JPH06340976A - Production of carbon - Google Patents

Production of carbon

Info

Publication number
JPH06340976A
JPH06340976A JP24865992A JP24865992A JPH06340976A JP H06340976 A JPH06340976 A JP H06340976A JP 24865992 A JP24865992 A JP 24865992A JP 24865992 A JP24865992 A JP 24865992A JP H06340976 A JPH06340976 A JP H06340976A
Authority
JP
Japan
Prior art keywords
carbon
hydrogen
electromagnetic energy
film
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24865992A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP24865992A priority Critical patent/JPH06340976A/en
Publication of JPH06340976A publication Critical patent/JPH06340976A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5001Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with carbon or carbonisable materials

Abstract

PURPOSE:To form a carbon coating film having strong C-C covalent bonds and energy band width equal or close to that of diamond by applying electromagnetic energy to gaseous hydrocarbon and hydrogen and carrying out dehydrogenation. CONSTITUTION:Gaseous hydrocarbon and hydrogen are converted into plasma by applying DC high-frequency or microwave electromagnetic energy under reduced pressure. By this electromagnetic energy, the gaseous hydrocarbon is activated and decomposed to form the objective carbon coating film on a substrate. This coating film is made of AS or SAG insulating carbon or is based on the carbon and contains >=30mol% (atomic %) hydrogen and silicon in the carbon and has >=2.0eV energy band width close to that of diamond.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】本発明は熱伝導率が固体中で最大であり最
も耐摩耗性を有するダイヤモンドと類似のエネルギバン
ド巾が2.0eV 以上を有する炭素または炭素を主成分とす
る材料により炭素被膜を形成することを目的としてい
る。
The present invention forms a carbon coating with carbon or a material containing carbon as a main component, which has a maximum thermal conductivity in a solid and has an energy band width of 2.0 eV or more similar to diamond having the highest wear resistance. Is intended.

【0002】本発明は炭素被膜を非晶質(アモルファ
ス、以下ASという) または5〜20Åの大きさの微結晶性
を有する半非晶質(セミアモルファス、以下SAS とい
う)の如きプラズマ気相法による100 〜450 ℃好ましく
は200 〜350 ℃の低温で形成するものである。そしてそ
の炭素被膜を珪素上に設けることを目的としている。
The present invention relates to a plasma vapor phase method such as a carbon coating which is amorphous (amorphous, hereinafter referred to as AS) or semi-amorphous (semi-amorphous, hereinafter referred to as SAS) having a crystallinity of 5 to 20 Å. It is formed at a low temperature of 100 to 450 ° C, preferably 200 to 350 ° C. The purpose is to provide the carbon coating on silicon.

【0003】このことによりダイヤモンドと類似のエネ
ルギバンド巾が2.0eV 以上を有する炭素又は炭素を主成
分とする被膜との密着性の悪い表面に対しても前記炭素
又は炭素を主成分とする被膜を適用することが可能とな
る。
As a result, a carbon-based or carbon-based coating film is formed on a surface having poor adhesion to carbon or a carbon-based coating film having an energy band width of 2.0 eV or more similar to diamond. It becomes possible to apply.

【0004】本発明はかかる被膜がプラズマ気相法すな
わち0.01〜10torrの減圧下にて直流高周波500KHz〜50MH
z )またはマイクロ波(例えば2.45GHz の周波数)の電
磁エネルギを加えて、またはア−ク放電を発生させてプ
ラズマ化し、かかる電磁エネルギにより気化した反応性
気体例えばエチレン、プロパン等の炭化水素ガスを活性
化し、分解せしめることにより、ASまたはSAS の絶縁性
の炭素または炭素中に水素、珪素が30モル%以下に含有
したダイヤモンドと類似のエネルギバンド巾が2.0eV 以
上を有する炭素又は炭素を主成分とする被膜を形成せん
とするものである。
According to the present invention, such a coating is formed by a plasma vapor phase method, that is, under a reduced pressure of 0.01-10 torr and a direct current high frequency of 500 KHz-50 MH.
z) or microwave (for example, a frequency of 2.45 GHz) electromagnetic energy or generate an arc discharge to generate plasma, and the reactive gas vaporized by the electromagnetic energy such as hydrocarbon gas such as ethylene and propane By activating and decomposing, the main component is insulating carbon of AS or SAS or carbon or carbon having an energy band width of 2.0 eV or more similar to diamond containing 30 mol% or less of hydrogen and silicon in carbon. It is intended to form a film.

【0005】かかるプラズマ気相法により形成した炭素
はそのエネルギバンド巾が2.0eV 以上代表的には2.5 〜
3eVを有する絶縁体でありかつその熱伝導率は2.5 以上
代表的には5.0(W/cm deg) とダイヤモンドの6.60(W/cm
deg)に近いきわめてすぐれた高い値を有する。
The energy band width of carbon formed by the plasma vapor phase method is 2.0 eV or more, typically 2.5 to
It is an insulator with 3eV and its thermal conductivity is 2.5 or more, typically 5.0 (W / cm deg) and diamond's 6.60 (W / cm).
It has a very high value close to deg).

【0006】さらにビッカ−ス硬度4500kg/mm2以上代表
的には6500kg/mm2というダイヤモンド類似の硬さを有す
るきわめてすぐれた特性を見出しかかる特性をサ−マル
ヘッドに適用してすぐれた耐摩耗性、感熱高速応答性を
有せしめたものである。
Further, the Vickers hardness of 4500 kg / mm 2 or more, typically having a hardness of 6500 kg / mm 2 which is similar to a diamond, has been found to have extremely excellent characteristics. It has a high-speed, heat-sensitive response.

【0007】さらに本発明はかかるASまたはSAS の450
℃以下で作られた炭素被膜中に3価または5価の不純物
であるホウ素またはリンを0.1 〜 3モル%の濃度に添加
すると、10-2〜10-6( Ωcm) -1の電気伝導度を有せしめ
ることができる。そのためこの場合は発熱素子として用
い、さらにその機械的特質により耐摩耗層を必ずしも形
成させる必要がない等の特性を有せしめることができる
という他の特徴を有する。
Further, the present invention provides such an AS or SAS 450
Electrical conductivity of 10 -2 -10 -6 (Ωcm) -1 when trivalent or pentavalent impurities such as boron or phosphorus are added at a concentration of 0.1 to 3 mol% in a carbon film formed at a temperature of ℃ or below. Can be Therefore, in this case, there is another feature that it can be used as a heat generating element and can have characteristics such as not necessarily forming a wear resistant layer due to its mechanical characteristics.

【0008】本発明はさらに前記耐摩耗層を減圧状態の
プラズマ気相法を用いて形成するため、発熱層の側部に
対しても上面と同様の厚さで保護することができる。そ
のためこれまでスパッタ法、常圧気相法等で作られた場
合、この側面をおおうために結果として耐摩耗層を上面
の厚さにおいて2μm 以上(側面の厚さ0.2 μm 以上)
を必要とした。しかし本発明においては上面も側面もほ
ぼ同じ厚さに形成可能なため、上面の厚さは0.1 〜0.3
μm あれば十分であり、結果として厚さが約1/10にな
ったため、さらに感熱の応答速度を向上させることがで
きるようになった。
Further, according to the present invention, since the abrasion resistant layer is formed by using the plasma vapor phase method under reduced pressure, the side portion of the heat generating layer can be protected with the same thickness as the upper surface. Therefore, when the sputtering method, atmospheric pressure vapor phase method, etc. have been used up to now, as a result, the wear-resistant layer is 2 μm or more in the thickness of the upper surface (the thickness of the side surface is 0.2 μm or more) to cover this side surface
Needed. However, in the present invention, since the upper surface and the side surface can be formed to have almost the same thickness, the thickness of the upper surface is 0.1 to 0.3.
Since μm is sufficient, and the thickness is reduced to about 1/10, the heat-sensitive response speed can be further improved.

【0009】本発明において反応性気体は炭化水素例え
ばアセチレン(C2H2),メタン系炭化水素( Cn H2n+2)
等の気体または珪素を一部に含んだ場合はテトラメチル
シラン((CH2)4Si)、テトラエチルシラン((C2H5)4Si
)等を用いてもよい。前者にあっては炭素に水素が30
モル%以下特にSAS とすると0.01〜 5モル%と低く存在
しつつも炭素同志の共有結合が強くダイヤモンドと類似
の物性を有していた。また後者にあっては水素が0.01〜
20モル%を含み、さらに珪素を炭素の1/3 〜1/4含むい
わゆる炭素過剰の炭化珪素であり、主成分を炭素として
いる絶縁性材料(光学的エネルギバンド巾Eg>2.0eV 代
表的には2.5 〜3.0eV)であった。以下に図面に従って実
施例を示す。
In the present invention, the reactive gas is a hydrocarbon such as acetylene (C 2 H 2 ) or methane hydrocarbon (C n H 2n + 2 ).
Gas such as tetramethylsilane ((CH 2 ) 4 Si) or tetraethylsilane ((C 2 H 5 ) 4 Si
) Or the like may be used. In the former case, carbon has 30 hydrogen.
Although it was present in a low range of 0.01 to 5 mol% when mol% or less, especially SAS, it had a strong covalent bond between carbon atoms and had physical properties similar to diamond. In the latter case, hydrogen is 0.01-
An insulating material containing 20 mol% and further containing 1/3 to 1/4 of carbon as carbon, which is a so-called carbon-rich silicon carbide, and whose main component is carbon (optical energy band width Eg> 2.0 eV Was 2.5-3.0 eV). Examples will be described below with reference to the drawings.

【0010】[0010]

【実施例】本実施例では本発明の応用例としてサーマル
ヘッドに用いた場合を示す。
EXAMPLE In this example, a case where the present invention is applied to a thermal head is shown as an application example.

【0011】『実施例1』第1図は本発明に用いられた
サ−マルヘッドプリンタのたて断面図を示す。第1図
(B)は、第1図(A)のA−A’の断面図を示す。
(C)はB−B’の断面図を示す。
[First Embodiment] FIG. 1 is a vertical sectional view of a thermal head printer used in the present invention. FIG. 1 (B) is a sectional view taken along the line AA ′ in FIG. 1 (A).
(C) shows a cross-sectional view of BB ′.

【0012】図面において基板特にセラミック基板上に
グレイズされたガラス層(2) 、発熱体層(3) 、電極(4)
、耐摩耗層(5) が積層して設けられている。また第1
図(C)に示す如く、感熱紙がこすられる部分は発熱層
(3) 上に接して耐摩耗層(5) が設けられている。
In the drawing, a glass layer (2), a heating element layer (3) and an electrode (4) which are glaze on a substrate, especially a ceramic substrate.
A wear-resistant layer (5) is laminated. Also the first
As shown in Figure (C), the area where the thermal paper is rubbed is the heating layer.
(3) A wear resistant layer (5) is provided in contact with the top.

【0013】本発明はこの耐摩耗層(5) を炭素または炭
素を主成分とした材料とし、この材料をプラズマ気相法
により形成するため、第1図(B)、(C)に示す如
く、発熱体層の側部の厚さが発熱体層上の厚さを概略一
致させることができるという特徴を有する。
In the present invention, the wear resistant layer (5) is made of carbon or a material containing carbon as a main component, and this material is formed by the plasma vapor phase method. Therefore, as shown in FIGS. 1 (B) and 1 (C). The feature is that the thickness of the side portion of the heating element layer can approximately match the thickness on the heating element layer.

【0014】これは減圧下(0.01〜10torr) であり、反
応性気体の平均自由行程が長くなり気相法を行うに際し
ても側辺へのまわりこみが大きいためである。加えてプ
ラズマ化し反応性気体同志に大きな運動エネルギを与え
て互いに衝突させ、四方八方への飛翔を促していること
にある。
This is because the pressure is reduced (0.01 to 10 torr), the mean free path of the reactive gas is long, and the sneak to the side is large even when performing the gas phase method. In addition, the plasma is turned into plasma, and a large amount of kinetic energy is given to the reactive gases to cause them to collide with each other and promote flight in all directions.

【0015】耐摩耗層に関しては、以下の如くにして作
製した。すなわち被形成面を有する基板を反応容器内に
封入しこの反応容器を10-3torrまでに真空引きをすると
ともに、この基板を加熱炉により100 〜450℃好ましく
は200 〜350 ℃例えば300 ℃に加熱した。この後この雰
囲気中に水素、ヘリュ−ムを導入し、10-2〜10torrにし
た後誘導方式または容量結合方式により電磁エネルギを
加えた。例えば加える電気エネルギの周波数は13.56MH
z、出力は50〜500 Wとし、その実質的な電極間隙は15
〜150 cmとながくした。それはプラズマ化した時の反応
性気体である炭素はきわめて安定な材料であるため各元
素または炭素が会合した会合分子に対し高いエネルギを
与え炭素同志互いに共有結合をさせるためである。形成
された被膜に関して出力が50〜150 Wを加えた時はASが
250 〜500 Wを加えた時はSAS が、その中間ではそれら
が混合した構造が電子線回折では観察された。
The wear resistant layer was prepared as follows. That is, a substrate having a surface to be formed is sealed in a reaction vessel, the reaction vessel is evacuated to 10 -3 torr, and the substrate is heated to 100 to 450 ° C, preferably 200 to 350 ° C, for example 300 ° C. Heated. After that, hydrogen and helium were introduced into this atmosphere to adjust the pressure to 10 -2 to 10 torr, and then electromagnetic energy was applied by induction method or capacitive coupling method. For example, the frequency of the applied electrical energy is 13.56MH
z, the output is 50 to 500 W, and the actual electrode gap is 15
It was about 150 cm long. This is because carbon, which is a reactive gas when it is turned into plasma, is an extremely stable material, and thus gives high energy to each element or an associated molecule in which carbon is associated with each other so that the carbon atoms are covalently bonded to each other. When the output of 50-150 W is applied to the formed film, the AS
SAS was observed when 250-500 W was added, and in the middle, a mixed structure thereof was observed by electron diffraction.

【0016】さらにこのプラズマ化した雰囲気に対し、
炭化物気体例えばメタンまたはプロパンを導入した。す
るとこの反応性気体が脱水素化し、炭素の結合が互いに
共有結合し合って、被形成面に炭素被膜を形成させるこ
とができた。基板の温度が100 〜200 ℃にては、硬度が
若干低く、また基板への密着性が必ずしも好ましいもの
ではなかったが、200 ℃以上特に 250〜350 ℃において
は、きわめて安定な強い被形成面への密着性を有してい
た。
Further, for this plasmaized atmosphere,
A carbide gas such as methane or propane was introduced. Then, this reactive gas was dehydrogenated, and carbon bonds were covalently bonded to each other to form a carbon film on the surface to be formed. When the substrate temperature was 100 to 200 ° C, the hardness was slightly low and the adhesion to the substrate was not always desirable, but at 200 ° C or higher, especially 250 to 350 ° C, a very stable and strong surface to be formed. It had adhesion to.

【0017】加熱処理は 450℃以上にすると、基板との
熱膨張係数の差によりストレスが内在してしまい問題が
あり、250 〜450 ℃で形成された被膜が理想的な耐摩耗
材料であった。
When the heat treatment is carried out at 450 ° C. or higher, there is a problem that stress is inherent due to the difference in the coefficient of thermal expansion from the substrate, and the film formed at 250 to 450 ° C. was an ideal wear resistant material. .

【0018】出発物質をTMS((CH2)4Si) 、TES((C2H6)4S
i )を用いると、形成された被膜には珪素が15〜30原子
%含まれる炭素を主成分とする被膜であった。これでも
炭素のみと同様の硬度があった。熱伝導度は炭素のみが
5W/cm degであったが2〜3W/cm degと少なかっ
た。
Starting materials were TMS ((CH 2 ) 4 Si), TES ((C 2 H 6 ) 4 S
When i) was used, the formed film was a film containing carbon as the main component and containing 15 to 30 atomic% of silicon. Even this had the same hardness as carbon alone. Only carbon has a thermal conductivity of 5 W / cm deg, but it is as small as 2-3 W / cm deg.

【0019】以上の如くにして形成された炭素被膜は0.
05〜0.2 μm の厚さすなわち従来の1/5 〜1/10の薄さで
あっても105 時間の使用に耐える耐摩耗性を有してい
た。
The carbon film formed as described above has a density of 0.
05 to 0.2 even thickness or thinness of the conventional 1/5 to 1/10 of μm had a wear resistance to withstand the use of 10 5 hours.

【0020】『実施例2』この実施例は実施例1と同様
の硬度のサ−マルヘッドを実施例1と同様のプラズマ気
相法を用いて発熱体層を形成させた場合である。
[Embodiment 2] In this embodiment, a thermal head having the same hardness as that of Embodiment 1 is used to form a heating element layer by using the same plasma vapor phase method as that of Embodiment 1.

【0021】その製造は実施例1と同様の条件のプラズ
マ気相法とした。しかし形成される被膜が導電性(抵抗
性)または半導体性であることを必要とするため、形成
された被膜は3価または5価の不純物例えばホウ素また
はリンを添加例えば不純物気体/珪化物気体=0.01%以
下に添加したASまたはSAS の珪素被膜またはかかる不純
物を不純物気体/ 炭化物気体=0.01〜 3%に添加した抵
抗性または半導体性の炭素を主成分とする被膜を形成せ
しめた。
The production was carried out by the plasma vapor phase method under the same conditions as in Example 1. However, since the formed film needs to be conductive (resistive) or semiconductive, the formed film is doped with trivalent or pentavalent impurities such as boron or phosphorus, for example, impurity gas / silicide gas = A silicon film of AS or SAS added to 0.01% or less or a film containing such impurities to an impurity gas / carbide gas = 0.01 to 3% to form a resistive or semiconductive carbon-based film was formed.

【0022】すなわち前者の珪素被膜に関しては、出発
物質をシラン(SinH2n+2 n≧1) 四フッ化珪素を用い、
同様の100 〜450 ℃例えば200〜350℃にて形成させた。
高周波エネルギは13.56MHzを10〜50Wとして、AS、また
は50〜200 WとしてSAS を形成させた。3価の不純物は
例えばホウ素をB2H6用いて、また5価の不純物は例えば
リンをPH3 を用いて前記した比の如く微少なド−プまた
はノンド−プをして用いた。形成された被膜中に水素が
20モル%以下に含有したが発熱させることによりそれら
は外部に放出されてしまった。
That is, for the former silicon coating, silane (SinH 2n + 2 n ≧ 1) silicon tetrafluoride is used as a starting material,
The film was formed at the same temperature of 100 to 450 ° C, for example, 200 to 350 ° C.
The high-frequency energy was 13.56 MHz at 10 to 50 W, AS, or 50 to 200 W to form SAS. The trivalent impurity was used, for example, with boron B 2 H 6, and the pentavalent impurity was used with, for example, phosphorus using PH 3 with a slight doping or non-doping as described above. Hydrogen in the formed film
Although the content was 20 mol% or less, they were released to the outside by heat generation.

【0023】また炭素においては、実施例1と同様のア
セチレンを用いた。ここにB2H6/C2H2=0.01〜 3%、PH
3 /C2H2=0.01〜 3%として形成させた。その結果形成
された被膜の電気伝導度は10-8〜10-4( Ωcm)-1が得ら
れた。
For carbon, the same acetylene as used in Example 1 was used. Where B 2 H 6 / C 2 H 2 = 0.01-3%, PH
3 / C 2 H 2 = 0.01-3% was formed. As a result, the electric conductivity of the formed film was 10 -8 to 10 -4 (Ωcm) -1 .

【0024】以上の説明より明らかな如く、本発明はそ
の基本思想としてプラズマ気相法を用いるため、基板温
度が100 〜450 ℃代表的には250 〜400 ℃特に 300℃と
いう従来の被膜形成方法で考えるならば低い温度で可能
である。特に 500℃以下であることは基板材料としてガ
ラスを用いる時その熱膨張の歪に対しきわめてこれを少
なくし、従来の高温処理による基板のそり等の大きな欠
点を防ぐことができた。そのためこれまでのサ−マルプ
リンタの発熱部が1mmあたり6本しか作れなかったが、
これを24本にまで高めることができるようになった。
As is clear from the above description, since the present invention uses the plasma vapor phase method as its basic idea, the conventional method of forming a film at a substrate temperature of 100 to 450 ° C., typically 250 to 400 ° C., especially 300 ° C. If we think about it, it is possible at a low temperature. Especially when the temperature is 500 ° C. or less, when glass is used as the substrate material, the strain due to the thermal expansion is extremely reduced, and major defects such as warpage of the substrate due to the conventional high temperature treatment can be prevented. For this reason, only 6 heat generating parts per mm of conventional thermal printers could be made.
It has become possible to increase this to 24.

【0025】以上の説明より明らかな如く、本発明はそ
のエネルギバンド巾2.0eV 以上代表的には2.5 〜 3eVを
有する絶縁性の透光性炭素を耐摩耗性材料として用いた
こと、さらに炭素または炭素を主成分とする抵抗体また
は半導体を発熱体層として用いたことを特徴としてい
る。そのために本発明はプラズマ気相法によりその一方
または双方を形成せしめ、従来の気相法で形成された温
度よりも 300〜500℃も低い500℃以下の温度で作ること
ができ基板材料の選定に大きな自由度を得、低価格化に
きわめてすぐれた特徴を有していた。
As will be apparent from the above description, the present invention uses an insulating and translucent carbon having an energy band width of 2.0 eV or more, typically 2.5 to 3 eV as an abrasion resistant material. It is characterized in that a resistor or a semiconductor containing carbon as a main component is used as a heating element layer. For that purpose, the present invention can form one or both of them by the plasma vapor phase method and can be produced at a temperature of 500 ° C or lower which is 300 to 500 ° C lower than the temperature formed by the conventional vapor phase method. It had a great degree of freedom and was extremely excellent in reducing costs.

【0026】本発明の方法をサーマルヘッドに応用した
場合サーマルヘッドの発熱体層上面と側面の厚さをほぼ
同じ厚さに形成できるため従来方法のようにその厚さの
1番薄い部分の厚さを必要量以上にすると,逆に厚く形
成される部分はその10倍も厚くなるということがな
い。
When the method of the present invention is applied to a thermal head, the thickness of the heating element layer of the thermal head can be formed to be approximately the same as the thickness of the upper surface and the side surface of the thermal head. On the contrary, if the thickness is made more than the required amount, the thickly formed portion does not become ten times thicker.

【0027】また,上面と側面をおおった場合,基板と
発熱体層の密着力を高めるという効果を持つ。
Further, when the upper surface and the side surface are covered, there is an effect that the adhesion between the substrate and the heating element layer is enhanced.

【0028】本発明はプラズマ気相法を主として記し
た。しかしかかる耐摩耗性が得られる限りにおいてイオ
ンプレ−ティングその他のプラズマまたはレ−ザ等の電
磁エネルギ、光エネルギを用いてもよい。
The present invention has been described primarily with respect to the plasma vapor phase method. However, as long as such abrasion resistance is obtained, ion plating or other electromagnetic energy such as plasma or laser, or light energy may be used.

【0029】本発明の実施例においての第1図の構造は
その一例を示したもので、発熱体層を単結晶としてトラ
ンジスタ構造であってもよく、その他シリコンメサ構
造、プレナ−構造等に用いることができる。
The structure of FIG. 1 in the embodiment of the present invention shows an example thereof, and the heating element layer may be a single crystal and may be a transistor structure, or may be used for a silicon mesa structure, a planar structure or the like. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のサ−マルプリンタのたて断面図を示
す。
FIG. 1 is a vertical sectional view of a thermal printer of the present invention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年9月19日[Submission date] September 19, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0001[Correction target item name] 0001

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0001】 本発明は熱伝導率が固体中で最大であり
最も耐摩耗性を有するダイヤモンドまたはそれと類似の
エネルギバンド巾が2.0eV 以上を有する炭素または炭素
を主成分とする材料により炭素被膜を形成することを目
的としている。
The present invention provides a carbon coating with diamond, which has the highest thermal conductivity in the solid state and has the highest wear resistance, or similar carbon, which has an energy band width of 2.0 eV or more, or carbon-based material. The purpose is to form.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0004】 本発明はかかる被膜がプラズマ気相法す
なわち0.01〜10torrの減圧下にて直流高周波500KHz〜50
MHz )またはマイクロ波(例えば2.45GHz の周波数)の
電磁エネルギを加えて、またはア−ク放電を発生させて
プラズマ化し、かかる電磁エネルギにより気化した反応
性気体例えばエチレン、プロパン等の炭化水素ガスを活
性化し、分解せしめることにより、ASまたはSAS の絶縁
性の炭素または炭素中に水素が30モル%(原子%)以下
に含有したダイヤモンドと類似のエネルギバンド巾が2.
0eV 以上を有する炭素又は炭素を主成分とする被膜を形
成せんとするものである。
According to the present invention, such a coating is formed by a plasma vapor phase method, that is, under a reduced pressure of 0.01 to 10 torr, a direct current high frequency of 500 KHz to 50
MHz) or microwave (for example, a frequency of 2.45 GHz) electromagnetic energy or generate an arc discharge to generate plasma, and the reactive gas vaporized by the electromagnetic energy such as hydrocarbon gas such as ethylene and propane By activating and decomposing, an energy band width similar to that of insulating carbon of AS or SAS or diamond containing 30 mol% (atomic%) or less of hydrogen in carbon is 2.
It is intended to form carbon or a coating film containing carbon as a main component having 0 eV or more.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Name of item to be corrected] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】 耐摩耗層に関しては、以下の如くにして
作製した。すなわち被形成面を有する基板を反応容器内
に封入しこの反応容器を10-3torrまでに真空引きをする
とともに、この基板を加熱炉により100 〜450 ℃好まし
くは200 〜350 ℃例えば300 ℃に加熱した。この後この
雰囲気中に水素、ヘリュ−ムを導入し、10-2〜10torrに
した後誘導方式または容量結合方式により電磁エネルギ
を加えた。例えば加える電気エネルギの周波数は13.56M
Hz、出力は50〜500 Wとし、その実質的な電極間隙は15
〜150 cmとながくした。それはプラズマ化した時の反応
性気体である炭素はきわめて安定な材料であるため各元
素または炭素が会合した会合分子に対し高いエネルギを
与え炭素同志互いに共有結合をさせるためである。形成
された被膜に関して出力が50〜150 Wを加えた時はASが
250 〜500 Wを加えた時はSAS 結晶構造が、その中間で
はそれらが混合した構造が電子線回折では観察された。
The wear resistant layer was manufactured as follows. That is, a substrate having a surface to be formed is sealed in a reaction vessel, the reaction vessel is evacuated to 10 -3 torr, and the substrate is heated to 100 to 450 ° C, preferably 200 to 350 ° C, for example 300 ° C. Heated. After that, hydrogen and helium were introduced into this atmosphere to adjust the pressure to 10 -2 to 10 torr, and then electromagnetic energy was applied by induction method or capacitive coupling method. For example, the frequency of the applied electrical energy is 13.56M
Hz, the output is 50 to 500 W, and the effective electrode gap is 15
It was about 150 cm long. This is because carbon, which is a reactive gas when it is turned into plasma, is an extremely stable material, so that high energy is given to each element or an associated molecule in which carbon is associated with each other so that the carbon atoms are covalently bonded to each other. When the output of 50-150 W is applied to the formed film, the AS
A SAS crystal structure was observed when 250 to 500 W was added, and a mixed structure thereof was observed in the middle by electron diffraction.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炭化水素化物気体と水素とに電磁エネルギ
を加えて、脱水素化し、炭素どうしの共有結合を有せし
め、結晶性を有する炭素を作製することを特徴とする炭
素の作製方法。
1. A method for producing carbon, characterized in that electromagnetic energy is applied to a hydrocarbon compound gas and hydrogen to dehydrogenate the carbon to form a covalent bond between the carbons to produce carbon having crystallinity.
【請求項2】炭化水素化物気体と水素とに電磁エネルギ
を加えて、脱水素化し、炭素どうしの共有結合を有せし
め、水素を30モル%以下含有する炭素を作製すること
を特徴とする炭素の作製方法。
2. A carbon which is characterized in that it is dehydrogenated by applying electromagnetic energy to a hydrocarbon gas and hydrogen to form a covalent bond between carbons to produce carbon containing 30 mol% or less of hydrogen. Of manufacturing.
JP24865992A 1992-08-25 1992-08-25 Production of carbon Pending JPH06340976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24865992A JPH06340976A (en) 1992-08-25 1992-08-25 Production of carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24865992A JPH06340976A (en) 1992-08-25 1992-08-25 Production of carbon

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP21600197A Division JP3072893B2 (en) 1997-07-24 1997-07-24 Carbon coating

Publications (1)

Publication Number Publication Date
JPH06340976A true JPH06340976A (en) 1994-12-13

Family

ID=17181428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24865992A Pending JPH06340976A (en) 1992-08-25 1992-08-25 Production of carbon

Country Status (1)

Country Link
JP (1) JPH06340976A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328576A (en) * 1976-08-13 1978-03-16 Nat Res Dev Surface coating process with cargonaceous material and apparatus therefor
JPS5641372A (en) * 1979-09-10 1981-04-18 Mitsubishi Metal Corp Surface covered ultra hard alloy member for cutting tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328576A (en) * 1976-08-13 1978-03-16 Nat Res Dev Surface coating process with cargonaceous material and apparatus therefor
JPS5641372A (en) * 1979-09-10 1981-04-18 Mitsubishi Metal Corp Surface covered ultra hard alloy member for cutting tool

Similar Documents

Publication Publication Date Title
JPS6153955B2 (en)
US6265070B1 (en) Electrostatic-erasing abrasion-proof coating and method for forming the same
Deshpandey et al. Diamond and diamondlike films: Deposition processes and properties
JPS6241476B2 (en)
US5693581A (en) Method of manufacturing a pyrolytic boron nitride compact
JP2592392B2 (en) Method of producing carbon coating containing silicon
US6224952B1 (en) Electrostatic-erasing abrasion-proof coating and method for forming the same
JP2673766B2 (en) Method for manufacturing carbon-based material
JPH06340976A (en) Production of carbon
JP3197545B2 (en) Carbon coating
JP3005604B2 (en) Preparation method of carbon coating
JP3197889B2 (en) Method for producing carbon film
JP3072893B2 (en) Carbon coating
JP2000144425A (en) Head
JPH0579236B2 (en)
JPH03205161A (en) Thermal head
JPH0372711B2 (en)
JP2879088B2 (en) Thermal head
JPH0462866B2 (en)
JPH0512152B2 (en)
JPS62180073A (en) Amorphous carbon film and its production
JPS6379972A (en) Carbon film
EP0137512B1 (en) Solar cell
JPS62232193A (en) Multilayer high thermal conductivity insulating substrate
JPH01298096A (en) Production of diamondlike carbon film