JPH042861B2 - - Google Patents

Info

Publication number
JPH042861B2
JPH042861B2 JP8849283A JP8849283A JPH042861B2 JP H042861 B2 JPH042861 B2 JP H042861B2 JP 8849283 A JP8849283 A JP 8849283A JP 8849283 A JP8849283 A JP 8849283A JP H042861 B2 JPH042861 B2 JP H042861B2
Authority
JP
Japan
Prior art keywords
air
flow passage
outlet
duct
rectifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8849283A
Other languages
Japanese (ja)
Other versions
JPS59215533A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8849283A priority Critical patent/JPS59215533A/en
Publication of JPS59215533A publication Critical patent/JPS59215533A/en
Publication of JPH042861B2 publication Critical patent/JPH042861B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air-Flow Control Members (AREA)

Description

【発明の詳細な説明】 本発明は、空調装置の吹出口構造に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air outlet structure for an air conditioner.

自動車の車室の空調等では空調開始時には暖気
あるいは冷気を集中的に乗員に向けて供給して急
速な冷暖房を行なうのが好ましい。
In the case of air conditioning the interior of a vehicle, it is preferable to supply warm or cool air intensively to the occupants at the start of air conditioning to perform rapid heating and cooling.

従来の空調装置の吹出口は筒状のダクトの開口
端に風向を変えるルーバを設けた簡単な構造で、
吹出口より送出される空調気流はほぼ一様な流速
分布を示し、その拡散する度合が一定で、空調開
始時には乗員への空調風が充分でない。このため
に、送風量や風向を変えるが、送風量を変えると
車室内の温度が適温からはずれ、また風向の変更
にも限度がある。
The air outlet of conventional air conditioners has a simple structure with a louver installed at the open end of a cylindrical duct to change the direction of the air.
The air-conditioned air flow sent out from the outlet shows a substantially uniform flow velocity distribution, and the degree of diffusion thereof is constant, so that when air conditioning starts, there is not enough air-conditioned air to the occupants. To this end, the amount and direction of air flow are changed, but changing the amount of air will cause the temperature inside the vehicle to deviate from the optimum temperature, and there are limits to how much air direction can be changed.

ところで、一定風量の自由噴流を静止流体中に
送出した場合、静止流体と接する噴流外周部の流
速が小さいほど静止流体との間に生じる粘性力等
が小さくなり、噴流の拡散減衰が防止される。
By the way, when a free jet with a constant air volume is sent into a stationary fluid, the smaller the flow velocity at the outer periphery of the jet in contact with the stationary fluid, the smaller the viscous force generated between it and the stationary fluid, and the diffusion attenuation of the jet is prevented. .

そこで、本発明者等は上記関係に注目し、吹出
ダクト内部の中央部に空調風の主流通路を形成
し、この外周部に副流通路を形成し、主流通路に
比して副流通路の流速を遅くすることにより、吹
出口から吹き出す空調風の拡散を防止して、空調
風の温度到達距離を延ばし、使用者に充分な空調
感を与えることができることを先の出願特願昭57
−230937において述べている。
Therefore, the present inventors focused on the above relationship, and formed a main flow passage for air-conditioned air in the central part of the inside of the blow-off duct, and formed a sub-flow passage in the outer periphery of the air-conditioned air. An earlier patent application filed in 1983 revealed that by slowing down the flow velocity, it is possible to prevent the air conditioned air from dispersing from the outlet, extend the temperature range of the air conditioned air, and provide the user with a sufficiently air-conditioned feeling.
-230937.

ところが、本発明者等がさらに詳しく研究した
ところ、空調装置を自動車等に装着する際、取付
け空間に制約を受けるため、空調装置のダクト形
状は曲がり部を設けることが非常に多い。よつて
ダクト内を通過する空調風は、前記曲がり部で乱
れを生じ、この乱れた状態のまま空調風が吹出口
から吹出されると、周囲の静止空気を巻き込んで
減衰しやすいため、乗員への充分な空調風が得ら
れないということが判明した。
However, the inventors conducted more detailed research and found that when installing an air conditioner in an automobile or the like, the duct shape of the air conditioner is very often provided with a curved part due to the installation space constraints. As a result, the conditioned air passing through the duct becomes turbulent at the bend, and if the conditioned air is blown out from the outlet in this turbulent state, it tends to entrain surrounding still air and attenuate, causing damage to the occupants. It was discovered that sufficient air conditioned air could not be obtained.

そこで本発明は、上記点に鑑み、空調装置の吹
出ダクト内に設けられた空調空気の主流通路と、
副流通路に流入する空気の整流を行なうような整
流手段を設けることにより、吹出口から吹出され
る噴流の拡散減衰を防止し、上記空調風の温度到
達距離をより効果的に延ばすことにより快適な空
調が得られるようにすることを目的とする。
Therefore, in view of the above points, the present invention provides a main flow path for conditioned air provided in a blow-off duct of an air conditioner;
By providing a rectifying means that rectifies the air flowing into the side flow passage, it is possible to prevent the diffusion attenuation of the jet flow blown out from the outlet, and to more effectively extend the temperature reach of the air conditioned air, thereby increasing comfort. The purpose is to provide comfortable air conditioning.

以下、図示の実施例により本発明を説明する。 The present invention will be explained below with reference to illustrated embodiments.

第1図は本発明の第1の実施例で、車両用空調
装置に使用した例であり、第2図は第1図のA−
A断面図である。矩形状の樹脂製吹出ダクト1の
開口端には第1図において左右方向の風向を変え
る複数の樹脂製グリルルーバ2が、それぞれシヤ
フト2aを介して回動自在に取付けられる。それ
ぞれのシヤフト2aはロツド3に連結され、ロツ
ド3はダクト1の開口端上部に設けられた凹所1
aに、第1図において左右方向に移動可能に収納
されている。複数のグリルルーバ2の中の1つに
は、樹脂製ノブ2bが一体成形によつて設けられ
ており、このノブ2bを手動操作にて左右に動か
すことにより、これと連動してロツド3に連結さ
れた他のルーバ2も左右方向に回動するようにな
つている。なお、吹出ダクト1の開口端には樹脂
製の上側仕切板1aおよび下側仕切板1bがそれ
ぞれ上方ないし下方に折り曲げられて、拡開せし
められ、吹出ダクト1と一体成形されている。吹
出ダクト1内部の上側仕切板1aおよび下側仕切
板1bの上流側は、第2図に示すようにそれぞれ
平行となるように形成され、上側仕切板1aと下
側仕切板1bの間には、2枚の縦方向仕切板1
d,1eが互いに平行となるように設けられ、上
記仕切板1a,1bと一体成形されている。すな
わち、吹出ダクト1の内部には、上側仕切板1a
と下側仕切板1bと2枚の縦方向仕切板1d,1
eとによつて囲まれた主流通路ア、および吹出ダ
クト1の内壁と各仕切板1a,1b,1d,1e
との間に副流通路イが形成されており、この状態
は、第2図のB−B断面図である第3図に最もよ
く示されている。
FIG. 1 shows the first embodiment of the present invention, which is an example of use in a vehicle air conditioner, and FIG. 2 shows the A--
It is an A sectional view. A plurality of resin grille louvers 2, which change the airflow direction in the left-right direction in FIG. 1, are rotatably attached to the open end of the rectangular resin blow-off duct 1 via shafts 2a, respectively. Each shaft 2a is connected to a rod 3, which is connected to a recess 1 provided at the top of the open end of the duct 1.
a, it is housed movably in the left and right direction in FIG. One of the plurality of grill louvers 2 is provided with a resin knob 2b by integral molding, and by manually moving the knob 2b from side to side, it is linked to the rod 3. The other louvers 2 are also pivotable in the left and right directions. Incidentally, at the open end of the blow-off duct 1, an upper partition plate 1a and a lower partition plate 1b made of resin are respectively bent upward or downward and expanded, and are integrally molded with the blow-off duct 1. The upstream sides of the upper partition plate 1a and the lower partition plate 1b inside the blow-off duct 1 are formed parallel to each other as shown in FIG. , two vertical partition plates 1
d and 1e are provided so as to be parallel to each other, and are integrally molded with the partition plates 1a and 1b. That is, inside the blow-off duct 1, there is an upper partition plate 1a.
and a lower partition plate 1b and two vertical partition plates 1d, 1
e, and the inner wall of the blow-off duct 1 and each partition plate 1a, 1b, 1d, 1e.
A secondary flow passage A is formed between the two, and this state is best shown in FIG. 3, which is a sectional view taken along line B--B in FIG.

主流通路アおよび副流通路イを形成するように
前記仕切板1a,1b,1d,1eが設けられた
吹出ダクト1の上流側には段部1fが形成されて
おり、この段部1fには、ハニカム状整流格子4
がはめ込めるようになつている。したがつて、こ
の整流格子4は、吹出ダクト1を通風ダクト5に
嵌合せしめることにより、吹出ダクト1の段部1
fと通風ダクト5の開口端の間にはさみ込まれ、
保持されている。
A stepped portion 1f is formed on the upstream side of the blow-off duct 1 in which the partition plates 1a, 1b, 1d, and 1e are provided so as to form a main flow passage A and a sub-flow passage B. , honeycomb rectifier grid 4
It is designed so that it can be fitted. Therefore, by fitting the airflow duct 1 into the ventilation duct 5, the rectifying grid 4 can be fitted to the stepped portion 1 of the airflow duct 1.
sandwiched between f and the open end of the ventilation duct 5,
Retained.

このハニカム状整流格子4は、第4図に示すよ
うに、矩形状の樹脂製外枠4aを有し、この外枠
4aの内側には、これより小形で矩形状の樹脂製
内枠4bが配置され、外枠4aが吹出ダクト1の
段部1fにはめ込まれた時に、内枠4bは吹出ダ
クト1の仕切板1a,1b,1d,1eに隙間な
く接するようになつている。外枠4aと内枠4b
の間には、目の細かいアルミ製副流ハニカム部4
cが設けられ、外枠4aと内枠4bに接着剤等に
て接着されている。同様に内枠4bの内部には目
の大きいアルミ製主流ハニカム部4dが内枠4b
に接着剤等にて接着されている。上記主流ハニカ
ム部4dと副流ハニカム部4cは、前記主流通路
アと副流通路イにそれぞれ連通するようになつて
いる。
As shown in FIG. 4, this honeycomb-shaped rectifying grid 4 has a rectangular resin outer frame 4a, and inside this outer frame 4a is a smaller rectangular resin inner frame 4b. When the inner frame 4b is arranged and the outer frame 4a is fitted into the stepped portion 1f of the blow-off duct 1, the inner frame 4b comes into contact with the partition plates 1a, 1b, 1d, and 1e of the blow-off duct 1 without gaps. Outer frame 4a and inner frame 4b
In between, there is a fine aluminum side stream honeycomb part 4.
c is provided and bonded to the outer frame 4a and inner frame 4b with adhesive or the like. Similarly, inside the inner frame 4b, a large aluminum mainstream honeycomb part 4d is located inside the inner frame 4b.
It is attached with adhesive etc. The main flow honeycomb portion 4d and the subflow honeycomb portion 4c are configured to communicate with the main flow passage A and the subflow passage B, respectively.

ここで、目の大きい主流ハニカム部4dを通過
した流速、すなわち主流通路アの流速は、目の細
かい副流ハニカム部4cを通過した流速、すなわ
ち副流通路イの流速より大きく、それぞれの目の
大きさを調節することにより、主流通路アの流速
Viと副流通路イと流速Voの流速比Vo/Viを決
定し、任意の流速分布が得られる。
Here, the flow velocity that has passed through the large-mesh main honeycomb portion 4d, that is, the flow velocity of the main flow passage A, is higher than the flow velocity that has passed through the fine-mesh secondary flow honeycomb portion 4c, that is, the flow velocity of the subflow passage A, and By adjusting the size, the flow velocity in the main flow passage a can be adjusted.
An arbitrary flow velocity distribution can be obtained by determining the flow velocity ratio Vo/Vi of Vi, the subflow path A, and the flow velocity Vo.

第5図は上記吹出口構造を模擬的に示すもので
あり、図中tiは主流通路アの通路幅を示し、toは
副流通路イの通路幅を示す。またViは主流の流
速を示し、Voは副流の流速を示す。
FIG. 5 schematically shows the above-mentioned outlet structure, and in the figure, ti indicates the passage width of the main flow passage A, and to indicates the passage width of the auxiliary flow passage B. Further, Vi indicates the flow velocity of the main stream, and Vo indicates the flow velocity of the side stream.

本発明者らは上記吹出口の通路幅の比to/tiを
0.3〜0.7とするとともに、流速比Vo/Viを0.3〜
0.6とし、吹出口より70cm離れた地点の垂直面内
の温度到達率の分布状況を測定し、従来の吹出口
と比較した。これを、第6図に示す。なお、温度
到達率は次式で示される。
The present inventors determined the ratio to/ti of the passage width of the air outlet.
0.3 to 0.7, and the flow velocity ratio Vo/Vi to 0.3 to 0.7.
0.6, the distribution of temperature attainment in the vertical plane at a point 70 cm away from the air outlet was measured and compared with that of a conventional air outlet. This is shown in FIG. Note that the temperature attainment rate is expressed by the following formula.

温度到達率=雰囲気温度−測定点の温度/雰囲気温
度−吹出口温度 ここで、雰囲気温度60℃、吹出口冷風温度12
℃、吹出口流量は80×80mmグリル(副流部を含
む)にて150m3/hとした。また図中線xは本実
施例の吹出口、線yは従来の吹出口である。
Temperature attainment rate = Ambient temperature - Temperature at the measuring point / Ambient temperature - Outlet temperature Here, the ambient temperature is 60℃, the outlet cold air temperature is 12
℃, and the flow rate at the outlet was 150 m 3 /h with an 80×80 mm grill (including the side stream section). In addition, the line x in the figure is the air outlet of this embodiment, and the line y is the conventional air outlet.

本図によれば、ほぼ静止した雰囲気中に空調風
を吹き出した場合、空調風を中心部を流れる主流
と、主流の外部を流れる副流に分割した本実施例
の吹出口では、副流の流速を小さくして雰囲気と
の粘性力等によつて生ずる吹出風と静止空気との
混合を小さく抑えることにより、第6図の如く、
空調風の拡散減衰が防止され、その温度が保たれ
て到達距離が延びる。なお、前記整流格子4は、
主流と副流の流速比Vo/Viを一定に保つととも
に、空調風の流れに水平方向のみの流速成分が得
られるように、流れに水平方向以外の流速成分を
打ち消し、流れの乱れを消滅させる。したがつ
て、噴流による周囲の静止空気の巻き込みは、い
つそう低減され、温度到達距離をさらに大きくす
る。特に自動車に装着された空調装置において
は、接続ダクト5の曲がり部で、空調風の流れが
乱されるが、本例のような整流格子4を設けるこ
とにより、空調風の乱れが容易に低減できる。
According to this figure, when conditioned air is blown into an almost stationary atmosphere, the outlet of this embodiment, which divides the conditioned air into a main stream flowing through the center and a side stream flowing outside the main stream, As shown in Figure 6, by reducing the flow velocity and minimizing the mixing of the blowing wind and still air caused by viscous forces with the atmosphere, etc.
Diffusion attenuation of conditioned air is prevented, its temperature is maintained, and its reach is extended. Note that the rectifying grating 4 is
In addition to keeping the flow velocity ratio Vo/Vi of the main stream and side stream constant, it cancels flow velocity components other than the horizontal direction and eliminates flow turbulence so that only horizontal flow velocity components are obtained in the flow of air-conditioned air. . Therefore, the entrainment of surrounding still air by the jet is thus reduced, further increasing the temperature reach. Particularly in air conditioners installed in automobiles, the flow of conditioned air is disturbed at the bend in the connecting duct 5, but by providing a rectifying grid 4 as in this example, the disturbance of the conditioned air can be easily reduced. can.

ここで、本発明等が内部仕切板がない従来の吹
出口に、前記整流格子4を設けた場合の温度到達
率を調べたところ、整流格子4がない時の温度到
達率が0.42であり、整流格子4を設けることによ
り温度到達率は0.64に向上することが判明した。
Here, when the present invention and others investigated the temperature attainment rate when the above-mentioned rectifying grid 4 was provided in a conventional outlet without an internal partition plate, the temperature attainment rate without the regulating grid 4 was 0.42, It was found that by providing the rectifying grid 4, the temperature attainment rate was improved to 0.64.

次に、本発明の他の実施例について説明する。 Next, other embodiments of the present invention will be described.

第7図は、第2実施例を示しており、先の実施
例と同じ構造の吹出ダクト1の段部1fと通風ダ
クト5の端部の間には、整流格子6がはめ込まれ
る。整流格子6は、第8図に示す如く樹脂製の枠
6aの内側に目の大きさが一様なアルミ製ハニカ
ム部6bが接着剤等にて固着されている。整流格
子6の上流側には、空調風の主流と副流の流速比
を調節するダンパ7,8の一端が回動自在にヒン
ジ結合してある。ダンパ7,8と一体の各ヒンジ
軸7a,8aの一端にはそれぞれピニオン歯車9
a,9bが装着してあり、各ピニオン歯車9a,
9bは両者間に配設されたラツク歯車10と噛合
せしめてある。ラツク歯車10は、レバー11の
操作により、第9図の左右方向に動く。これに伴
ない、ラツク歯車10と噛合したピニオン歯車9
a,9bは互いに逆方向に回転し、これによつて
ダンパ7,8が互いに対称方向に回動する結果、
主流通路アの上流側開口は上流側に向けて拡開あ
るいは狭小化される。
FIG. 7 shows a second embodiment, in which a rectifying grid 6 is fitted between the step part 1f of the blow-off duct 1 and the end of the ventilation duct 5, which has the same structure as the previous embodiment. As shown in FIG. 8, the rectifying grid 6 has aluminum honeycomb portions 6b having uniform mesh sizes fixed to the inside of a resin frame 6a with adhesive or the like. On the upstream side of the rectifying grid 6, one ends of dampers 7 and 8, which adjust the flow velocity ratio of the main flow and the sub-flow of the conditioned air, are rotatably hinged. A pinion gear 9 is provided at one end of each hinge shaft 7a, 8a integral with the dampers 7, 8.
a, 9b are installed, and each pinion gear 9a,
9b is meshed with a rack gear 10 disposed between the two. The rack gear 10 moves in the left-right direction in FIG. 9 by operating the lever 11. Along with this, the pinion gear 9 meshed with the rack gear 10
a and 9b rotate in opposite directions, and as a result, the dampers 7 and 8 rotate in mutually symmetrical directions.
The upstream opening of the main flow passage A is expanded or narrowed toward the upstream side.

以下、第10図、第11図により上記第2実施
例の吹出口構造の作動及び効果を述べる。
The operation and effects of the outlet structure of the second embodiment will be described below with reference to FIGS. 10 and 11.

第10図は上記吹出口の断面構造を模擬的に示
すものであり、本図のaはダンパ7,8により主
流通路アの上流側開口を拡開せしめた図、本図の
bは上流側開口を狭小化せしめた図である。
FIG. 10 shows a simulated cross-sectional structure of the air outlet, and a in this figure shows the upstream opening of the main flow passage A expanded by the dampers 7 and 8, and b in this figure shows the upstream side opening. FIG. 3 is a diagram showing a narrowed opening.

本図のaの場合、整流格子6を通過することに
より、均一な流速vで吹出口に至つた空調気流は
仕切板1a,1b,1d,1eにて主流と副流に
分割される。主流は拡開した流入口より主流通路
ア内に絞り込まれて加速され、反対に副流は絞ら
れた流入口を通過後通路が広くなるので減速され
る。この結果、主流と副流の流速比はVo/Vi<
1となる。
In case a of the figure, the air-conditioning airflow that has passed through the rectifier grid 6 and reached the outlet at a uniform flow velocity v is divided into a main stream and a substream by partition plates 1a, 1b, 1d, and 1e. The main stream is narrowed into the main stream passage A through the widened inlet and accelerated, while the side stream, on the other hand, is decelerated as the passage becomes wider after passing through the narrowed inlet. As a result, the flow velocity ratio of the main flow and the side flow is Vo/Vi<
It becomes 1.

反対に、本図のbの場合には主流は減速され、
副流は加速されて流速比はVo/Vi<1となる。
On the other hand, in case b of this figure, the main flow is decelerated,
The side stream is accelerated and the flow velocity ratio becomes Vo/Vi<1.

本発明者らは上記吹出口の通路幅の比to/tiを
0.3〜0.7とするとともに、本図aの状態で流速比
Vo/Viを0.3〜0.6とし、また本図bの状態で流
速比Vo/Viを1.2〜1.6として、それぞれについ
て吹出口より70cm離れた地点の垂直面内の温度到
達率の分布状況を測定し、従来の吹出口と比較し
た。これを、それぞれ第11図a,bに示す。な
お図中線xは本実施例の吹出口、線yは従来の吹
出口である。本図のaによれば、ほぼ静止した雰
囲気中に空調風を吹き出した場合、空調風を中心
部を流れる主流と、主流の外部を流れる副流分割
した本実施例の吹出口では、副流の流速を小さく
して雰囲気との粘性力を小さく抑えることによ
り、本図aの如く、空調風の拡散減衰が防止さ
れ、その温度が保たれて到達距離が延びる。
The present inventors determined the ratio to/ti of the passage width of the air outlet.
0.3 to 0.7, and the flow velocity ratio in the state shown in figure a.
When Vo/Vi was set to 0.3 to 0.6 and the flow velocity ratio Vo/Vi was set to 1.2 to 1.6 in the state shown in figure b, the distribution of the temperature attainment rate in the vertical plane at a point 70 cm away from the outlet was measured for each. , compared with a conventional air outlet. This is shown in FIGS. 11a and 11b, respectively. Note that the line x in the figure is the air outlet of this embodiment, and the line y is the conventional air outlet. According to a in this figure, when conditioned air is blown into an almost stationary atmosphere, the outlet of this embodiment divides the conditioned air into a main stream flowing through the center and a side stream flowing outside the main stream. By reducing the flow velocity of the air and suppressing the viscous force with the atmosphere, the diffusion attenuation of the air-conditioned air is prevented, the temperature is maintained, and the reach is extended, as shown in a in this figure.

一方、副流の流速を大きくして雰囲気との粘性
力を積極的に生ぜしめれば、本図bのごとく、空
調風は急速に拡散して一様に広がる。
On the other hand, if the flow velocity of the side stream is increased to actively generate viscous force with the atmosphere, the conditioned air will rapidly diffuse and spread uniformly, as shown in Figure b.

このように、本第2実施例の吹出口は吹出ダク
ト1内に仕切1a,1b,1d,1eを設けて、
空調風を中心部を流れる主流と、外部を流れる副
流に分割し、仕切板1a,1b,1d,1eの上
流側に設けたダンパ6,7によつて上記主流と副
流の流速比を異ならしめることにより、一定風量
で吹き出す空調風の流速を空調開始時には絞つて
遠方へ到達せしめ、その後は一様に拡散せしめ
て、好適な空調を行なうことができるものであ
る。
In this way, the air outlet of the second embodiment is provided with partitions 1a, 1b, 1d, and 1e in the air duct 1,
The conditioned air is divided into a main stream flowing through the center and a side stream flowing outside, and dampers 6 and 7 provided on the upstream side of the partition plates 1a, 1b, 1d, and 1e adjust the flow velocity ratio of the main stream and the side stream. By making the flow rate different, the flow velocity of the conditioned air blown out at a constant volume can be throttled at the start of air conditioning so that it reaches a distant place, and thereafter it can be uniformly diffused to perform suitable air conditioning.

なお、本実施例において、吹出ダクト1の開口
端は必らずしも拡開する必要はないが、20度以下
の角度で拡開せしめたほうが効果がある。
In this embodiment, the opening end of the blow-off duct 1 does not necessarily have to be widened, but it is more effective to widen it at an angle of 20 degrees or less.

また、通風ダクト5の曲がり及び、ダンパ6,
7による空気流の乱れは、第1実施例と同様に整
流格子6によつて整流されるため、上記効果はさ
らに大きくなる。
In addition, the bending of the ventilation duct 5 and the damper 6,
The turbulence of the airflow caused by 7 is rectified by the rectifying grid 6 as in the first embodiment, so the above effect is further enhanced.

また、本発明は、上記第1および第2の実施例
の他に、以下に述べる如く種々の変形が可能であ
る。
In addition to the first and second embodiments described above, the present invention can be modified in various ways as described below.

(1) 上述の実施例では、整流格子4,6は、アル
ミ製のハニカム部を樹脂製枠に接着剤等にて、
固着しているが、ハニカム部と枠を樹脂で一体
成形してもよい。
(1) In the above embodiment, the rectifying grids 4 and 6 are made by attaching an aluminum honeycomb part to a resin frame with adhesive or the like.
Although they are fixed together, the honeycomb portion and the frame may be integrally molded with resin.

(2) 前述したダンパ6,7の操作機構としては、
リンク機構とコントロールケーブルを組み合せ
使用する手動操作機構でもよい。
(2) The operation mechanism for the dampers 6 and 7 mentioned above is as follows:
A manual operation mechanism using a combination of a link mechanism and a control cable may also be used.

(3) 前述したダンパ6,7をサーボモータやダイ
ヤフラムアクチユエータ等により駆動し、この
サーボモータ、ダイヤフラムアクチユエータ等
の駆動装置の作動を、室温を検出して作動する
制御回路、あるいは空調装置始動後一定時間の
出力を出すタイマー回路等によつて自動的に制
御するようにすれば、ダンパの作動を自動制御
することができる。
(3) The dampers 6 and 7 described above are driven by servo motors, diaphragm actuators, etc., and the operation of the servo motors, diaphragm actuators, etc. is controlled by a control circuit that detects room temperature and activates the air conditioner. The operation of the damper can be automatically controlled by using a timer circuit or the like that outputs an output for a certain period of time after the device is started.

(4) ダンパのごとき流速調節手段は、主流通路ア
の上流側開口以外に、主流通路アおよび副流通
路イの途中に設置することができる。この場
合、ダンパでなく、可変絞り部材を両流通路
ア,イの一方又は双方に設けるようにしてもよ
い。
(4) A flow rate adjusting means such as a damper can be installed not only at the upstream opening of the main flow passage A but also in the middle of the main flow passage A and the auxiliary flow passage B. In this case, instead of a damper, a variable throttle member may be provided in one or both of the flow paths A and B.

(5) 第12図に示すような運転席側吹出口12
a,13aおよび助手席側吹出口12b,13
bを上述のような吹出風の流速可変可能な構造
とし、上記(3)の駆動装置、制御回路を適用すれ
ば、それぞれの吹出口での空調風の制御が独立
に行なうことができる。
(5) Driver side air outlet 12 as shown in Figure 12
a, 13a and passenger side air outlet 12b, 13
If b has a structure capable of varying the flow rate of the outlet air as described above, and the driving device and control circuit of (3) above are applied, the air conditioned air at each outlet can be controlled independently.

(6) 前記整流格子4,6は、ハニカム状に限ら
ず、吹出口の縦方向、および/または横方向に
互いに平行な複雑の仕切部を設けるようにして
もよく、また吹出口が、円筒形に形成されてい
る場合は、整流格子の枠は円筒形に形成し、そ
の場合、円筒形枠内部に複数の同心円状の仕切
部を設けるようにしてもよい。
(6) The rectifying gratings 4 and 6 are not limited to honeycomb shapes, but may have complex partitions parallel to each other in the vertical and/or horizontal directions of the air outlet. In this case, the rectifying grid frame may be formed into a cylindrical shape, and in that case, a plurality of concentric partitions may be provided inside the cylindrical frame.

(7) 前記整流格子は、自動車用空調装置の吹出口
に限らず、例えば工場等の広い空間の局部部分
を冷房換気するような空調装置の吹出口におい
ても上記と同様の効果を有し実現可能である。
(7) The rectifying grid has the same effect as above and can be realized not only at the outlet of an automobile air conditioner, but also at the outlet of an air conditioner that cools and ventilates a localized part of a large space such as a factory. It is possible.

以上の如く、本発明は空調装置の吹出ダクト内
に設けた仕切板により、吹出ダクト内を中央部の
主流通路と副流通路に区画するとともに、主流通
路と副流通路に流入する空気の流れを整流する整
流手段を設けることにより、吹出口から吹出され
る空調風の拡散減衰を効果的に防止し、空調風の
温度到達距離をより一層延ばすことが可能とな
り、特に車両用空調装置等に使用して優れた性能
を発揮するものである。
As described above, the present invention divides the inside of the blow-off duct into a central main passage and a side flow passage by using a partition plate provided in the blow-off duct of an air conditioner, and also allows the flow of air flowing into the main flow passage and the side flow passage. By providing a rectifying means for rectifying the air, it is possible to effectively prevent the diffusion attenuation of the air conditioned air blown out from the outlet, and further extend the temperature range of the air conditioned air. It shows excellent performance when used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の第1実施例を示す吹出口の
正面図、第2図は第1図のA−A断面図、第3図
は第2図のB−B断面図、第4図は本発明の第1
実施例における整流格子の正面図、第5図は本発
明の第1実施例を示す吹出口の概略断面図、第6
図は本発明の吹出口と従来の吹出口について温度
到達率を比較した特性図、第7図は本発明の第2
実施例の吹出口構造を示す断面図、第8図は本発
明の第2実施例における整流格子の正面図、第9
図は本発明の第2実施例の吹出口構造を示す側面
図、第10図のa,bは本発明の第2実施例を示
す吹出口の概略断面図、第11図は湿度到達率の
特性図であり、符号a,bはそれぞれ第10図の
a,bに対応する。第12図は自動車運転席の操
作パネルの外観図。 1……吹出ダクト、1a,1b,1d,1e…
…仕切板、ア……主流通路、イ……副流通路、4
……整流格子、4a……外枠、4b……内枠、4
c……副流のハニカム部、4d……主流ハニカム
部、6……整流格子、6a……枠、6b……ハニ
カム部、7,8……ダンパ。
1 is a front view of an air outlet showing a first embodiment of the present invention, FIG. 2 is a sectional view taken along line AA in FIG. 1, FIG. 3 is a sectional view taken along line BB in FIG. The figure shows the first aspect of the present invention.
FIG. 5 is a front view of the rectifying grid in the embodiment, and FIG. 5 is a schematic sectional view of the air outlet showing the first embodiment of the present invention.
The figure is a characteristic diagram comparing the temperature attainment rate of the outlet of the present invention and the conventional outlet.
FIG. 8 is a cross-sectional view showing the outlet structure of the embodiment, and FIG. 8 is a front view of the rectifying grid in the second embodiment of the present invention.
The figure is a side view showing the structure of the outlet of the second embodiment of the present invention, a and b of FIG. 10 are schematic cross-sectional views of the outlet of the second embodiment of the present invention, and FIG. 10, where symbols a and b correspond to a and b in FIG. 10, respectively. FIG. 12 is an external view of the operation panel of the automobile driver's seat. 1...Blowout duct, 1a, 1b, 1d, 1e...
...Partition plate, A...Main flow passage, B...Subflow passage, 4
... Rectifier grid, 4a ... Outer frame, 4b ... Inner frame, 4
c...Substream honeycomb part, 4d...Mainstream honeycomb part, 6...Brighter grid, 6a...Frame, 6b...Honeycomb part, 7, 8...Damper.

Claims (1)

【特許請求の範囲】 1 空調装置の吹出ダクト内に吹出ダクト内壁に
沿つて仕切板を設け、この仕切板によつて吹出ダ
クト中央部に位置する主流通路と、この外周の副
流通路とを形成し、前記主流通路と前記副流通路
に流入する空気の整流を行なうような整流手段を
具備する空調装置の吹出口。 2 前記整流手段は、前記主流通路部分に比べ、
前記副流通路に設けられたハニカム状整流格子よ
り形成され、このハニカム状整流格子の目の大き
さは、前記主流通路部分より前記副流通路部分の
方がより細かく形成されていることを特徴とする
特許請求の範囲第1項記載の空調装置の吹出口。 3 前記整流手段は、前記主流通路および前記副
流通路に設けられた均一な目の大きさのハニカム
状整流格子であることを特徴とする特許請求の範
囲第1項記載の空調装置の吹出口。
[Claims] 1. A partition plate is provided in the air-conditioning duct along the inner wall of the air-conditioning duct, and the partition plate separates the main flow passage located in the center of the air-flow duct from the side flow passage on the outer periphery thereof. An air outlet of an air conditioner, comprising a rectifying means for rectifying air flowing into the main flow passage and the subflow passage. 2. The rectifying means is, compared to the main flow passage portion,
It is formed of a honeycomb-shaped rectifying grid provided in the secondary flow passage, and the mesh size of the honeycomb-shaped rectifying grid is smaller in the secondary flow passage part than in the main flow passage part. An air outlet for an air conditioner according to claim 1. 3. The outlet of the air conditioner according to claim 1, wherein the rectifying means is a honeycomb-shaped rectifying grid with uniform mesh size provided in the main flow passage and the side flow passage. .
JP8849283A 1983-05-19 1983-05-19 Blow-off opening of air conditioner Granted JPS59215533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8849283A JPS59215533A (en) 1983-05-19 1983-05-19 Blow-off opening of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8849283A JPS59215533A (en) 1983-05-19 1983-05-19 Blow-off opening of air conditioner

Publications (2)

Publication Number Publication Date
JPS59215533A JPS59215533A (en) 1984-12-05
JPH042861B2 true JPH042861B2 (en) 1992-01-21

Family

ID=13944305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8849283A Granted JPS59215533A (en) 1983-05-19 1983-05-19 Blow-off opening of air conditioner

Country Status (1)

Country Link
JP (1) JPS59215533A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145017U (en) * 1985-03-01 1986-09-06
US5816907A (en) * 1997-02-25 1998-10-06 Bowles Fluidics Corporation Vehicle air outlet with combined flow straightener and shutoff door
JP4953743B2 (en) * 2006-03-07 2012-06-13 隆文 和田 Radiant air conditioning unit
CN203100095U (en) * 2012-09-19 2013-07-31 海尔集团公司 Air-conditioner air supply device and air-conditioner
CN110864365B (en) * 2018-08-17 2021-05-25 青岛海尔空调器有限总公司 Air conditioner control method and air conditioner indoor unit
JPWO2022070514A1 (en) * 2020-09-29 2022-04-07

Also Published As

Publication number Publication date
JPS59215533A (en) 1984-12-05

Similar Documents

Publication Publication Date Title
JP3731397B2 (en) Blower, air conditioner, and blower method
JPH042861B2 (en)
JPS6018415A (en) Air conditioner
US20240066950A1 (en) Multidirectional vent for vehicle hvac system
JPS59119128A (en) Outlet construction of air conditioning equipment
JP3443836B2 (en) Air conditioning system for seats
JP2001239819A (en) Vehicular air conditioner
JP3982403B2 (en) Air conditioner for vehicles
JP2002316533A (en) Air conditioner for vehicle
JP3344171B2 (en) Air blowout louver
JPH04158154A (en) Indoor unit of air conditioner
JP2003025835A (en) Air blowdown device
US2894441A (en) Universal air deflector outlet devices
JPH0414253B2 (en)
JPS60200039A (en) Air direction control device for air conditioner
JPS591604B2 (en) Automotive air conditioner
JP5604944B2 (en) Air conditioner
JPS6144017A (en) Air conditioning equipment for car
JPS6216326Y2 (en)
JP2011207278A (en) Air conditioning case
JPS5919611Y2 (en) Variable cross-section ventilation duct device
JP3977686B2 (en) Air conditioning unit for vehicles
JPS61211123A (en) On vehicle air conditioner
JPS60110522A (en) Jet of air conditioner
JP2001105831A (en) Vehicular airconditioning unit