JPH0428785B2 - - Google Patents

Info

Publication number
JPH0428785B2
JPH0428785B2 JP62229386A JP22938687A JPH0428785B2 JP H0428785 B2 JPH0428785 B2 JP H0428785B2 JP 62229386 A JP62229386 A JP 62229386A JP 22938687 A JP22938687 A JP 22938687A JP H0428785 B2 JPH0428785 B2 JP H0428785B2
Authority
JP
Japan
Prior art keywords
carbon
hydrogen
film
carbon film
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62229386A
Other languages
Japanese (ja)
Other versions
JPS6379972A (en
Inventor
Shunpei Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP22938687A priority Critical patent/JPS6379972A/en
Publication of JPS6379972A publication Critical patent/JPS6379972A/en
Publication of JPH0428785B2 publication Critical patent/JPH0428785B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、炭素被膜に関する。 The present invention relates to carbon coatings.

【従来の技術】[Conventional technology]

従来の炭素被膜にあつては、アモルフアスの形
態で、水素のような中和剤を20〜30モル%(原子
%)必要たされていた。
Conventional carbon coatings require 20 to 30 mol % (atomic %) of a neutralizing agent such as hydrogen in the form of amorphous amorphous.

【発明が解決しようとする課題】[Problem to be solved by the invention]

従来のアモルフアスの形態の炭素被膜にあつて
は、不対結合手の量が多く、炭素被膜であつても
硬さや熱伝導率を高くできないという問題点があ
つた。 従つて、本発明は、硬さや熱伝導率を高くした
炭素被膜を提供することを目的としている。
Conventional carbon coatings in the form of amorphous have a large amount of dangling bonds, and even carbon coatings have a problem in that hardness and thermal conductivity cannot be increased. Therefore, an object of the present invention is to provide a carbon coating with increased hardness and thermal conductivity.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するために、本発明の炭素被膜
は、炭素を主成分とし、5モル%以下の水素を含
み、ダイヤモンド類似の物性を有する。 ここに、ダイヤモンド類似とは、ダイヤモンド
に近い2.0eV以上のエネルギバンド幅と、2.5
(W/cm deg)以上の熱伝導率と、4500Kg/mm2
以上のビツカース硬さを有することを意味する。 本発明の炭素被膜で水素を5モル%以下にした
のは、炭素の結合に結晶性を待たせるためで、5
モル%より多くすると、炭素の共有結合が非晶質
(アモルフアス)結合やグラフアイト結合の方向
に崩れて、ダイヤモンド類似の物性が得られなく
なるからである。 すなわち、主成分である炭素の中に水素が取り
込まれて炭素の不対結合手を中和するのである
が、水素の量が5モル%以下のように低くするこ
とにより、炭素同志の共有結合が強くなり、前述
の諸物性が得られるのである。このとき、炭素被
膜の炭素同志の共有係合が強くなる(多くなる)
結果、当該炭素被膜は5〜20オームストロングの
大きさに結晶化した形態の構造を有している。
In order to achieve the above object, the carbon film of the present invention contains carbon as a main component, contains 5 mol% or less of hydrogen, and has physical properties similar to diamond. Here, diamond-like means an energy band width of 2.0 eV or more, close to that of diamond, and an energy band width of 2.5 eV or more.
(W/cm deg) or higher thermal conductivity and 4500Kg/mm 2
It means having a Vickers hardness equal to or higher than that. The reason why the hydrogen content in the carbon film of the present invention is set to 5 mol% or less is to allow the carbon bonds to wait for crystallinity.
This is because if the amount exceeds mol%, the covalent bonds of carbon will collapse in the direction of amorphous bonds or graphite bonds, making it impossible to obtain physical properties similar to diamond. In other words, hydrogen is incorporated into carbon, which is the main component, and neutralizes the unpaired bonds of carbon. By reducing the amount of hydrogen to less than 5 mol%, the covalent bonds between carbon atoms are reduced. becomes stronger, and the various physical properties mentioned above can be obtained. At this time, the covalent engagement between carbon atoms in the carbon film becomes stronger (increases)
As a result, the carbon film has a crystallized structure with a size of 5 to 20 ohms.

【実施例】 本発明の被膜は、プラズマ気相法で炭化水素ガ
スから作製できる。 プラズマ気相法で炭化水素ガス(反応性気体)
を活性化、分解せしめてダイヤモンド結合を得る
場合、炭化水素ガスのC−H結合が分解し、活性
化されたC−同士が共有結合してダイヤモンド類
似の構造になる。 このとき、炭化水素ガスの他に水素が導入さ
れ、電磁エネルギによりプラズマ化される。 プラズマ状態で存在する水素は2つの作用を行
う。 まず、活性化された水素原子が炭化水素ガスの
C−H結合の水素原子に衝突して、活性化された
C−を生むと共に、水素原子自体はH−Hの結合
を生じる。これが炭化水素ガスを脱水素化であ
る。 次に、脱水素化により活性化されたC−が他の
C−と結合されていない場合に、これとH−が結
合して、不対結合手(ダングリングボンド)の中
和作用を行う。活性化されたC−の多くの他のC
−と結合されるが、5〜20オームストロングの結
晶性を持たせる場合、5モル%以下の水素がダン
グリングボンドを中和する。すなわち、本発明に
おいてダイヤモンドに含まれる5モル%以下の水
素は、ダングリングボンドの中和作用を行つてい
るものである。 ダングリングボンドの中和に関しては、アモル
フアス形態の珪素では水素のような中和剤を20〜
30モル%必要とされているが、本発明では、不対
結合手の量が少なく、5モル%以下の低い存在量
で、炭素同士の共有結合が強くダイヤモンドと類
似の物性を有することになる。 プラズマ気相法では、例えば、10-3torrまで真
空引きした加熱炉に水素を導入して10-2〜10torr
にした後に、電磁エネルギを加えてプラズマ化
し、このプラズマ化した雰囲気に対し、炭化水素
の反応性気体を導入する。この条件で得られたダ
イヤモンドには5モル%以下の水素が含まれてい
る。 さらに具体的には、0.01〜10torrの減圧下に
て、直流、高周波(500KHz〜50MHz)、またはマ
イクロ波(例えば2.45GHzの週波数)の電磁エネ
ルギを加えて、またはアーク放電を発生させてプ
ラズマ化し、かかる電磁エネルギにより気化した
反応性気体を活性化し、分解せしめることによ
り、結晶化した形態(半非結晶質、セミアモルフ
アス、SASと呼ばれることがある)が得られる。 炭化水素は、例えばアセチレ(C2H2)、エチレ
ン(C2H4)、メタン、プロパン等のメタン系炭化
水素(CoH2o+2)等の気体を用いればよい。 プラズマ気相法によると、100〜450℃、好まし
くは200〜350℃の低温で形成される。 かかるプラズマ気相法により形成した炭素被膜
は、エネルギバンド幅がダイヤモンドのそれに近
い2.0eV以上代表的には2.5〜3eVを有する絶縁体
である。 また、当該炭素被膜の熱伝導率は2.5(W/cm
deg)以上、代表的には5.0(W/cm deg)とダイ
ヤモンドの6.60(W/cm deg)に近いきわめてす
ぐれた高い値を有する。 さらに、当該炭素被膜は、ビツカース硬度4500
Kg/mm2以上代表的には6500Kg/mm2というダイヤモ
ンド類似の硬さを有するきわめてすぐれた特性を
有する。かかる特性は、サーマルヘツドに適用し
てすぐれた耐摩耗性、感熱高速応答性を有せしめ
ることができる。 この点に関し、炭素被膜の形成温度が、100〜
200℃にては、硬度が若干低く、200℃以上特に
250〜350℃においては、きわめて安定な強い被形
成面への密着性と硬さを有する。450℃以上にす
ると、被形成面の熱膨張係数の差によりストレス
が内圧するおそれがあり、200〜450℃、とくに
250〜350℃で形成された被膜が理想的な耐摩耗材
料である。 なお、本発明のダイヤモンド類似の炭素被膜中
に10-2〜10-6(Ωcm)-1の電気伝導度を有せしめる
ことができる。この為には、前記炭素被膜に価
の不純物であるホウ素を0.1〜3モル%の濃度に
添加するか、あるいはまたは価の不純物である
リンを0.1〜3モル%の濃度に添加する。 このような電気伝導度を有する場合、機会的特
質により耐摩耗層を必ずしも形成させる必要がな
い発熱素子として用いることができる。 また、発熱層と耐摩耗層とからなるサーマルヘ
ツドの耐摩耗層に本発明の炭素被膜を適用する場
合、減圧状態のプラズマ気相法を用いて耐摩耗層
としての炭素被膜を形成するとき、発熱層の側部
に対しても上面と同様の厚さで保護することがで
きる。そのためこれまでスパツタ法、常圧気相法
等で作つた場合、この側面をおおうために結果と
して耐摩耗層を上面の厚さにおいて2μm以上
(側面の厚さ0.2μm以上)を必要としたのに対し、
本発明においては上面も側面もほぼ同じ厚さに形
成可能なため、上面の厚さは0.1〜0.3μmあれば
十分である。結果として厚さが約1/10になつた
ため、さらに感熱の応答速度を向上させることが
できる。 さらに、珪素が主成分とする被膜上に本発明の
炭素被膜を形成した場合には、炭素や炭素を主成
分とする被膜との密着性の悪い表面に対しても、
珪素を主成分とする被膜を設けることにより、本
発明の炭素被膜を設けることができる。 実施例 1 以下に、本発明の炭素被膜をサーマルヘツドプ
リンタに用いた場合を図面に従つて説明する。 図面において基板特にセラミツク基板上にグレ
イズされたガラス層2、発熱体層3、電極4、耐
摩耗層5が積層して設けられている。また第1図
Cに示す如く、電極4を省略いて、感熱紙がこす
られる部分を発熱層3上に接して耐摩耗層5を設
けてもよい。 発熱体層は導電性(抵抗性)または半導体性で
あることを必要とするため、形成される被膜は
価または価の不純物例えばホウ素またはリンを
不純物気体/炭化物気体=0.01〜3%に添加した
抵抗性または半導体性の炭素被膜(炭素からなる
被膜または炭素を主成分とする被膜)を形成せし
めた。 すなわち、炭素被膜の形成は、出発物質にアセ
チレンを用い、100〜450℃例えば200〜350℃にて
形成させた。 高周波エネルギは50〜20WとしてSASを形成
させた。価の不純物は例えばホウ素B2H6を用
いて、また価の不純物を例えばリンPH3を用い
て前記した比の如く微小なドープまたはノンドー
プをして用いた。ここにB2H6/C2H2=0.01〜3
%、PH2/C2H2=0.01〜3%として形成させた。
その結果形成された被膜の電気伝導度は10-8
10-4(Ωcm)-1が得られた。 なお、形成された被膜中に水素が20モル%以下
に含有したが、発熱させることにより、その多く
は外部に放出させていた。 なお、前記発熱体層3は炭素被膜の代わりに珪
素被膜を用いてもよい。珪素被膜に関しては、出
発物質をシラン(SioH2o+2n≧1)または四フツ
化珪素を用い、不純物気体/炭化物気体=0.01以
下で、炭素被膜と同様にして形成させる。 耐摩耗層5は、本発明により、炭素を主成分と
するダイヤモンド類似の炭素被膜とした。この耐
摩耗層に関しては、以下の如くにして作製した。 すなわち、被形成面を有する基板を反応容器内
に封入し、この反応容器を10-3torrまでに真空引
きをするとともに、この基板を加熱炉により100
〜450℃好ましくは200〜350℃例えば300℃に加熱
した。この後この雰囲気中に水素を導入し、10-2
〜10torrにした後誘導方式または容量結合方式に
より電磁エネルギを加えた。例えば、電気エネル
ギの周波数は13.56MHz、出力は50〜500Wとし、
実質的な電極間隔は15〜150cmと長くした。それ
は、プラズマ化した時の反応性気体の炭素−水素
結合はきわめて安定であるため、炭素−水素が会
合(同種分子の結合)した分子に対し高いエネル
ギを与え、炭素同志を共有結合させるためであ
る。 形成された被膜に関し、250〜500Wの出力を加
えた時は炭素の共有係合を有した構造が電子線回
折で観察された。 さらにこのプラズマ化した雰囲気に対し、炭化
水素気体例えばメタンまたはプロパンを導入し
た。するとこの反応性気体が雰囲気中の水素原子
と反応性気体の水素原子との衝突により脱水素化
し、炭素の結合が互いに共有結合し合つて、被形
成面にダイヤモンド類似の炭素被膜を形成させる
ことができた。このとき5モル%以下の水素が炭
素被膜に取り込まれて炭素の不対結合手を中和し
た。 基板の温度が100〜200℃にては、硬度が若干低
く、また基板への密着性が必ずしも好ましいもの
ではなかつたが、200℃以上特に250〜350℃にお
いては、きわめて安定な強い被形成面への密着性
を有していた。 加熱処理は450℃以上にすると、基板との熱膨
張係数の差によりストレスが内在していまい問題
があり、250〜450℃で形成された被膜が理想的な
耐摩耗材料であつた。 以上の如くにして形成された本実施例の炭素被
膜は0.05〜0.2μmの厚さすなわち従来の1/5〜1/1
0の薄さであつても105時間の使用に耐える耐摩耗
性を有していた。 本実施例の炭素被膜をプラズマ気相法により形
成すると、第1図B,Cに示す如く、発熱体層の
側部の厚さが発熱体層上の厚さを概略一致させる
ことができるという特徴を有する。 これは減圧下(0.01〜10torr)で、反応性気体
の平均自由行程が長くなり気相法を行うに際して
も側近へまわりこみが大きいためである。加えて
プラズマ化し反応性気体成分同志に大きな運動エ
ネルギを与えて互いに衝突させ、四方八方への飛
翔を促していることにある。 従つて、本発明の炭素被膜をサーマルヘツドに
応用した場合サーマルヘツドの発熱体層上面の側
面の厚さをほぼ同じ厚さに形成できるため従来の
炭素被膜のようにその厚さの1番薄い部分の厚さ
を必要以上にしたり、逆に厚く形成される部分は
その10倍も厚くなるということがない。 また、上面と側面をおおつた場合、基板と発熱
体層の密着力を高めるという効果を持つ。 以上の説明により明らかな如く、本発明の炭素
被膜は、その基本思想としてプラズマ気相法を用
いて作製され、基板温度が100〜450℃、代表的に
は250〜400℃、特に300℃という他の気相法より
も低い温度で可能である。 また、被膜形成温度が500℃以下であることは、
基板材料としてガラスを用いる時その熱膨張の歪
に対し、これをきわめて少なくし、従来の高温処
理による基板のそり等の大きな欠点を防ぐことが
できた。そのためこれまでのサーマルプリンタの
発熱いが1mmあたり6本しか作れなかつたが、こ
れを24本にまで高めることができるようになつ
た。 本発明の炭素被膜の作製にはプラズマ気相法が
好ましい。しかし、前述のような他摩耗性が得ら
れる限りにおいてインオプレーテイングその他の
プラズマまたはレーザ等の電磁エネルギ、光エネ
ルギを用いてもよい。 本発明の実施例においての第1図の構造はその
一例を示したもので、発熱体層を単結晶としてト
ランジスタ構造であつてもよく、その他のシリコ
ンメサ構造、プレナー構造等に用いることができ
る。
EXAMPLES The coating of the present invention can be produced from a hydrocarbon gas by a plasma vapor phase method. Hydrocarbon gas (reactive gas) using plasma gas phase method
When activated and decomposed to obtain a diamond bond, the C--H bond of the hydrocarbon gas is decomposed, and the activated C- bonds covalently form a diamond-like structure. At this time, hydrogen is introduced in addition to the hydrocarbon gas, and is turned into plasma by electromagnetic energy. Hydrogen existing in the plasma state performs two functions. First, an activated hydrogen atom collides with a hydrogen atom in a C-H bond of a hydrocarbon gas to produce an activated C-, and the hydrogen atom itself produces a H-H bond. This is dehydrogenation of hydrocarbon gas. Next, when C- activated by dehydrogenation is not bonded to other C-, it is bonded to H- to neutralize dangling bonds. . Many other C-activated C-
-, but less than 5 mol% of hydrogen neutralizes the dangling bonds when the crystallinity is between 5 and 20 ohms. That is, in the present invention, 5 mol % or less of hydrogen contained in diamond acts to neutralize dangling bonds. Regarding neutralization of dangling bonds, for silicon in amorphous form, neutralizing agents such as hydrogen
30 mol% is required, but in the present invention, the amount of dangling bonds is small, and at a low abundance of 5 mol% or less, the covalent bond between carbons is strong and it has physical properties similar to diamond. . In the plasma vapor phase method, for example, hydrogen is introduced into a heating furnace evacuated to 10 -3 torr and the temperature is increased to 10 -2 to 10 torr.
After that, electromagnetic energy is applied to create a plasma, and a hydrocarbon reactive gas is introduced into this plasma atmosphere. Diamond obtained under these conditions contains less than 5 mol% of hydrogen. More specifically, plasma is generated by applying direct current, high frequency (500 KHz to 50 MHz), or microwave (e.g. 2.45 GHz weekly frequency) electromagnetic energy or by generating arc discharge under reduced pressure of 0.01 to 10 torr. By activating and decomposing the vaporized reactive gas by such electromagnetic energy, a crystallized form (sometimes referred to as semi-amorphous, SAS) is obtained. As the hydrocarbon, for example, a gas such as acetylene (C 2 H 2 ), ethylene (C 2 H 4 ), methane hydrocarbon (C o H 2o+2 ) such as propane, etc. may be used. According to the plasma vapor phase method, it is formed at a low temperature of 100 to 450°C, preferably 200 to 350°C. The carbon film formed by such a plasma vapor phase method is an insulator having an energy band width of 2.0 eV or more, typically 2.5 to 3 eV, which is close to that of diamond. In addition, the thermal conductivity of the carbon film is 2.5 (W/cm
It typically has an extremely high value of 5.0 (W/cm deg), which is close to 6.60 (W/cm deg) for diamond. Furthermore, the carbon coating has a Bitkers hardness of 4500
It has extremely excellent properties with a hardness similar to that of diamond, typically 6500 Kg/mm 2 or more . Such characteristics can be applied to thermal heads to provide excellent wear resistance and high-speed thermal response. Regarding this point, if the formation temperature of the carbon film is 100~
At 200℃, the hardness is slightly lower, especially above 200℃.
At 250 to 350°C, it has extremely stable and strong adhesion to the surface on which it is formed and hardness. If the temperature is higher than 450℃, there is a risk of internal stress due to the difference in thermal expansion coefficient of the surface to be formed.
A film formed at 250-350°C is an ideal wear-resistant material. Note that the diamond-like carbon film of the present invention can have an electrical conductivity of 10 -2 to 10 -6 (Ωcm) -1 . For this purpose, boron, which is a valence impurity, is added to the carbon film at a concentration of 0.1 to 3 mol %, or phosphorus, which is a valence impurity, is added to a concentration of 0.1 to 3 mol %. When it has such electrical conductivity, it can be used as a heating element without necessarily forming a wear-resistant layer due to its optional properties. Further, when applying the carbon film of the present invention to the wear-resistant layer of a thermal head consisting of a heat generating layer and a wear-resistant layer, when forming the carbon film as the wear-resistant layer using a plasma vapor phase method under reduced pressure, The sides of the heat generating layer can also be protected with the same thickness as the top surface. For this reason, when manufacturing by sputtering method, atmospheric pressure vapor phase method, etc. up until now, it was necessary to have a wear-resistant layer with a thickness of 2 μm or more on the top surface (0.2 μm or more thickness on the side surface) to cover this side surface. On the other hand,
In the present invention, since the top surface and the side surfaces can be formed to have approximately the same thickness, it is sufficient that the thickness of the top surface is 0.1 to 0.3 μm. As a result, the thickness is reduced to about 1/10, so the thermal response speed can be further improved. Furthermore, when the carbon film of the present invention is formed on a film whose main component is silicon, it can be applied to surfaces that have poor adhesion to carbon or a film whose main component is carbon.
By providing a film containing silicon as a main component, the carbon film of the present invention can be provided. Example 1 Below, a case where the carbon film of the present invention is used in a thermal head printer will be explained with reference to the drawings. In the drawing, a glazed glass layer 2, a heating element layer 3, an electrode 4, and an abrasion resistant layer 5 are laminated on a substrate, particularly a ceramic substrate. Alternatively, as shown in FIG. 1C, the electrode 4 may be omitted and a wear-resistant layer 5 may be provided so that the portion where the thermal paper is rubbed is in contact with the heat generating layer 3. Since the heating element layer is required to be conductive (resistive) or semiconducting, the formed film is doped with a valent or valent impurity, such as boron or phosphorus, in an amount of impurity gas/carbide gas = 0.01 to 3%. A resistive or semiconducting carbon film (a film made of carbon or a film mainly composed of carbon) was formed. That is, the carbon film was formed using acetylene as a starting material at 100 to 450°C, for example, 200 to 350°C. The high frequency energy was 50-20W to form the SAS. For example, boron B 2 H 6 was used as the valence impurity, and phosphorus PH 3 was used as the valence impurity, with a small amount of doping or non-doping as described above. Here B 2 H 6 /C 2 H 2 =0.01~3
%, PH2 / C2H2 = 0.01-3%.
The electrical conductivity of the resulting film is 10 -8 ~
10 -4 (Ωcm) -1 was obtained. Although the formed film contained less than 20 mol% of hydrogen, most of it was released to the outside by generating heat. Incidentally, the heating element layer 3 may use a silicon coating instead of the carbon coating. The silicon film is formed in the same manner as the carbon film, using silane (Si o H 2o+2 n≧1) or silicon tetrafluoride as the starting material, and using impurity gas/carbide gas ratio of 0.01 or less. According to the present invention, the wear-resistant layer 5 is a diamond-like carbon film containing carbon as a main component. This wear-resistant layer was produced as follows. That is, a substrate having a surface to be formed is sealed in a reaction container, the reaction container is evacuated to 10 -3 torr, and the substrate is heated to 100
It was heated to ~450°C, preferably 200-350°C, for example 300°C. After this, hydrogen was introduced into this atmosphere and 10 -2
After setting the temperature to ~10 torr, electromagnetic energy was applied using an inductive method or a capacitive coupling method. For example, the frequency of electrical energy is 13.56MHz, the output is 50 to 500W,
The actual electrode spacing was increased to 15 to 150 cm. This is because the carbon-hydrogen bonds of reactive gases are extremely stable when turned into plasma, which imparts high energy to molecules in which carbon-hydrogen associates (bonds of the same type of molecules), causing carbon atoms to covalently bond with each other. be. Regarding the formed film, when a power of 250 to 500 W was applied, a structure with covalent bonding of carbon was observed by electron beam diffraction. Furthermore, a hydrocarbon gas such as methane or propane was introduced into this plasma atmosphere. Then, this reactive gas is dehydrogenated by collision between hydrogen atoms in the atmosphere and hydrogen atoms of the reactive gas, and the carbon bonds covalently bond with each other, forming a carbon film similar to diamond on the surface to be formed. was completed. At this time, less than 5 mol% of hydrogen was incorporated into the carbon film to neutralize the dangling bonds of carbon. When the temperature of the substrate is 100 to 200℃, the hardness is slightly low and the adhesion to the substrate is not necessarily favorable, but at temperatures above 200℃, especially 250 to 350℃, it becomes an extremely stable and strong surface to be formed. It had good adhesion to. If the heat treatment is carried out at 450°C or higher, there is a problem in that stress is generated due to the difference in thermal expansion coefficient with the substrate, so a coating formed at 250 to 450°C is an ideal wear-resistant material. The carbon film of this example formed as described above has a thickness of 0.05 to 0.2 μm, that is, 1/5 to 1/1 of the conventional thickness.
Even though it was as thin as 0, it had abrasion resistance that could withstand use for 10 5 hours. When the carbon film of this example is formed by a plasma vapor phase method, the thickness of the side part of the heating element layer can be approximately matched with the thickness on the heating element layer, as shown in FIGS. 1B and C. Has characteristics. This is because the mean free path of the reactive gas becomes longer under reduced pressure (0.01 to 10 torr), and even when performing the gas phase method, there is a large amount of circulation around the reactant gas. In addition, it transforms into plasma and imparts a large amount of kinetic energy to the reactive gas components, causing them to collide with each other and causing them to fly in all directions. Therefore, when the carbon coating of the present invention is applied to a thermal head, the side surface of the top surface of the heating element layer of the thermal head can be formed to have almost the same thickness, so that it is thinner than the conventional carbon coating. There is no need to make a part thicker than necessary, or conversely, there is no need for thicker parts to become 10 times thicker. Furthermore, when the top and side surfaces are covered, it has the effect of increasing the adhesion between the substrate and the heat generating layer. As is clear from the above explanation, the carbon film of the present invention is produced using the plasma vapor phase method as its basic concept, and the substrate temperature is 100 to 450°C, typically 250 to 400°C, particularly 300°C. It is possible to use lower temperatures than other gas phase methods. In addition, the fact that the film formation temperature is 500℃ or less means that
When glass is used as the substrate material, distortion due to thermal expansion can be extremely reduced, and major drawbacks such as warpage of the substrate caused by conventional high-temperature processing can be prevented. As a result, previous thermal printers were only able to produce 6 lines of heat per mm, but this can now be increased to 24 lines. A plasma vapor phase method is preferred for producing the carbon film of the present invention. However, as long as the above-mentioned abrasive properties can be obtained, electromagnetic energy such as in-oplating, plasma or laser, or optical energy may be used. The structure of FIG. 1 in the embodiment of the present invention shows one example, and the heat generating layer may be a single crystal transistor structure, or may be used for other silicon mesa structures, planar structures, etc.

【発明の効果】【Effect of the invention】

以上の説明より明らかな如く、本発明の炭素被
膜は2.0eV以上のエネルギバンド幅と、2.5(W/
cm deg)以上の熱伝導率と、4500Kg/mm2以上の
ビツカーズ硬さとを有することでダイヤモンド類
似であり、かかる絶縁性性且つ透光性の炭素被膜
をすぐれた耐摩耗性材料として用いることができ
る。 本発明の炭素被膜はプラズマ気相法により形成
でき、従来の気相法で形成された温度よりも300
〜500℃も低い500℃以下の温度で作ることがで
き、基板材料の選択に大きな自由度を得、低価格
化に大きく貢献できる。
As is clear from the above explanation, the carbon film of the present invention has an energy band width of 2.0 eV or more and a width of 2.5 (W/
It has a thermal conductivity of more than cm deg) and a Bitkers hardness of more than 4500 Kg/ mm2 , making it similar to diamond, and this insulating and transparent carbon coating can be used as an excellent wear-resistant material. can. The carbon film of the present invention can be formed by a plasma vapor phase method, and the temperature is 300° higher than that of a conventional vapor phase method.
It can be manufactured at temperatures below 500℃, which is as low as ~500℃, allowing greater freedom in selecting substrate materials and greatly contributing to lower costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図Aは本発明の実施例のサーマルプリンタ
の一部を示す縦断面図である。第1図Bは、第1
図AのA−A′の断面図を示す。第1図Cは、第
1図AのB−B′の断面図を示す。
FIG. 1A is a longitudinal sectional view showing a part of a thermal printer according to an embodiment of the present invention. Figure 1B shows the first
A cross-sectional view taken along line A-A' in Figure A is shown. FIG. 1C shows a cross-sectional view taken along line BB' in FIG. 1A.

Claims (1)

【特許請求の範囲】[Claims] 1 炭素を主成分とし、5モル%以下の水素を含
むダイヤモンド類似の炭素被膜。
1 A carbon film similar to diamond that is mainly composed of carbon and contains 5 mol% or less of hydrogen.
JP22938687A 1987-09-12 1987-09-12 Carbon film Granted JPS6379972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22938687A JPS6379972A (en) 1987-09-12 1987-09-12 Carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22938687A JPS6379972A (en) 1987-09-12 1987-09-12 Carbon film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56140653A Division JPS5842472A (en) 1981-09-07 1981-09-07 Thermal head

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP1699390A Division JPH02238957A (en) 1990-01-26 1990-01-26 Thermal head
JP2200074A Division JPH03205161A (en) 1990-07-27 1990-07-27 Thermal head
JP5093787A Division JP2592392B2 (en) 1993-03-30 1993-03-30 Method of producing carbon coating containing silicon

Publications (2)

Publication Number Publication Date
JPS6379972A JPS6379972A (en) 1988-04-09
JPH0428785B2 true JPH0428785B2 (en) 1992-05-15

Family

ID=16891376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22938687A Granted JPS6379972A (en) 1987-09-12 1987-09-12 Carbon film

Country Status (1)

Country Link
JP (1) JPS6379972A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283838A (en) * 1988-05-10 1989-11-15 Toshiba Corp Semiconductor device
CN100404270C (en) * 2005-05-31 2008-07-23 哈尔滨工业大学 Amorphous diamond wear proof protective layer of heat-sensitive printing head and its preparing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328576A (en) * 1976-08-13 1978-03-16 Nat Res Dev Surface coating process with cargonaceous material and apparatus therefor
JPS5535301U (en) * 1978-04-19 1980-03-06
JPS566920A (en) * 1979-06-28 1981-01-24 Philips Nv Dry lubricating bearing
JPS57111220A (en) * 1980-08-21 1982-07-10 Nat Res Dev Carbon layer coating method
JPS6153955A (en) * 1984-08-24 1986-03-18 松下電工株式会社 Mount structure of air collector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328576A (en) * 1976-08-13 1978-03-16 Nat Res Dev Surface coating process with cargonaceous material and apparatus therefor
JPS5535301U (en) * 1978-04-19 1980-03-06
JPS566920A (en) * 1979-06-28 1981-01-24 Philips Nv Dry lubricating bearing
JPS57111220A (en) * 1980-08-21 1982-07-10 Nat Res Dev Carbon layer coating method
JPS6153955A (en) * 1984-08-24 1986-03-18 松下電工株式会社 Mount structure of air collector

Also Published As

Publication number Publication date
JPS6379972A (en) 1988-04-09

Similar Documents

Publication Publication Date Title
JPS6153955B2 (en)
JP2008520087A (en) Encapsulated wafer process equipment and manufacturing method
JPS6241476B2 (en)
JP2592392B2 (en) Method of producing carbon coating containing silicon
JPH0428785B2 (en)
US6583481B2 (en) Electrostatic-erasing abrasion-proof coating and method for forming the same
JP2673766B2 (en) Method for manufacturing carbon-based material
JP3072893B2 (en) Carbon coating
JP3197889B2 (en) Method for producing carbon film
JP3005604B2 (en) Preparation method of carbon coating
JP3197545B2 (en) Carbon coating
JPH0579236B2 (en)
JPH0462866B2 (en)
JPH0372711B2 (en)
JPH0512152B2 (en)
JP3370318B2 (en) Member provided with diamond-like carbon film
JP2000144425A (en) Head
JPH03205161A (en) Thermal head
JPH06340976A (en) Production of carbon
JPH06210885A (en) Thermal head
JPS59177919A (en) Selective growth of thin film
JPH0845651A (en) Double-layered ceramic heater
JPH0343230Y2 (en)
JPS6240377A (en) Production of antimony nitride
EP0137512B1 (en) Solar cell