JPH0428532B2 - - Google Patents

Info

Publication number
JPH0428532B2
JPH0428532B2 JP58099010A JP9901083A JPH0428532B2 JP H0428532 B2 JPH0428532 B2 JP H0428532B2 JP 58099010 A JP58099010 A JP 58099010A JP 9901083 A JP9901083 A JP 9901083A JP H0428532 B2 JPH0428532 B2 JP H0428532B2
Authority
JP
Japan
Prior art keywords
injection
speed
value
control
drive source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58099010A
Other languages
Japanese (ja)
Other versions
JPS59224324A (en
Inventor
Myuki Shimizu
Yoshihiko Yamazaki
Nobutoshi Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Plastic Industrial Co Ltd
Original Assignee
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Plastic Industrial Co Ltd filed Critical Nissei Plastic Industrial Co Ltd
Priority to JP9901083A priority Critical patent/JPS59224324A/en
Publication of JPS59224324A publication Critical patent/JPS59224324A/en
Publication of JPH0428532B2 publication Critical patent/JPH0428532B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material

Description

【発明の詳細な説明】 この発明はサーボモータを駆動源として用いた
電動式射出成形機の新たな射出工程制御方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new injection process control method for an electric injection molding machine using a servo motor as a drive source.

射出成形機における各工程のなかで、溶融樹脂
を金型内に充填する射出工程は成形品品質に影響
を及ぼす極めて重要な工程である。
Among the various steps in an injection molding machine, the injection step of filling the mold with molten resin is an extremely important step that affects the quality of the molded product.

射出工程は射出開始から樹脂が金型内にほぼ充
満するまでの充填工程と、金型内に充満した樹脂
を圧縮する圧縮工程と、圧縮充填した溶融樹脂を
冷却による収縮分を補充填するため又は再圧縮す
るため、あるいは樹脂の機械のノズル側への逆流
をとめるため等の保圧工程に分割して考えること
ができる。しかしながらその分割点を見い出すこ
とはすこぶる困難なことである。従来の射出工程
制御方法においては、制御上から便宜的に分割点
を見い出す方法であり、たとえば充填工程は射出
スクリユあるいはプランジヤの速度制御で行な
い、圧縮工程と保圧工程については射出スクリユ
の前進力(電動式成形機においては駆動モータの
回転トルク)、即ち、力の制御に切換えて行なう
か、あるいは圧縮工程については充填工程の終期
に含めて行なうかしていた。
The injection process includes a filling process from the start of injection until the mold is almost filled with resin, a compression process to compress the resin filled in the mold, and a refilling process to compensate for the shrinkage of the compressed and filled molten resin due to cooling. Alternatively, it can be considered to be divided into pressure holding processes for recompressing or stopping the backflow of resin to the nozzle side of the machine. However, finding the dividing point is extremely difficult. In the conventional injection process control method, the dividing point is found conveniently from the viewpoint of control. For example, the filling process is performed by controlling the speed of the injection screw or plunger, and the compression process and pressure holding process are performed by controlling the forward force of the injection screw. (In electric molding machines, the rotational torque of the drive motor), that is, either the control is switched to force control, or the compression process is performed as part of the final stage of the filling process.

いずれにしても、従来の射出工程制御は速度制
御から力の制御への切換時には駆動側の力と溶融
樹脂等の負荷とのバランスによる間接的制御に依
存した不安定な過渡的制御状態を含めていたの
で、安定した制御がしにくく、一定品質の成形品
の生産ができにくい欠点があつた。又電動式成形
機の場合には、充填工程の速度制御状態から直接
力制御状態に切換えたのでは、充填完了点の射出
スクリユはもちろんのこと、電動機の回転子、あ
るいは駆動用ギア、軸等の機械式成形機の特有な
慣性エネルギーが付加されるため、圧縮工程区間
が必要以上に長くなつて圧縮工程における樹脂に
作用する実際の射出力が設定された射出力にくら
べて、油圧式成形機の場合よりもより過大とな
り、樹脂が金型内により過充填されることがあ
り、充填工程直後の射出力の設定値を低くしたと
しても、上記慣性エネルギーの影響をなくすこと
はできず、このため成形条件決めがし難い欠点が
あつた。
In any case, when switching from speed control to force control, conventional injection process control involves an unstable transient control state that relies on indirect control based on the balance between the force on the drive side and the load such as molten resin. As a result, it was difficult to control stably, making it difficult to produce molded products of constant quality. In addition, in the case of an electric molding machine, switching from the speed control state to the direct force control state in the filling process will not only affect the injection screw at the filling completion point, but also the rotor of the electric motor, drive gear, shaft, etc. Because the unique inertia energy of mechanical molding machines is added, the compression process section becomes longer than necessary, and the actual injection force acting on the resin during the compression process is lower than the set injection force. This may be more excessive than in the case of a machine, and the resin may be overfilled into the mold. Even if the injection force setting value immediately after the filling process is lowered, the influence of the above-mentioned inertial energy cannot be eliminated. For this reason, there was a drawback that it was difficult to determine the molding conditions.

本来、上記圧縮工程においても、直接制御する
ことが望ましいことは勿論のこと、射出速度ある
いは射出力の各成形サイクルごとに繰返し安定性
の良い制御をするためには、上記慣性エネルギー
の影響を少なくする制御が必要であり、制御した
のちに射出力制御に移行させること、また圧縮工
程区間が変更できることが有効であつて、さすれ
ば安定成形が可能となり、成形条件の設定も容易
となつて作業の合理化ができる。
Naturally, it is desirable to directly control the compression process, but in order to control the injection speed or injection force with good repeatability for each molding cycle, it is necessary to reduce the influence of the inertial energy. Therefore, it is effective to shift to injection force control after controlling, and to be able to change the compression process section, which will enable stable molding and facilitate the setting of molding conditions. Work can be streamlined.

この発明は上記のことから開発されたものであ
つて、その目的とするところは、電動式成形機に
おける改良された制御方法を提供するとともに、
射出工程のすべての区間の速度あるいは力を直接
制御することができる新たな射出工程制御方法を
提供することにある。
This invention was developed based on the above, and its purpose is to provide an improved control method for an electric molding machine, and to
The object of the present invention is to provide a new injection process control method that can directly control the speed or force of all sections of the injection process.

上記目的によるこの発明の1つの特徴は、充填
工程中は駆動源の回転速度値とトルク値とを設定
するとともに、駆動源の回転速度がその射出速度
値となる様に閉ループ制御による速度制御にて行
ない、充填完了点より射出力制御への切換点まで
の区間は射出力制御への切換時に射出スクリユ等
の慣性エネルギーがほとんど無視できる程度の低
い速度まで減速させる制動制御を行つたのちに射
出力制御に移行させる射出工程制御方法にある。
One feature of the present invention for the above purpose is that during the filling process, the rotation speed and torque values of the drive source are set, and the speed is controlled by closed loop control so that the rotation speed of the drive source becomes the injection speed value. In the section from the filling completion point to the switching point to injection force control, braking control is performed to reduce the speed to such a low speed that the inertial energy of the injection screw, etc. can be almost ignored when switching to injection force control, and then the injection is carried out. There is an injection process control method for shifting to output control.

またこの発明の他の1つの特徴は、充填工程中
は駆動源の回転速度値とトルク値とを設定すると
ともに駆動源の回転速度がその射出速度値となる
ように閉ループ制御による速度制御にて行ない、
充填完了点にて速度の設定値を前もつて設定され
たゼロまたは射出力制御への切換時に射出スクリ
ユ等の慣性エネルギーがほとんど無視できる程度
に低い値に変更し、閉ループにて減速させる減速
区間を設け、射出速度がその設定値にほぼ到達し
たのちに駆動源のトルク値及び回転速度値の設定
を前以て設定された値に変更して速度制御から射
出力制御に移行させることを含む射出工程制御方
法にある。
Another feature of the present invention is that during the filling process, the rotational speed and torque values of the drive source are set, and the speed is controlled by closed loop control so that the rotational speed of the drive source matches the injection speed. conduct,
A deceleration section in which the speed setting value is changed to a preset zero at the filling completion point or to a value so low that the inertial energy of the injection screw, etc. can be almost ignored when switching to injection force control, and the speed is decelerated in a closed loop. and changing the settings of the torque value and rotational speed value of the driving source to preset values after the injection speed has almost reached the set value, thereby transitioning from speed control to injection force control. In the injection process control method.

以下この発明を図示による例を用い、従来例の
補足説明とともに詳細に説明する。
Hereinafter, the present invention will be described in detail using illustrated examples and supplementary explanations of conventional examples.

第1図は電気サーボモータを駆動源とする電動
式射出成形機の射出機構の主たる構造を1例とし
て略示したものである。
FIG. 1 schematically shows, as an example, the main structure of an injection mechanism of an electric injection molding machine using an electric servo motor as a drive source.

射出機構1は、射出用のスクリユ2を内装しホ
ツパー4を有する射出加熱筒3と、射出加熱筒3
の保持を兼ねるハウジング5とを有する。該ハウ
ジング5の内部には、ねじ軸17を備えた回動軸
16が横架してあり、そのねじ軸17に可動部材
18が螺合してある。またスクリユ2の後端には
上記可動部材18に先端を軸受した延長軸15が
スクリユ2と同体に連結してある。また回動軸1
6と延長軸15には、互いに干渉しない位置にス
クリユ前進用の歯車19と延長軸15のスプライ
ンを介し軸方向移動自在に取付けたスクリユ回転
用の歯車14とを有し、更に回動軸16の端部に
はハウジング壁部5aに固定したヒステリシスブ
レーキを内装した背圧制御装置22が取付けてあ
る。上記ハウジング5の下部内には、上記回動軸
16及び延長軸15と並行な伝動軸21がハウジ
ング5を貫通して設けてある。伝動軸21及びク
ラツチ機構(図示なし)を介すことにより、型締
機構側への伝達をすることもできる。
The injection mechanism 1 includes an injection heating cylinder 3 having a screw 2 for injection inside and a hopper 4, and an injection heating cylinder 3.
It has a housing 5 which also serves as a holding device. Inside the housing 5, a rotating shaft 16 having a threaded shaft 17 is horizontally mounted, and a movable member 18 is screwed onto the threaded shaft 17. Further, at the rear end of the screw 2, an extension shaft 15 whose tip is supported by the movable member 18 is integrally connected to the screw 2. Also, rotation axis 1
6 and the extension shaft 15 have a gear 19 for advancing the screw and a gear 14 for rotating the screw mounted so as to be movable in the axial direction via the splines of the extension shaft 15 at positions that do not interfere with each other. A back pressure control device 22 incorporating a hysteresis brake fixed to the housing wall 5a is attached to the end of the housing. A transmission shaft 21 parallel to the rotation shaft 16 and the extension shaft 15 is provided in the lower part of the housing 5 so as to pass through the housing 5 . The power can also be transmitted to the mold clamping mechanism via the transmission shaft 21 and a clutch mechanism (not shown).

また上記伝動軸21には上記歯車14,19と
それぞれ噛合する伝動歯車12,13が回転自在
にして、電磁クラツチ20,11を介して電気的
指令により伝動軸21との結合或いは解除がなさ
れるように設けてある。射出工程中は電磁クラツ
チ11が、計量工程中は電磁クラツチ20が励磁
される。更にまた伝動軸21のハウジング壁部5
aから外部に突出した軸部は、ハウジング壁部5
aに固定した電気サーボモータ9と連結してお
り、サーボモータ9はタコメータジエネレータ1
0を備えている。6は射出切換位置検出器、7は
スクリユ回転速度スローダウン位置検出器、8は
計量限位置検出器で、それらはリミツトスイツ
チ、近接スイツチなどによりなる。なお23は機
台である。
Further, transmission gears 12 and 13 meshing with the gears 14 and 19, respectively, are rotatably connected to the transmission shaft 21, and are coupled to or released from the transmission shaft 21 by electrical commands via electromagnetic clutches 20 and 11. It is set up like this. The electromagnetic clutch 11 is energized during the injection process, and the electromagnetic clutch 20 is energized during the metering process. Furthermore, the housing wall portion 5 of the transmission shaft 21
The shaft portion projecting outward from a is connected to the housing wall portion 5.
It is connected to an electric servo motor 9 fixed to a, and the servo motor 9 is connected to a tachometer generator 1.
0. 6 is an injection switching position detector, 7 is a screw rotation speed slowdown position detector, and 8 is a metering limit position detector, which are comprised of a limit switch, a proximity switch, etc. Note that 23 is a machine.

第2図は制御装置を例示するもので、集中制御
装置24とサーボモータ9及びタコメータジエネ
レータ10とを接続したサーボモータ制御アンプ
25との間に、速度設定器V1〜V3とトルク設定
器(電流最高値の設定器)F1〜F4の信号切換器
26,27とがサーボモータ9の正転・逆転指令
回路28と共に接続されている。この例のサーボ
モータ9は直流サーボモータである。
FIG. 2 shows an example of a control device, in which speed setting devices V 1 to V 3 and torque setting devices are connected between a central control device 24 and a servo motor control amplifier 25 to which a servo motor 9 and a tachometer generator 10 are connected. The signal switching devices 26 and 27 of the servo motor 9 (maximum current value setting device) F 1 to F 4 are connected together with the forward/reverse rotation command circuit 28 of the servo motor 9 . The servo motor 9 in this example is a DC servo motor.

サーボモータ制御アンプ25は、集中制御装置
24の指令によつてサーボモータ9の正転・逆転
ならびに回転数(速度)、電流(トルク)等を制
御する機能をもち、タコメータジエネレータ10
の信号をフイードバツクし、回転数(速度)の閉
ループ制御を行なわせるものである。また集中制
御装置24は機械の制御を掌る機能をもち、スク
リユ回転(計量)、背圧力等(図示なし)の制御
をすると共に、集中制御装置24には、上記位置
検出器6〜8、時間設定器T1・T2、射出用電磁
クラツチ11、スクリユ回転用電磁クラツチ20
等が接続してある。
The servo motor control amplifier 25 has a function of controlling forward/reverse rotation, rotation speed, current (torque), etc. of the servo motor 9 according to commands from the central control device 24, and controls the tachometer generator 10.
This system feeds back the signals from the engine and performs closed-loop control of the rotational speed (speed). The central control device 24 also has the function of controlling the machine, controlling screw rotation (metering), back pressure, etc. (not shown), and the central control device 24 also includes the position detectors 6 to 8, Time setter T 1 / T 2 , electromagnetic clutch 11 for injection, electromagnetic clutch 20 for screw rotation
etc. are connected.

次に従来の射出制御方法について説明する。 Next, a conventional injection control method will be explained.

第3図は従来の射出制御方法の1例についての
説明図で、射出工程におけるサーボモータ9の回
転速度(射出速度)とトルクの制御関係線図で設
定値V1,Fi(i=1,2,3)、実行値Va,Faを
縦軸に、スクリユ位置及び時間を横軸に表わす。
直流サーボモータの特性によつて電流とトルクは
比例関係にある。集中制御装置24の指令にもと
づき、図示のように速度設定器V1によつて速度
の設定値V1が、また各トルク設定器F1〜F3によ
つてトルク設定値(電流制限設定値)F1〜F3
設定される。入力によりサーボモータ9は実行値
Vaに示すように、a−b間を加速されてV1の設
定値V1までほぼ直線的に増速回転する。このと
きサーボモータ9には加速させるために起動電流
が設定器F1によつて設定されたF1値まで発生す
るが、実行速度がV1となつたb点以降は大きな
トルクが不用となるので、電流値は下降し、タコ
メータジエネレータ10のフイードバツク信号に
より速度の閉ループ制御がサーボアンプ25によ
りなされる結果、b−c間の速度実行値VaはV1
と一致したものとなる。金型内への樹脂の充填量
が増加するに従い、再び実行電流値(トルク)は
上昇していき充填完了点である射出切換位置検出
器6の作動位置にスクリユが達するとその信号に
よつて集中制御装置24が作動し、信号切換器2
7によつてトルク設定器F2が選択され、電流値
は瞬時に下降してF2となり、制御は速度制御領
域から力制御領域に入る。一方実行射出速度
Vaは電流値(駆動源トルク値)がF2となる為、
速度設定値がV1にもかかわらず、c点にてのス
クリユ等の慣性エネルギーとモータ回転トルク値
とによる駆動側の力と樹脂側の負荷との関係によ
つて下降し力がバランスしたd点でほぼ速度0と
なる。区間c−d間で樹脂の圧縮がなされる。一
方、射出切替位置検出器6が作動すると時間設定
器T1が作動する。時間設定器T1がタイムアツプ
したe点ではトルク設定器F3に切換わる。この
様にして圧縮工程後の保圧工程が実行され、集中
制御装置24からの指令によつて射出工程が終了
する。上記の様にc−d間は、トルク制御状態に
サーボモータを作動させてもc点で保有している
スクリユ等の慣性エネルギーのため実際に樹脂に
作用する射出力は設定されたF2よりも過大なも
のとなる。すなわち、負荷と設定値との関係によ
つて実行値がきめられてしまう不安定で過渡的な
制御区間となつている。
FIG. 3 is an explanatory diagram of an example of a conventional injection control method, and is a diagram showing the control relationship between the rotational speed (injection speed) and torque of the servo motor 9 in the injection process. 2, 3), the execution values Va and Fa are shown on the vertical axis, and the screw position and time are shown on the horizontal axis.
Due to the characteristics of a DC servo motor, current and torque are in a proportional relationship. Based on the commands from the central control device 24, as shown in the figure, the speed set value V1 is set by the speed setter V1 , and the torque set value (current limit set value) is set by each of the torque setters F1 to F3 . ) F 1 to F 3 are set. The servo motor 9 is set to the actual value by the input.
As shown in Va, the motor is accelerated between a and b and rotates almost linearly at increased speed up to the set value V1 of V1 . At this time, a starting current is generated in the servo motor 9 to accelerate it up to the F1 value set by the setting device F1 , but after point b when the execution speed reaches V1 , a large torque is no longer needed. Therefore, the current value decreases, and closed-loop control of the speed is performed by the servo amplifier 25 based on the feedback signal of the tachometer generator 10. As a result, the actual speed value Va between b and c becomes V 1
It will be consistent with. As the amount of resin filled into the mold increases, the effective current value (torque) increases again, and when the screw reaches the operating position of the injection switching position detector 6, which is the filling completion point, the signal is activated. The central control device 24 operates, and the signal switch 2
7 selects the torque setting device F2 , the current value instantly decreases to F2 , and the control shifts from the speed control area to the force control area. One hand execution injection speed
Since the current value (drive source torque value) of Va is F 2 ,
Even though the speed setting value is V 1 , the force balances due to the relationship between the force on the drive side due to the inertial energy of the screw etc. and the motor rotational torque value at point c and the load on the resin side.d The speed becomes almost 0 at the point. The resin is compressed between sections c and d. On the other hand, when the injection switching position detector 6 is activated, the time setting device T1 is activated. At point e, where the time setting device T1 times out, it switches to the torque setting device F3 . In this manner, the pressure holding step after the compression step is executed, and the injection step is completed in response to a command from the central control device 24. As mentioned above, even if the servo motor is operated in the torque control state between c and d, the injection force that actually acts on the resin is less than the set F2 due to the inertial energy of the screw etc. held at point c. will also be excessive. In other words, this is an unstable and transient control section in which the execution value is determined by the relationship between the load and the set value.

次に本発明の説明を第1図、第2図、第4図に
よる例を用いて説明する。
Next, the present invention will be explained using examples shown in FIGS. 1, 2, and 4.

第4図はこの発明の射出制御方法の1例につい
ての説明図で、射出工程におけるサーボモータ9
の回転速度(射出速度)とトルク(電流値)の制
御関係線図で設定値Vi(i=1,2,3)、Fi(i
=1,2,3)、実行値Va,Faを縦軸に、スク
リユ位置及び時間を連続させて横軸に表わす。集
中制御装置24の指令にもとづき、図示のように
速度設定器V1〜V3によつて速度の設定値V1〜V3
が、また各トルク設定器F1〜F3によつてトルク
設定値(電流制限設定値)F1〜F3が設定される。
射出工程が開始されると集中制御装置24の指令
にもとづき、電磁クラツチ11が励磁され、サー
ボモータ9は実行値Vaに示すようにg−h間を
加速されて設定器V1の設定値V1まで回転する。
このときサーボモータ9には加速させるための起
動電流が設定されたF1値まで発生するがh点以
降は大きなトルクが不用となるので電流値は下降
し、タコメータジエネレータ10のフイードバツ
ク信号により速度の閉ループ制御がサーボアンプ
25によりなされる結果h−i間の速度実行値
VaはV1と一致する。金型内の樹脂の充填量が増
加するに従い再び実行電流値(トルク)は上昇し
ていく。
FIG. 4 is an explanatory diagram of an example of the injection control method of the present invention, showing the servo motor 9 in the injection process.
In the control relationship diagram of rotation speed (injection speed) and torque (current value), set values Vi (i = 1, 2, 3), Fi (i
= 1, 2, 3), the execution values Va and Fa are plotted on the vertical axis, and the screw position and time are plotted on the horizontal axis. Based on the command from the central control device 24, the speed set values V 1 to V 3 are set by the speed setters V 1 to V 3 as shown in the figure.
However, torque setting values (current limit setting values) F 1 to F 3 are set by the respective torque setting devices F 1 to F 3 .
When the injection process is started, the electromagnetic clutch 11 is energized based on the command from the central control device 24, and the servo motor 9 is accelerated between g and h as shown by the execution value Va, and the setting value V of the setting device V1 is set. Rotate up to 1 .
At this time, a starting current for acceleration is generated in the servo motor 9 up to the set F1 value, but after point H, the large torque is no longer needed, so the current value decreases, and the speed is determined by the feedback signal of the tachometer generator 10. The closed-loop control of is performed by the servo amplifier 25, resulting in the speed execution value between h and i.
Va coincides with V 1 . As the amount of resin filled in the mold increases, the effective current value (torque) increases again.

射出スクリユが充填完了点である射出切替位置
検出器6の作動位置に達するとその信号によつて
集中制御装置24が作動し、信号切換器26によ
つて速度設定器V2が選択され、その設定値V2
0または力制御への切換時に射出スクリユ等の慣
性エネルギーがほとんど無視できる程度に低い値
に設定されているので、i−j間は減速域となつ
てサーボモータの制動作用により速度はほぼ直線
的にV2の値まで降下する。その理由は、i−j
間は速度設定値が0または小さな値に変更されて
いるので速度の閉ループ制御によつて図示のよう
に電流設定器(トルク設定器)F1の設定値F1
でモータ12は負の電流が流れてモータに回生制
動が発生するためである。
When the injection screw reaches the operating position of the injection switching position detector 6, which is the filling completion point, the central control device 24 is actuated by the signal, and the speed setting device V2 is selected by the signal selector 26. The set value V 2 is set to 0 or a value so low that the inertial energy of the injection screw, etc. can be almost ignored when switching to force control, so the period between i and j becomes a deceleration region and is used for the braking action of the servo motor. The velocity drops almost linearly to the value of V 2 . The reason is i-j
During this period, the speed set value is changed to 0 or a small value, so the motor 12 receives a negative current until the set value F1 of the current setter (torque setter) F1 is reached by closed-loop speed control as shown in the figure. This is because regenerative braking occurs in the motor.

一方充填完了点iより時間設定器T1・T2が作
動する。本例の時間設定器T1はi−j間の減速
区間の完了点を設定するものであり、速度がV2
に達した確認の代用は通常は1/100秒以下の単位
で設定できる時間設定器を使用して時間にて行な
う。その理由はi−j間は閉ループ制御による減
速区間であるため、動作の再現性が良いので時間
にてさしつかえないことと、操作性が良く、廉価
な装置となることによる。
On the other hand, the time setters T 1 and T 2 operate from the filling completion point i. The time setting device T 1 in this example is used to set the completion point of the deceleration section between i and j, and when the speed is V 2
Confirmation that the value has been reached is usually substituted by time using a time setting device that can be set in units of 1/100 seconds or less. The reason for this is that since the period between i and j is a deceleration section by closed loop control, the reproducibility of the operation is good, so time is no problem, and the device is easy to operate and is inexpensive.

なお、j点の検出は、場合によつては速度の検
出でも良いし、スクリユ位置検出器、あるいはス
クリユ移動量検出器、あるいは金型内樹脂圧力の
検出装置を使用してもよ。
Note that point j may be detected by speed detection depending on the case, or by using a screw position detector, a screw movement amount detector, or a detection device for resin pressure in the mold.

上記時間設定器T1による設定時間t1が経過する
と、そのタイムアツプ信号によつて制御装置24
が作動し、j点にて速度設定器V3と電流設定器
F2とが選択される。i−j間において樹脂の圧
縮がおこなわれた後に、j点にて速度制御領域
から力制御(射出力制御)領域に切換りF2
射出力となる。速度設定値V3は設定値V2よりも
大きく設定し、電流(トルク)の応答を早める目
的で使用する。時間設定器T2の設定時間t2が経過
すると、電流設定器F3が選択され、その設定値
F3の射出力となり保圧工程が続行される。
When the time t1 set by the time setting device T1 has elapsed, the time-up signal causes the control device 24 to
operates, and the speed potentiometer V 3 and current potentiometer are activated at point j.
F 2 is selected. After the resin is compressed between points ij, the speed control area is switched to the force control (injection force control) area at point j, and the injection force becomes F2 . The speed setting value V 3 is set larger than the setting value V 2 and is used for the purpose of speeding up the current (torque) response. When the set time t 2 of time setter T 2 has elapsed, current setter F 3 is selected and its set value
The injection force becomes F 3 and the pressure holding process continues.

集中制御装置24からの射出工程終了指令によ
つて、モータは動作を停止し、電磁クラツチ11
が解放されて射出工程が終了する。集中制御装置
24の指令によつて電磁クラツチ20が励磁され
背圧制御装置22が通電されてモータが起動し、
あらかじめ設定された速度によつてスクリユ回転
が開始し、計量工程に入り、スクリユは樹脂の移
送によつて後退していき、スクリユ回転速度スロ
ーダウン位置検出器7が作動するとあらかじめ低
速に設定された速度に切換り、低速回転となつた
後、計量限位置検出器8の信号によつてモータは
動作停止し、その後電磁クラツチ20が解除され
計量工程が完了する。背圧制御装置22は制御装
置24の指令によつて適宜に解放される。スクリ
ユ回転速度は射出速度と同様に閉ループによつて
制御される(動作図等の図は省略)。
In response to an injection process end command from the central control device 24, the motor stops operating, and the electromagnetic clutch 11
is released and the injection process ends. The electromagnetic clutch 20 is energized by a command from the central control device 24, the back pressure control device 22 is energized, and the motor is started.
The screw starts rotating at a preset speed, enters the metering process, moves backward as the resin is transferred, and when the screw rotation speed slowdown position detector 7 is activated, the speed is set to a low speed in advance. After the speed is switched to low speed rotation, the motor is stopped in response to a signal from the metering limit position detector 8, and then the electromagnetic clutch 20 is released and the metering process is completed. The back pressure control device 22 is appropriately released by commands from the control device 24. The screw rotation speed, like the injection speed, is controlled by a closed loop (figures such as operation diagrams are omitted).

上記説明の様に、i−j間をモータ制動作用を
利用した速度の閉ループ制御によつて射出スクリ
ユは減速されるため再現性が良く、短時間に減速
させることもできる。力(射出力)制御に切換る
j点のスクリユ速度は微速となつており、慣性エ
ネルギーのほとんどない状態から力制御に切換え
ることになるので、トルク(電流)の設定値と実
射出力とがほとんど一致したものとなる。又上記
説明で明らかなように、i−j間の電流設定値を
変更できるように電流設定器F4を設定して、集
中制御装置24により選択制御させて使用するこ
とによつて、その設定値F4を大きくするとモー
タの制動力が大、又小さくすると制動力が小とな
るので、i−j間の減速区間の速度の低下率を変
更することもできる。
As explained above, the injection screw is decelerated by closed-loop control of the speed using the motor braking action between i and j, so the reproducibility is good and the deceleration can be achieved in a short time. The screw speed at point j when switching to force (injection force) control is very slow, and the switch to force control is from a state with almost no inertial energy, so the set value of torque (current) and actual injection output are It's almost a match. Furthermore, as is clear from the above explanation, by setting the current setting device F4 so that the current setting value between i and j can be changed and using it under selective control by the central control device 24, the setting can be changed. If the value F4 is increased, the braking force of the motor is increased, and if it is decreased, the braking force is decreased, so that it is also possible to change the rate of decrease in speed in the deceleration section between i and j.

速度の低下率の変更は、樹脂の圧縮速度をかえ
たことになり成形上の効果が期待でき、たとえば
レンズの様な成形時の残留応力が問題となる成形
品においては、圧縮速度を遅くすることによつて
過充填が防止できると共に制御の特徴から再現性
が良いため、良品の安定成形により一層有効とな
る。
Changing the speed reduction rate changes the compression speed of the resin, which can be expected to have an effect on molding. For example, in molded products such as lenses where residual stress during molding is a problem, the compression speed can be slowed down. As a result, overfilling can be prevented and the reproducibility is good due to the control feature, making it even more effective for stable molding of good products.

本実施例においては、充填工程完了点をスクリ
ユ位置により行なつているが、金型内樹脂圧力が
あらかじめ設定された圧力となつたとき、あるい
は射出開始点等からのタイマーによる設定時間が
経過したとき、あるいはサーボモータの電流値が
あらかじめ定められた値となつたときでもよい。
又成形品によつては、充填工程中の射出速度を
種々プログラムさせる射出速度のプログラム制御
を併用することによつてより効果が期待できる。
なおi−j間の制動制御として速度指令値を時間
の経過に従い或はスクリユ位置と関連づけてほぼ
直線的に減少させてもよい。
In this example, the filling process completion point is determined by the screw position, but when the resin pressure in the mold reaches a preset pressure, or when the time set by a timer from the injection start point has elapsed. or when the current value of the servo motor reaches a predetermined value.
Further, depending on the molded product, more effects can be expected by combined use of program control of the injection speed in which various injection speeds are programmed during the filling process.
As the braking control between ij, the speed command value may be decreased approximately linearly over time or in relation to the screw position.

この発明は、上述のように速度制御領域は閉
ループ制御にて行ない、速度制御から力制御領域
に切換る直前には減速制動区間を設けるため、
慣性エネルギーのほとんど影響のない状態にて力
(射出力)制御領域に切換えることができるの
で、電動式成形機の欠点である駆動用ギア等の油
圧式成形機にはない特有な慣性エネルギーの影響
をなくすことができる。
In this invention, as mentioned above, the speed control area is controlled by closed loop control, and a deceleration braking area is provided immediately before switching from the speed control to the force control area.
Since it is possible to switch to the force (injection force) control region with almost no influence of inertial energy, it eliminates the influence of inertial energy that is unique to hydraulic molding machines such as drive gears, which is a disadvantage of electric molding machines. can be eliminated.

更に下記のごとき効果をも奏する。 Furthermore, the following effects are also achieved.

(1) 速度は閉ループ制御されるので、再現性、安
定性に優れ、安定成形ができる。
(1) Since the speed is controlled in a closed loop, it has excellent reproducibility and stability, allowing stable molding.

(2) 射出工程の全区間にわたり、速度あるいは力
の制御がなされ、従来の方法の様な負荷とのバ
ランスによる過渡的な制御区間がないが或は最
小に抑えることができるので、従来にない安定
成形ができる。
(2) The speed or force is controlled throughout the entire injection process, and there is no transient control period due to load balance as in conventional methods, or it can be minimized, which is unprecedented. Stable molding is possible.

(3) (2)の特長である制動作用はサーボモータを使
用した電動機駆動式機械であればこそ簡便に制
御が可能であり、油圧式機械では実施がきわめ
て困難なことである。。
(3) The braking action, which is the feature of (2), can be easily controlled by an electric motor-driven machine using a servo motor, and is extremely difficult to control with a hydraulic machine. .

(4) 速度制御領域と力制御領域をはつきりと分け
て制御するので操作性が向上し成形作業の合理
化となる。
(4) Since the speed control area and force control area are controlled separately, operability is improved and molding work is streamlined.

(5) 慣性エネルギーの影響がほとんどない状態で
の制御ができるので、過充填のない成形品の生
産が容易となる。
(5) Since control can be performed with almost no influence of inertial energy, it becomes easy to produce molded products without overfilling.

(6) 減速区間の速度の低下率の変更を簡便にして
廉価に実施できる。
(6) The speed reduction rate in the deceleration section can be easily and inexpensively changed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る射出工程制御方法を実
施し得る電動式成形機の略示縦断面図、第2図は
電動式成形機の制御装置のブロツク図、第3図は
従来法による射出制御の駆動源の速度とトルクの
制御関係線図、第4図はこの発明の射出工程制御
方法における駆動源の速度とトルクの制御関係線
図である。 1……射出機構、2……射出スクリユ、6……
射出切替位置検出器、9……サーボモータ、10
……タコメータジエネレータ、24……集中制御
装置、25……サーボモータ制御アンプ、26,
27……信号切換器、28……逆転指令回路、V
……速度設定器、T……時間設定器、F……トル
ク設定器(電流設定器)。
Fig. 1 is a schematic vertical sectional view of an electric molding machine that can carry out the injection process control method according to the present invention, Fig. 2 is a block diagram of a control device for the electric molding machine, and Fig. 3 is an injection process according to a conventional method. FIG. 4 is a control relationship diagram between the speed and torque of the drive source in the injection process control method of the present invention. 1... Injection mechanism, 2... Injection screw, 6...
Injection switching position detector, 9...Servo motor, 10
... Tachometer generator, 24 ... Central control device, 25 ... Servo motor control amplifier, 26,
27... Signal switch, 28... Reverse command circuit, V
...Speed setting device, T...Time setting device, F...Torque setting device (current setting device).

Claims (1)

【特許請求の範囲】 1 射出機構の駆動源として電気サーボモータを
用いた電動式成形機の射出工程において、充填工
程中は駆動源の回転速度値とトルク値とを設定す
るとともに、駆動源の回転速度がその射出速度値
となる様に閉ループ制御による速度制御にて行な
い、充填完了点より射出力制御への切換点までの
区間は、射出力制御への切換時に射出スクリユ等
の慣性エネルギーがほとんど無視できる程度の低
い速度まで減速させる制動制御を行なつたのち
に、射出力制御に移行させることを含むことを特
徴とする射出工程制御方法。 2 射出機構の駆動源として電気サーボモータを
用いた電動式成形機の射出工程において、充填工
程中は駆動源の回転速度値とトルク値とを設定す
るとともに駆動源の回転速度がその射出速度値と
なるように閉ループ制御による速度制御にて行な
い、充填完了点にて速度の設定値を前もつて設定
されたゼロまたは射出力制御への切換時に射出ス
クリユ等の慣性エネルギーがほとんど無視できる
程度に低い値に変更し、閉ループにて減速させる
減速区間を設け、射出速度が設定値にほぼ到達し
たのちに射出力制御に移行させることを含むこと
を特徴とする電動式成形機の射出工程制御方法。
[Claims] 1. In the injection process of an electric molding machine that uses an electric servo motor as the drive source of the injection mechanism, during the filling process, the rotational speed value and torque value of the drive source are set, and the drive source's rotational speed value and torque value are set. The speed is controlled by closed-loop control so that the rotational speed becomes the injection speed value, and in the section from the filling completion point to the switching point to injection force control, the inertial energy of the injection screw etc. is An injection process control method comprising performing braking control to reduce the speed to an almost negligible low speed and then shifting to injection force control. 2. In the injection process of an electric molding machine that uses an electric servo motor as the drive source of the injection mechanism, the rotation speed value and torque value of the drive source are set during the filling process, and the rotation speed of the drive source is set to the injection speed value. The speed is controlled by closed-loop control so that the inertial energy of the injection screw, etc. is almost negligible when switching to the preset zero speed or injection force control at the filling completion point. A method for controlling an injection process of an electric molding machine, comprising: changing the injection speed to a low value, providing a deceleration section in which the speed is decelerated in a closed loop, and shifting to injection force control after the injection speed has almost reached a set value. .
JP9901083A 1983-06-03 1983-06-03 Control of injection process in electric molding machine Granted JPS59224324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9901083A JPS59224324A (en) 1983-06-03 1983-06-03 Control of injection process in electric molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9901083A JPS59224324A (en) 1983-06-03 1983-06-03 Control of injection process in electric molding machine

Publications (2)

Publication Number Publication Date
JPS59224324A JPS59224324A (en) 1984-12-17
JPH0428532B2 true JPH0428532B2 (en) 1992-05-14

Family

ID=14235111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9901083A Granted JPS59224324A (en) 1983-06-03 1983-06-03 Control of injection process in electric molding machine

Country Status (1)

Country Link
JP (1) JPS59224324A (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119328A (en) * 1984-07-05 1986-01-28 Niigata Eng Co Ltd Pressure controller in injection molding machine
JPS61167519A (en) * 1985-01-21 1986-07-29 Fanuc Ltd Control method of injection and follow-up pressure of injection molding machine
JPS61220817A (en) * 1985-03-28 1986-10-01 Fanuc Ltd Measuring and kneading system for injection molding machine
JPS61220818A (en) * 1985-03-28 1986-10-01 Fanuc Ltd Injection molding machine indicating measuring and kneading condition by graph
JPS61230917A (en) * 1985-04-08 1986-10-15 Fanuc Ltd Injection pressure control of injection molder
JPS61235119A (en) * 1985-04-12 1986-10-20 Nissei Plastics Ind Co Method and device for controlling injection of injection molding machine
JPS61249724A (en) * 1985-04-30 1986-11-06 Fanuc Ltd Changeover control method for unit quantity of torque limiting value of servomotor for injection molding machine
JPS61249726A (en) * 1985-04-30 1986-11-06 Fanuc Ltd Control method for kneading in injection molding machine
JPS62119020A (en) * 1985-11-20 1987-05-30 Fanuc Ltd Metering device for injection molding machine
JPS62124925A (en) * 1985-11-27 1987-06-06 Fanuc Ltd Metering method in injection molding machine
JPS639522A (en) * 1986-07-01 1988-01-16 Ube Ind Ltd Monitor indication of molding condition
JPH0813485B2 (en) * 1987-05-19 1996-02-14 ファナック株式会社 Holding pressure control method for electric injection molding machine
JP2575425B2 (en) * 1987-11-24 1997-01-22 株式会社安川電機 Electric injection molding machine drive
KR960016031B1 (en) * 1989-03-28 1996-11-25 화낙 가부시끼가이샤 Apparatus for discriminating acceptable products from rejectable products for injection molding machine
US5092753A (en) * 1989-04-26 1992-03-03 Canon Kabushiki Kaisha Electric injection molding apparatus
JPH03213320A (en) * 1990-01-18 1991-09-18 Fanuc Ltd Injection device for motorized injection molding machine
JPH0422616A (en) * 1990-05-18 1992-01-27 Sumitomo Heavy Ind Ltd Controlling method for injection speed of electromotive injection molding machine
JPH0773869B2 (en) * 1993-11-15 1995-08-09 ファナック株式会社 Drive control method of injection molding machine by servo motor
JPH08309808A (en) * 1996-05-28 1996-11-26 Fanuc Ltd Drive controlling method for injection molding machine driven by servo motor
JP4027380B2 (en) 2005-06-02 2007-12-26 ファナック株式会社 Control device for injection molding machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862030A (en) * 1981-10-08 1983-04-13 Nissei Plastics Ind Co Injection molder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321398Y2 (en) * 1981-06-12 1988-06-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862030A (en) * 1981-10-08 1983-04-13 Nissei Plastics Ind Co Injection molder

Also Published As

Publication number Publication date
JPS59224324A (en) 1984-12-17

Similar Documents

Publication Publication Date Title
JPH0428532B2 (en)
US4540359A (en) Injection molding machine
JPH041687B2 (en)
EP0350872A1 (en) Motor control device for electric injection molding machine
US3740827A (en) Friction welding
EP0277242A4 (en) Straight-acting mold clamping device of an injection molding machine.
JPH0444891B2 (en)
KR910000288B1 (en) Injection molding machines and methods for controlling the same
JPS61140363A (en) Motor-driven injection molding machine
WO2018084163A1 (en) Electric die cast machine and method for controlling same
JPS6127229A (en) Method of controlling injection step of motor driven injection molding machine
JPS6381015A (en) Method for controlling motor-driven injection machine
JPH0259023B2 (en)
JPH0567410B2 (en)
JPH0428530B2 (en)
JPH0259025B2 (en)
JPH0428531B2 (en)
JPH07102594B2 (en) Injection process control device in electric injection molding machine
JPH0390327A (en) Injection mechanism for injection molding machine
JPS61202813A (en) Control method of injection molding machine
JPH0259024B2 (en)
JP2000006207A (en) Starting method of rotation of screw in injection molder
EP0049535A2 (en) Automatic control system for operating the clutch of a car
JPS6225708Y2 (en)
JPS63176125A (en) Dwell control equipment of injection molding machine