time, regulates the content of C to guarantee the quality and etching rate of uneven etching. In addition, by reducing the contents of N and O together, the castability for producing an Fe-Ni-based alloy material having improved press formability by reducing the hardness after softening annealing without generating a new problem. This is a method for producing a lump.

【0009】すなわち、本発明は、質量で20−80%
のNiを含みエッチング処理されるFe−Ni系合金材
料製造用鋳塊の製造方法において、溶解、精錬した溶湯
を鋳造して消耗電極とし、該消耗電極をエレクトロスラ
グ再溶解法により、質量でCが0.005%以下、Oが
0.0025%以下、Nが0.003%以下の鋳塊とす
るFe−Ni系合金材料製造用鋳塊の製造方法である。
本発明において、鋳塊の成分は、質量でSを0.002
%以下とすることが望ましく、また原料の精錬は、プラ
ズマ加熱スラグ精錬法、AOD法、VOD法およびVI
M法が望ましく、VIM法においては、特に原料の溶解
から開始するものが望ましい。また、ソーキングを特に
鋳塊状態で実施することが有効である。
[0009] That is, the present invention provides a method for producing a polymer by using 20-80% by mass.
In a method for producing an ingot for producing an Fe-Ni alloy material which contains Ni and is subjected to etching treatment, a melted and refined molten metal is cast into a consumable electrode, and the consumable electrode is subjected to electroslag remelting to obtain a C by mass. Is 0.005% or less, O is 0.0025% or less, and N is 0.003% or less.
In the present invention, the component of the ingot is S by mass of 0.002.
% Or less, and the refining of the raw materials is performed by a plasma heating slag refining method, an AOD method, a VOD method and a VI method.
The M method is desirable, and in the VIM method, it is particularly desirable to start with the dissolution of the raw materials. It is particularly effective to perform soaking in the state of an ingot.

【0010】本発明において、ESRによる鋳塊は、積
層凝固により微細かつ偏析濃度差の少ない組織を生成し
てNi、Mn等の成分偏析に起因するエッチングむらを
大幅に抑制し、またスラグの精錬作用により酸化物、硫
化物等の非金属介在物を低減して該介在物によるエッチ
ングむらを大幅に抑制する。また、該鋳塊は、C含有量
の規制によりエッチングむら品位およびエッチング速度
を保証し、さらに、NおよびOの含有量の規制によりプ
レス成形性を向上する。
[0010] In the present invention, the ingot by ESR produces a microstructure with a small segregation concentration difference by lamination solidification, thereby greatly suppressing etching unevenness due to segregation of components such as Ni and Mn, and refining slag. By the action, non-metallic inclusions such as oxides and sulfides are reduced, and uneven etching due to the inclusions is largely suppressed. Further, in the ingot, the quality of etching unevenness and the etching rate are guaranteed by regulating the C content, and the press formability is improved by regulating the contents of N and O.

【0011】本発明者等は、前記の特開平6−1286
62号の提案の方法による材料においても、得られた鋳
塊中のNの含有量が高い場合にはAlN等の窒化物等の
生成により、またOの含有量が高い場合にも酸化物の生
成により、プレス成形性が阻害されることを見出したこ
とから、NおよびOを併せて低減することが必要である
ことを知見し、さらに、ESR工程を採用しかつO値を
併せて低減すれば、Nを低減しても他の問題を生ずるこ
となく軟化焼鈍後の硬さ低下を実現できることを実験の
結果知見した。
The present inventors have disclosed the above-mentioned JP-A-6-1286.
Also in the material according to the method proposed in No. 62, when the content of N in the obtained ingot is high, formation of nitrides such as AlN and the like, and when the content of O is high, oxide Since it was found that the press formability was impaired by the formation, it was found that it was necessary to reduce N and O together, and furthermore, the ESR process was adopted and the O value was also reduced. As a result of experiments, it has been found that a reduction in hardness after softening annealing can be realized without causing other problems even if N is reduced.

【0012】特開平11−323499号は、質量%で
Ni:34〜38%、Mn:0.5%以下、溶解性A
l:0.02%以下、N:0.0030〜0.0100
%を含有し、残部がFeおよび不可避的不純物よりな
り、溶解性Alの含有量を27で割った値とNの含有量
を14で割った値の小さい方の値を0.00015以下
とすることで、800℃(発明の詳細な説明の欄中では
900℃)以上の焼鈍で0.2%耐力を260N/mm
以下とするシャドウマスク用Fe−Ni系合金を提案
している。そして、Nの作用とその成分限定理由とし
て、Nはエッチングファクタを向上するが、0.003
%を下回るとエッチング性(エッチングファクタのこと
と思われる)向上の効果が不十分となり、一方、0.0
1%を上回ると有害な窒化物系介在物が生成したり、鋳
塊にNガスが充満した気孔が生じると述べ、また、そ
の実施例は、真空溶解炉を用いた例で述べている。な
お、実施例はOがいずれも0.0025%を越えるもの
であり、また、エッチングテストのデータは掲げられて
いない。
JP-A-11-323499 discloses that Ni: 34 to 38%, Mn: 0.5% or less, and
l: 0.02% or less, N: 0.0030 to 0.0100
%, The balance being Fe and unavoidable impurities, and the smaller of the value obtained by dividing the content of soluble Al by 27 and the content of N by 14 is set to 0.00015 or less. In this way, the 0.2% proof stress of 260 N / mm by annealing at 800 ° C. or more (900 ° C. in the section of the detailed description of the invention).
An Fe—Ni-based alloy for a shadow mask of 2 or less has been proposed. As an action of N and a reason for limiting its components, N improves the etching factor.
%, The effect of improving the etching properties (which is considered to be an etching factor) becomes insufficient.
When it exceeds 1%, harmful nitride-based inclusions are formed or pores filled with N 2 gas are generated in the ingot, and the embodiment is described in an example using a vacuum melting furnace. . In Examples, O exceeds 0.0025% in each case, and no data of an etching test is listed.

【0013】本発明による薄板はNが0.0030%以
下であるが、特開平11−323499号に示されてい
るようなエッチングファクタが不十分であるという問題
は生じない。本発明においては、Oを0.0025%以
下とすること、およびESR法による緻密な鋼塊組織を
得ることが、単独または複合してNの不足によるエッチ
ングファクタの向上の効果が不十分となることを補償す
るものと考えられる。すなわち、本発明は、低O化し、
ESR工程を適用することで、低N化してもエッチング
ファクタが不十分となるという問題を生ずることなく軟
化焼鈍後の硬さを低下できることを実験の結果見出した
ことによるものである。
Although the thin plate according to the present invention has N of 0.0030% or less, the problem that the etching factor is insufficient as shown in JP-A-11-323499 does not occur. In the present invention, the O content of 0.0025% or less and the obtaining of a dense steel ingot structure by the ESR method alone or in combination have an insufficient effect of improving the etching factor due to the shortage of N. It is considered to compensate for this. That is, the present invention reduces O
The experiment results show that the hardness after softening annealing can be reduced by applying the ESR process without causing a problem that the etching factor becomes insufficient even when the N content is reduced.

【0014】なお、特開平4−131354号は、シャ
ドウマスク用Fe−Ni基合金薄板材の製造法として、
電子ビームコールドハースリメルティング法で溶解・精
製して製造することを提案し、Nは0.0030%を越
えると非金属介在物に起因した圧延傷を生ずることを、
特開平4−168248号は、電気炉−取鍋精錬による
例で、Fe−Ni合金中でNは粒界に窒化物を析出し、
またC、S、O、Pとの相乗作用をなし、Nが0.00
20%を越えると熱間加工性を害することを、特開平4
−354853号は、転炉−VAD(真空アーク脱ガ
ス)−VODによる例で、Nが0.005%を越えると
金属窒化物が多量に生成してエッチング穿孔性を阻害す
ることを、それぞれ述べている。
Japanese Patent Application Laid-Open No. 4-131354 discloses a method for producing an Fe—Ni-based alloy sheet material for a shadow mask.
It is proposed to manufacture by melting and refining by the electron beam cold hearth remelting method, and that if N exceeds 0.0030%, rolling scratches caused by non-metallic inclusions will occur.
JP-A-4-168248 is an example of electric furnace-ladle refining, where N precipitates nitride at grain boundaries in an Fe-Ni alloy,
In addition, it has a synergistic effect with C, S, O, and P, and N is 0.00
Japanese Patent Application Laid-Open No. Hei 4
No. 3,554,853 is an example using a converter-VAD (vacuum arc degassing) -VOD, and states that when N exceeds 0.005%, a large amount of metal nitride is generated and inhibits the etching piercing property. ing.

【0015】なお、本発明でいうFe−Ni系合金と
は、Feと少なくともNiが20−80%、望ましくは
30−50%、さらに望ましくは34−48%含まれて
いるものであり、その合金薄板がエッチング加工される
ものに限定される。但し、コバール合金等や、Niが上
記の範囲であれば、合金の脱酸や強化等のために添加さ
れる、例えばSi、Mn、Al、Mg、B、Cr、M
o、V、Nb、Coなどの他の元素が含まれても良いも
のとする。
It should be noted that the Fe-Ni alloy referred to in the present invention is an alloy containing 20 to 80%, preferably 30 to 50%, and more preferably 34 to 48% of Fe and at least Ni. The alloy thin plate is limited to the one to be etched. However, if Kovar alloy or Ni is in the above range, it is added for deoxidation or strengthening of the alloy, for example, Si, Mn, Al, Mg, B, Cr, M
Other elements such as o, V, Nb, and Co may be included.

【0016】以下に、本発明における各元素の限定理由
について述べる(含有量は質量表示)。Cは、薄板に
0.005%を越えて含有されるとエッチング速度を極
度に低下してエッチング工程の生産性を著しく阻害し、
またエッチングむらを生成し易くするから、0.005
%以下に限定する。望ましくは0.004%以下、さら
に望ましくは0.003%以下である。なお、CはES
Rで低減されないから、消耗電極自体でこれらの値以下
に低下しておく必要がある。
The reasons for limiting each element in the present invention will be described below (the contents are expressed by mass). If C is contained in a thin plate in excess of 0.005%, the etching rate will be extremely reduced, significantly impairing the productivity of the etching process,
In addition, since etching unevenness is easily generated, 0.005
% Or less. Preferably it is 0.004% or less, more preferably 0.003% or less. C is ES
Since it is not reduced by R, it is necessary that the consumable electrode itself be reduced to below these values.

【0017】本発明者等は、Fe−Ni系合金のプレス
成形性の改善方法について種々検討した結果、当該合金
中の不純物の低減、特にNおよびOの低減が有効である
ことを知見した。すなわち、Nは脱酸剤として添加する
Al等と反応してAlN等の微細かつ多数の窒化物を形
成し、Oも多数の酸化物を形成するため、これらの非金
属介在物が再結晶時に結晶の成長を阻止(ピンニング)
して結晶組織を微細化し、焼鈍後の硬さ低下を阻害する
ことにより、プレス成形性を低下させることが分った。
Nは、薄板に0.003%を越えて含有されると、軟化
焼鈍後の硬さを上昇してプレス成形性を大きく阻害する
から、0.003%以下に限定する。望ましくは0.0
02%以下である。なお、NはCと同様にESRで低減
できないから、消耗電極自体でこれらの値以下に低下し
ておく必要がある。
The present inventors have conducted various studies on a method for improving the press formability of an Fe-Ni alloy, and as a result, have found that reduction of impurities in the alloy, particularly reduction of N and O, is effective. That is, N reacts with Al or the like added as a deoxidizer to form fine and numerous nitrides such as AlN, and O also forms a large number of oxides. Prevents crystal growth (pinning)
It was found that the crystal structure was refined to inhibit the decrease in hardness after annealing, thereby lowering press formability.
If N exceeds 0.003% in the thin plate, the hardness after softening annealing is increased and the press formability is greatly impaired. Therefore, N is limited to 0.003% or less. Desirably 0.0
02% or less. Since N cannot be reduced by ESR as in C, it is necessary that the consumable electrode itself be reduced to these values or less.

【0018】Oは、種々の元素と酸化物を生成し、非金
属介在物を生成して該介在物起因のエッチングむらの原
因となるほか、前記AlN等と同様の作用により、結晶
の成長を阻止してプレス成形性を阻害するため、0.0
025%以下に限定する。より望ましくは0.0020
%以下、さらに望ましくは0.0015%以下である。
Sは、薄板に0.002%を越えて含有されると、Mn
Sのような展伸性の非金属介在物を生成してエッチング
むら品位を低下するから、Sは、0.002%以下に限
定するのが望ましく、より望ましくは0.0015%以
下である。
O forms oxides with various elements, generates non-metallic inclusions, and causes etching unevenness caused by the inclusions. O also causes crystal growth by the same action as that of AlN and the like. 0.0 to prevent press molding
It is limited to 025% or less. More preferably 0.0020
%, More preferably 0.0015% or less.
When S exceeds 0.002% in a thin plate, Mn
S is preferably limited to 0.002% or less, and more preferably 0.0015% or less, since it generates extensible non-metallic inclusions such as S and lowers the quality of uneven etching.

【0019】[0019]

【発明の実施の形態】本発明は、脱炭、脱ガス(脱N)
機能のないESRにより鋳塊を得るものであるから、使
用する消耗電極の製造のための精錬、鋳造の方法は、こ
れらを有利に十分なレベルまで低減できることが肝要で
あり、前記のようにプラズマ加熱スラグ精錬法、AOD
法、VOD法およびVIM法の採用が望ましい。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to decarburization and degassing (degassing).
Since ingots are obtained by ESR having no function, it is important that the refining and casting methods for producing consumable electrodes to be used can advantageously reduce these to a sufficient level. Heated slag refining method, AOD
It is preferable to employ the VOD method, the VOD method and the VIM method.

【0020】プラズマ加熱スラグ精錬法では、真空予備
精錬により低C、低O、低N化後、脱硫精錬するもの
で、これらC、O、Nを電気炉より低域まで容易に除去
可能であるから、本発明の電極の溶製に適する。AOD
法では、低C域でAr希釈ガスの吹き込みによる激しい
攪拌下でCO分圧を低下して脱炭、脱ガス(脱N)反応
を進行させる。脱炭、脱窒ともアーク電気炉より低域ま
で容易に可能であるから、本発明の電極の溶製に適す
る。VOD法は、真空下で処理するからAOD法に比
し、脱炭、脱ガス(N)反応がより促進され、本発明の
電極の溶製に適する。
In the plasma heating slag refining method, desulfurization refining is performed after low C, low O, and low N by preliminary vacuum refining, and these C, O, and N can be easily removed to a lower range than the electric furnace. Therefore, it is suitable for melting the electrode of the present invention. AOD
In the method, the decarbonization and degassing (de-N) reactions are progressed by lowering the partial pressure of CO under vigorous stirring by blowing Ar dilution gas in a low C region. Since both decarburization and denitrification can be easily performed to a lower range than the electric arc furnace, it is suitable for melting the electrode of the present invention. Since the VOD method is performed under vacuum, the decarburization and degassing (N) reactions are further promoted as compared with the AOD method, and are suitable for melting the electrode of the present invention.

【0021】VIM法は、酸化発熱物の有無に無関係に
必要に応じて昇温または温度保持しつつ、真空下でCO
反応、脱ガス(脱N)等を十分に行なわせることができ
るから、本発明の電極の溶製に適する。該VIM法にお
いては、特に原料の溶解から開始するものが望ましい。
すなわち、一旦溶解された多量の溶湯は、長時間真空に
曝すのみでは脱ガス等真空処理の効果は低いが、該VI
M法で溶解から開始する場合、原料は真空に曝らされつ
つ少量ずつ溶解し、溶解完了までに比表面積が大きい状
態を経るため、溶解完了時点では脱炭、脱酸、脱ガス
(脱N)等の真空処理効果が大きく進行している。
In the VIM method, the temperature is raised or maintained as necessary, regardless of the presence or absence of an oxidizing heat, while the CO
Since the reaction and degassing (de-N) can be sufficiently performed, it is suitable for melting the electrode of the present invention. In the VIM method, it is particularly desirable to start from the dissolution of the raw material.
That is, a large amount of molten metal once melted has only a low effect of vacuum treatment such as degassing only by being exposed to vacuum for a long time.
When starting from dissolution by the M method, the raw materials are dissolved little by little while being exposed to vacuum, and pass through a state where the specific surface area is large until the dissolution is completed. ) And the like are greatly advanced.

【0022】本発明において、前記のようにソーキング
を特に鋳塊状態で実施することが有効である。これによ
りエッチングむら品位に優れたシャドウマスクを提供で
きる。例えば、鋳塊を少なくとも1150℃以上融点以
下の温度に、鋳塊寸法にもよるが例えば300mmφ以
上では、均熱後最低3時間以上十分保持する拡散処理を
行う。ソーキング処理を鋳塊の段階で行なうと、表面積
が小さく、大気中で実施することもできるので経済的に
も有利である。
In the present invention, as described above, it is effective to carry out soaking particularly in the state of an ingot. This can provide a shadow mask having excellent etching unevenness. For example, a diffusion treatment is performed in which the ingot is maintained at a temperature of at least 1150 ° C. or lower and a melting point or less, but depending on the size of the ingot, for example, at a diameter of 300 mm or more, is sufficiently held for at least 3 hours after soaking. Performing the soaking process at the stage of the ingot is economically advantageous because the surface area is small and the soaking process can be carried out in the atmosphere.

【0023】なお、前述の特開昭61−223188号
は、具体的に1150℃で熱間圧延し、厚さ5mmの板
とした後に1100℃×1時間以上の熱処理でNiの拡
散処理をすることを開示している。ところが、板材の高
温処理では表面積が著しく大きいため、多量の酸化層の
発生または特別な雰囲気中で熱処理を行なう必要があ
り、多大な費用と装置を要する。
In the above-mentioned Japanese Patent Application Laid-Open No. 61-223188, concretely, hot-rolling is performed at 1150 ° C. to form a plate having a thickness of 5 mm, and then Ni is diffused by heat treatment at 1100 ° C. × 1 hour or more. It is disclosed that. However, since the surface area is extremely large in the high-temperature treatment of the plate material, it is necessary to generate a large amount of an oxide layer or to perform a heat treatment in a special atmosphere, which requires a great deal of cost and equipment.

【0024】本発明において、ESR工程は、それ単独
または低O化と複合されて低N化による軟化焼鈍後の硬
さ低下をエッチングファクタの問題を生ずることなく達
成すると考えられる重要な工程であるが、該工程では極
低N,O雰囲気を確保することが必要である。このた
め、鋳型と消耗電極間の不活性ガスシールを徹底するこ
とで再溶解雰囲気を大気から遮断した上で、Al等の強
力な脱酸剤を消耗電極自身へ添加するか、ESR作業中
に連続的もしくは間欠的に供給するという方法のいずれ
か、または併用して採用することが望ましい。
In the present invention, the ESR step is an important step which is considered to be achieved alone or in combination with the reduction of O to reduce the hardness after soft annealing due to the reduction of N without causing the problem of the etching factor. However, in this step, it is necessary to secure an extremely low N, O atmosphere. For this reason, a thorough inert gas seal between the mold and the consumable electrode is used to shut off the re-dissolving atmosphere from the atmosphere, and then add a strong deoxidizing agent such as Al to the consumable electrode itself, or It is desirable to employ any of the methods of continuous or intermittent supply, or to use them in combination.

【0025】[0025]

【実施例】以下、実施例にて本発明の説明を行なう(含
有量は質量表示)。 (第1実施例)アーク炉+AOD+ESRの工程にて、
C:0.003%以下、Fe−36%Ni系合金鋳塊
を、表1に示すN、Oの成分狙いで製造した(本発明
例:4種、比較例:4種)。いずれも、まず、アーク炉
で材料を溶解し、酸化精錬を行なって出湯時の成分を、
ほぼC:0.10%、S:0.010%、N:0.00
6%、Ni:36%とした後、出湯してAODに移行し
た。
EXAMPLES The present invention will be described below with reference to examples (contents are expressed by mass). (First Embodiment) In the process of arc furnace + AOD + ESR,
C: 0.003% or less, Fe-36% Ni-based alloy ingot was produced with the aim of N and O components shown in Table 1 (Examples of the present invention: 4 types, Comparative examples: 4 types). In any case, first, the materials are melted in an arc furnace, and the components at the time of tapping are oxidized and refined.
Almost C: 0.10%, S: 0.010%, N: 0.00
After adjusting to 6% and Ni: 36%, the hot water was discharged and shifted to AOD.

【0026】[0026]

【表1】 [Table 1]

【0027】AODにおいては、まず底吹ガス中のO
の比率をArよりも高い状態で脱C反応を行なわせ、徐
々にOの比率を低減させて低C域にまで脱Cし、Cを
0.005%以下とし、AOD末期には除滓を行った後
にArを吹き込み、Nをほぼ表1の狙い組成(それぞれ
0.002〜0.004)まで脱Nした。さらに造滓剤
を添加して還元精錬を行ないSを0.002%以下とし
た。なお、脱酸剤としてはAlを使用し、還元精錬終了
後に消耗電極に鋳造し、該消耗電極をESRすることで
鋳塊とした。ESRでは、スラグの脱硫作用によってS
は0.002%以下のままとすることができた。なお、
ESRでは鋳型と電極の隙間を不活性ガスでシールする
とともにAlを連続的に添加し、鋳塊のO値をほぼ表1
の狙い組成とした。ESR後の鋳塊のC値はいずれも約
0.005%以下であり、OとN値はほぼ狙い成分とす
ることができた。
In the AOD, first, O 2 in the bottom-blown gas is
Is performed in a state in which the ratio of O is higher than that of Ar, and the ratio of O 2 is gradually reduced to de-C to a low C region, C is reduced to 0.005% or less. Was performed, Ar was blown in to remove N to approximately the target composition in Table 1 (each 0.002 to 0.004). Further, a refining was performed by adding a slag-making agent to reduce S to 0.002% or less. In addition, Al was used as a deoxidizing agent, and it was cast into a consumable electrode after reduction refining was completed, and the consumable electrode was subjected to ESR to form an ingot. In the ESR, the desulfurization of slag
Could remain 0.002% or less. In addition,
In the ESR, the gap between the mold and the electrode is sealed with an inert gas and Al is continuously added, so that the O value of the ingot is almost as shown in Table 1.
And the target composition. The C value of each of the ingots after ESR was about 0.005% or less, and the O and N values could be almost targeted components.

【0028】なお、上記AODにおいては、初期の脱炭
期に低C域にまでの脱Cと脱Nができ、かつ後期の還元
期にて、極低S化が可能となり、目的とするシャドウマ
スク用Fe−36%Ni合金を得ることができた。但
し、AODの壁部分の耐火物はマグネシア−クロマイト
煉瓦であり、Crの汚染が強いので、アーク炉での装入
材料としては、Cr値の低いものを用いる必要があっ
た。なお、一次溶解炉としては、アーク炉以外に転炉で
もよい。前記ESRによる鋳塊を熱間鍛造、熱間圧延、
冷間圧延により0.15mm厚さの合金帯とし、エッチ
ングむら品位およびエッチングファクタを調査し、さら
に該合金帯を軟化焼鈍し、焼鈍後の硬さを測定した。
In the above AOD, C and N can be removed to a low C region in the initial decarburization period, and extremely low S can be achieved in the later reduction period. An Fe-36% Ni alloy for a mask was obtained. However, since the refractory on the wall of the AOD is magnesia-chromite brick and is highly contaminated by Cr, it was necessary to use a material having a low Cr value as a charging material in the arc furnace. The primary melting furnace may be a converter other than the arc furnace. Hot forging, hot rolling,
An alloy strip having a thickness of 0.15 mm was formed by cold rolling, the quality of etching unevenness and the etching factor were investigated, and the alloy strip was soft-annealed, and the hardness after annealing was measured.

【0029】エッチングむら品位、エッチングファクタ
およびプレス成形性の判定結果を表2に示す。ここで、
プレス成形性の判定は、特定の値に対する焼鈍後硬さの
高低によった。表2から、いずれもエッチングファクタ
には問題生じていないこと、エッチングむら品位は、鋳
塊のOが0.0035%となるとやや不良となるが、プ
レス成形性は、鋳塊がN≦0.003%、かつO≦0.
0025%では非常に良好または良好であるが、Nが
0.004%では不良となり、また、Oが0.0035
%ではやや不良となることが分る。
Table 2 shows the results of the determination of the quality of the etching unevenness, the etching factor, and the press formability. here,
Judgment of press formability was based on the hardness after annealing for a specific value. From Table 2, it can be seen that there is no problem in the etching factor, and that the etching unevenness is slightly poor when the O of the ingot becomes 0.0035%, but the press formability of the ingot is N ≦ 0. 003% and O ≦ 0.
Very good or good at 0025%, but poor at 0.004% N and 0.0035% O.
It turns out that it is slightly bad in%.

【0030】[0030]

【表2】 [Table 2]

【0031】比較例(e)のビッカース硬さは特定値を
多少上回る程度であったが、比較例(f)はビッカース
硬さが特定値を約5上回り、いずれもプレス成形性がや
や不良と判定され、比較例(g)と(h)はさらに上回
り、プレス成形性が不良と判定された。本発明例(a)
〜(d)はビッカース硬さが特定値に対して5以上低く
プレス成形性が非常に良好または良好と判定された。な
お、鋳塊(a)と同ロットの鋳塊に対して1280℃の
ソーキングを実施し、上記鋳塊(a)と同条件の塑性加
工で合金帯とした材料について行ったエッチングテスト
で、該ソーキング工程挿入材はエッチングむら品位がさ
らに向上することが確認された。
The Vickers hardness of Comparative Example (e) was slightly higher than the specified value, but the Vickers hardness of Comparative Example (f) exceeded the specified value by about 5; It was determined that Comparative Examples (g) and (h) were even higher, and the press formability was determined to be poor. Invention Example (a)
In (d), the Vickers hardness was 5 or more lower than the specific value, and the press formability was judged to be very good or good. In addition, the ingot of the same lot as the ingot (a) was subjected to soaking at 1280 ° C., and an etching test was performed on a material obtained as an alloy band by plastic working under the same conditions as the ingot (a). It was confirmed that the material inserted in the soaking process further improved the quality of uneven etching.

【0032】(第2実施例)次に、VODを経て製造し
た場合の例を示す。Fe−36%Ni合金をアーク炉に
て溶製し、酸化精錬を行なった後、出湯してVODに移
行した。出湯時の成分は、質量でC:0.10%、S:
0.010%、N:0.006%、Ni:36%であっ
た。VOD移行後まず除滓し、真空度約13.3kPa
にてO吹精して脱Cを行い、続いてO吹精を中止し
真空排気脱ガスのみにてさらに脱C、脱Nし、Cを0.
003%とした。この時のNは0.002%であった。
(Second Embodiment) Next, an example in the case of manufacturing via VOD will be described. A Fe-36% Ni alloy was melted in an arc furnace, oxidized and refined, and then discharged to be transferred to VOD. The components at the time of tapping are C: 0.10% by mass, S:
0.010%, N: 0.006%, Ni: 36%. After moving to VOD, the residue is removed first, and the degree of vacuum is about 13.3 kPa.
At O 2吹精to perform de-C, followed by O 2 stops吹精further de-C at only evacuated degassing and de-N, 0 and C.
003%. N at this time was 0.002%.

【0033】次いで、造滓剤と脱酸用Alを添加し、真
空度267Paにて脱酸、脱硫を行ない、Sを0.00
2%、Oを0.0022%とした後に消耗電極に造塊し
該消耗電極をESRすることで鋳塊とした。以後第1の
実施例の場合と同様に塑性加工し、エッチングテストに
供し、また軟化焼鈍後ビッカース硬さ測定した。なお、
ESR鋳塊の組成は、C:0.0029%、S:0.0
015%、N:0.0023%、O:0.0024%、
Ni:36%であった。
Next, a slag-making agent and Al for deoxidation were added, deoxidation and desulfurization were performed at a degree of vacuum of 267 Pa, and S was reduced to 0.00.
After making 2% and O to 0.0022%, the consumable electrode was formed into an ingot, and the consumable electrode was subjected to ESR to form an ingot. Thereafter, plastic working was carried out in the same manner as in the first embodiment, subjected to an etching test, and Vickers hardness was measured after soft annealing. In addition,
The composition of the ESR ingot is C: 0.0029%, S: 0.0
015%, N: 0.0023%, O: 0.0024%,
Ni: 36%.

【0034】その結果、前記本発明例(b)とほぼ同様
のエッチングむら品位、エッチンファクタおよび焼鈍後
硬さを示すことが分った。VODでは、真空度およびA
r等による攪拌の程度により、第1実施例のAODの場
合以上に脱N、脱Oを進行させることも可能である。な
お、一次溶解炉としては、アーク炉以外に、転炉で溶製
しても良く、転炉で溶製した溶湯を上記のようなC値、
S値とし、VODに移行しても良い。また、VODの還
元精錬をVAD(真空アーク脱ガス)で行っても良い。
As a result, it was found that the etching unevenness, the etchin factor and the hardness after annealing were almost the same as those of the inventive example (b). In VOD, the degree of vacuum and A
Depending on the degree of agitation by r or the like, it is possible to proceed with de-N and de-O more than in the case of the AOD of the first embodiment. In addition, as the primary melting furnace, in addition to the arc furnace, the melting may be performed in a converter.
The value may be shifted to the VOD with the S value. Further, the reduction refining of VOD may be performed by VAD (vacuum arc degassing).

【0035】(第3実施例)次に、プラズマ加熱スラグ
精錬法を経て製造した例を示す。まず、アーク炉で溶製
したFe−36%Ni合金溶湯をVIMに受湯し、真空
精錬により脱C、脱Oした後ガスプラズマ加熱装置を有
する取鍋に受湯した。該受湯時の成分は、質量でC:
0.0035%、O:0.0035%、S:0.008
0%、N:0.002%、Ni:36%であった。
(Third Embodiment) Next, an example of manufacturing by a plasma heating slag refining method will be described. First, a molten Fe-36% Ni alloy melted in an arc furnace was received by a VIM, decarbonized and deoxidized by vacuum refining, and then received by a ladle having a gas plasma heating device. The components at the time of receiving the hot water are represented by C:
0.0035%, O: 0.0035%, S: 0.008
0%, N: 0.002%, Ni: 36%.

【0036】該溶湯に造滓剤を添加するとともに、取鍋
底のポーラスプラグからのArガス吹き込みによる攪拌
と溶湯上面からのガスプラズマ加熱を行うことで脱S、
脱Oして消耗電極に鋳造し、該消耗電極をESRするこ
とで鋳塊とした。該鋳塊の成分は、C:0.0035
%、O:0.0018%、S:0.0010%、N:
0.0022%、Ni:36%であった。以後第1の実
施例の場合と同様に、塑性加工し、エッチングテストに
供し、また軟化焼鈍後ビッカース硬さ測定した。その結
果、前記本発明例(a)とほぼ同様のエッチングむら品
位、エッチンファクタおよび焼鈍後硬さを示すことが分
った。
While adding a slag-forming agent to the molten metal, stirring by blowing Ar gas from a porous plug at the bottom of the ladle and gas plasma heating from the upper surface of the molten metal to remove S,
After removing the oxygen, the consumable electrode was cast, and the consumable electrode was subjected to ESR to form an ingot. The component of the ingot is C: 0.0035
%, O: 0.0018%, S: 0.0010%, N:
0.0022% and Ni: 36%. Thereafter, in the same manner as in the first embodiment, plastic working was performed, subjected to an etching test, and Vickers hardness was measured after softening annealing. As a result, it was found that substantially the same etching unevenness, etchin factor and hardness after annealing were exhibited as in Example (a) of the present invention.

【0037】ここで言うガスプラズマ加熱による精錬法
とは、ガスプラズマ加熱装置を有する容器中で、スラグ
精錬を行うことで脱O、脱S等の精錬を行うものであ
る。この精錬方法は加熱手段からのCの汚染が無く、必
要に応じて造滓剤の添加および溶融、溶湯の加熱保温及
びAr等による攪拌を行うことができ、またAOD法、
VOD法等における酸化発熱物とは無関係に精錬反応を
行い得る特徴を有する。
The refining method by gas plasma heating mentioned here is a method in which slag refining is performed in a vessel having a gas plasma heating device to perform refining such as removal of O and removal of S. This refining method has no contamination of C from the heating means, and can add and melt a slag-making agent as needed, heat and maintain the molten metal, and stir by Ar or the like.
It has a feature that a refining reaction can be performed independently of an oxidizing heat in the VOD method or the like.

【0038】(第4実施例)次に、VIMを経て製造し
た例を示す。まず、低Sの原料を用いてFe−36%N
i合金溶湯をVIMで溶解し、真空精錬により脱C、脱
O、脱N精錬した後消耗電極に鋳造し、該消耗電極をE
SRにより鋳塊とした。該鋳塊の成分は、C:0.00
32%、S:0.0015%、N:0.0021%、
O:0.0021%、Ni:36%であった。以後第1
実施例の場合と同様に、塑性加工し、エッチングテスト
に供し、また軟化焼鈍後ビッカース硬さ測定した。その
結果、前記本発明例(a)〜(b)とほぼ同様のエッチ
ングむら品位、エッチンファクタおよび焼鈍後硬さを示
すことが分った。
(Fourth Embodiment) Next, an example of manufacturing via a VIM will be described. First, Fe-36% N
The molten i-alloy is melted with a VIM, de-C, O-, and N-refined by vacuum refining, and then cast into a consumable electrode.
It was made into an ingot by SR. The component of the ingot is C: 0.00
32%, S: 0.0015%, N: 0.0021%,
O: 0.0021% and Ni: 36%. Afterwards the first
In the same manner as in the example, plastic working was performed, an etching test was performed, and Vickers hardness was measured after softening and annealing. As a result, it was found that the same non-uniform etching quality, etchin factor, and hardness after annealing were obtained, which were almost the same as those of the inventive examples (a) and (b).

【0039】[0039]

【発明の効果】以上述べたように、本発明の製造方法
は、ESRの積層急速凝固により成分偏析に起因するエ
ッチングむらを、また、ESRによる硫化物系および酸
化物系の両非金属介在物の除去作用のより、介在物に起
因するエッチングむらをそれぞれ抑制し、さらに低Cと
してエッチング速度を、低N、低Oとしてピンニングを
抑制して良好なプレス成形性をそれぞれ実現するもので
ある。これにより、従来のエッチングむら品位、エッチ
ンファクタおよびエッチング速度を低下することなく、
プレス成形性を改善したFe−Ni系合金の提供が可能
となった。また、鋳塊をソーキングすればNiやMnの
十分な拡散により、さらにエッチング性が優れたシャド
ウマスクを提供できる。
As described above, the manufacturing method of the present invention can prevent the uneven etching caused by the segregation of the components due to the rapid solidification of the ESR, and the non-metallic inclusions of the sulfide type and the oxide type by the ESR. , The unevenness of etching caused by inclusions is suppressed, the etching rate is set to low C, and the pinning is set to low N and O to realize good press formability. Thereby, without lowering the conventional etching unevenness quality, etching factor and etching rate,
It has become possible to provide an Fe-Ni-based alloy with improved press formability. In addition, if the ingot is soaked, a shadow mask with more excellent etching properties can be provided by sufficient diffusion of Ni and Mn.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 質量で20−80%のNiを含みエッチ
ング処理されるFe−Ni系合金材料製造用鋳塊の製造
方法において、溶解、精錬した溶湯を鋳造して消耗電極
とし、該消耗電極をエレクトロスラグ再溶解法により、
質量でCが0.005%以下、Oが0.0025%以
下、Nが0.003%以下の鋳塊とすることを特徴とす
るFe−Ni系合金材料製造用鋳塊の製造方法。
1. A method for producing an ingot for producing an Fe—Ni-based alloy material containing 20-80% by mass of Ni and being etched, wherein a melted and refined molten metal is cast to form a consumable electrode. By electroslag re-dissolving method,
A method for producing an ingot for producing an Fe-Ni-based alloy material, comprising: an ingot having a mass of C of 0.005% or less, O of 0.0025% or less, and N of 0.003% or less by mass.
【請求項2】 鋳塊は、質量でSが0.002%以下で
ある請求項1のFe−Ni系合金材料製造用鋳塊の製造
方法。
2. The method for producing an ingot for producing an Fe—Ni alloy material according to claim 1, wherein the ingot has a S content of 0.002% or less by mass.
【請求項3】 消耗電極鋳造のための溶湯の精錬は、プ
ラズマ加熱スラグ精錬法、真空誘導溶解法、アルゴン酸
素脱炭法および真空酸素脱炭法のうち少なくとも一種に
よるものである請求項1または2のFe−Ni系合金材
料製造用鋳塊の製造方法。
3. The refining of a molten metal for casting a consumable electrode is performed by at least one of a plasma heating slag refining method, a vacuum induction melting method, an argon oxygen decarburization method, and a vacuum oxygen decarburization method. 2. A method for producing an ingot for producing an Fe—Ni alloy material.
JP2000179555A 2000-06-15 2000-06-15 PRODUCTION METHODS OF CAST INGOTS TO BE PROCESSED TO Fe-Ni SYSTEM ALLOY MATERIAL Pending JP2002001517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000179555A JP2002001517A (en) 2000-06-15 2000-06-15 PRODUCTION METHODS OF CAST INGOTS TO BE PROCESSED TO Fe-Ni SYSTEM ALLOY MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000179555A JP2002001517A (en) 2000-06-15 2000-06-15 PRODUCTION METHODS OF CAST INGOTS TO BE PROCESSED TO Fe-Ni SYSTEM ALLOY MATERIAL

Publications (1)

Publication Number Publication Date
JP2002001517A true JP2002001517A (en) 2002-01-08

Family

ID=18680813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000179555A Pending JP2002001517A (en) 2000-06-15 2000-06-15 PRODUCTION METHODS OF CAST INGOTS TO BE PROCESSED TO Fe-Ni SYSTEM ALLOY MATERIAL

Country Status (1)

Country Link
JP (1) JP2002001517A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101257651B1 (en) * 2005-05-25 2013-04-30 스미덴 파인 컨덕터 가부시키가이샤 Electrode material
CN116987976A (en) * 2023-09-25 2023-11-03 安泰科技股份有限公司 Iron-nickel-based precise alloy material for FMM mask, alloy strip and smelting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101257651B1 (en) * 2005-05-25 2013-04-30 스미덴 파인 컨덕터 가부시키가이샤 Electrode material
CN116987976A (en) * 2023-09-25 2023-11-03 安泰科技股份有限公司 Iron-nickel-based precise alloy material for FMM mask, alloy strip and smelting method
CN116987976B (en) * 2023-09-25 2024-01-02 安泰科技股份有限公司 Iron-nickel-based precise alloy material for FMM mask, alloy strip and smelting method

Similar Documents

Publication Publication Date Title
CN114058970B (en) Production method of bearing steel
JP2002001517A (en) PRODUCTION METHODS OF CAST INGOTS TO BE PROCESSED TO Fe-Ni SYSTEM ALLOY MATERIAL
US4168158A (en) Method for producing alloy steels having a high chromium content and an extremely low carbon content
KR100844794B1 (en) A method for refining with high purity of austenitic stainless steel
WO2022039036A1 (en) Production method for high-manganese steel
JP3499349B2 (en) Fe-Ni alloy cold rolled sheet excellent in surface properties and method for producing the same
JP4059118B2 (en) Method for producing Fe-Ni alloy cold rolled sheet material for shadow mask with excellent etching perforation
JP2991796B2 (en) Melting method of thin steel sheet by magnesium deoxidation
KR100388239B1 (en) Method for producing low sulfer, low carbon steel using eaf-vtd process
CN112647017A (en) Method for controlling inclusions in gear steel
JP3363490B2 (en) Ingot making method of Fe-Ni based alloy ingot
JP2001353570A (en) METHOD FOR PRODUCING CAST BLOCK FOR PRODUCING Fe-Ni BASE ALLOY MATERIAL
JP3536715B2 (en) Method for producing Fe-Ni-based alloy cold rolled sheet material for shadow mask with excellent etching piercing property
JPH04218644A (en) Fe-ni alloy cold rolled sheet excellent in cleanliness and etching pierceability and its manufacture
JP2864964B2 (en) Fe-Ni-based alloy cold rolled sheet excellent in plating property and solderability and method for producing the same
CN112063801B (en) Stainless steel and preparation method thereof
JPH0625802A (en) Cold rolled fe-ni alloy sheet for shadow mask excellent in blackening treatability and its production
JP3554283B2 (en) Fe-Ni alloy excellent in surface properties and method for producing the same
CN113265511B (en) Smelting method of low-nitrogen steel
JP7369266B1 (en) Fe-Cr-Ni alloy with excellent surface properties and its manufacturing method
CN114908219B (en) Smelting method for reducing silicomanganese inclusion in aluminum killed steel
JP3840096B2 (en) Method for producing Fe-Ni alloy for low thermal expansion shadow mask with excellent rust resistance
JP2002001516A (en) MATERIAL PREPARED FOR PRODUCING Fe-Ni SYSTEM ALLOY SHEET AND PRODUCTION METHOD OF CAST INGOT TO BE PROCESSED TO THE SAME SHEET
JP3680470B2 (en) Melting method for non-oriented silicon steel with excellent electromagnetic characteristics
KR900008792B1 (en) Making method of shadowmask