JPH0567410B2 - - Google Patents
Info
- Publication number
- JPH0567410B2 JPH0567410B2 JP61019925A JP1992586A JPH0567410B2 JP H0567410 B2 JPH0567410 B2 JP H0567410B2 JP 61019925 A JP61019925 A JP 61019925A JP 1992586 A JP1992586 A JP 1992586A JP H0567410 B2 JPH0567410 B2 JP H0567410B2
- Authority
- JP
- Japan
- Prior art keywords
- injection
- pressure
- signal
- speed
- command signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002347 injection Methods 0.000 claims description 133
- 239000007924 injection Substances 0.000 claims description 133
- 238000001514 detection method Methods 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 9
- 230000006835 compression Effects 0.000 claims description 3
- 238000007906 compression Methods 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 claims description 2
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 230000000694 effects Effects 0.000 description 4
- 230000009347 mechanical transmission Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005429 filling process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/46—Means for plasticising or homogenising the moulding material or forcing it into the mould
- B29C45/47—Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
- B29C45/50—Axially movable screw
- B29C45/5008—Drive means therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/76—Measuring, controlling or regulating
- B29C45/7613—Measuring, controlling or regulating the termination of flow of material into the mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/76—Measuring, controlling or regulating
- B29C45/77—Measuring, controlling or regulating of velocity or pressure of moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C2045/1784—Component parts, details or accessories not otherwise provided for; Auxiliary operations not otherwise provided for
- B29C2045/1792—Machine parts driven by an electric motor, e.g. electric servomotor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/46—Means for plasticising or homogenising the moulding material or forcing it into the mould
- B29C45/47—Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
- B29C45/50—Axially movable screw
- B29C45/5008—Drive means therefor
- B29C2045/5032—Drive means therefor using means for detecting injection or back pressures
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Description
この発明は、電動機をもつて駆動する射出装置
の射出制御方法に関するものである。
The present invention relates to an injection control method for an injection device driven by an electric motor.
この種の射出制御方法は、特開昭59−156726号
公報及び特開昭59−224324号公報に記載されてい
る。
それらの先行技術は、射出速度値とトルク上限
値を設定すると共に、速度センサーにより射出速
度を電気的に検出した速度値をフイードバツクす
ることにより、射出速度がその設定値となるよう
にクローズドループ制御を行つて、その速度値と
トルク値の設定値の相互の関連と、駆動源に働く
負荷とによつて射出速度あるいは射出圧力の制御
を行うものであり、また射出圧力制御はオープン
ループにてトルク値(電動機の電流上限制限値)
を設定することにより電動機を駆動して行つてい
る。
また、射出プランジヤまたは射出スクリユが前
進中で、電動機の回転子等の慣性力が作用してい
る状態で、射出速度の制御から射出圧力の制御に
切り換えると、慣性エネルギーにより、設定され
た射出圧力よりも大きな射出圧力が作用し、樹脂
が金型内に過充填されてしまう問題があることか
ら、射出開始より金型内に材料がほぼ充満するま
でを、クローズドループ制御にて速度制御を行
い、電動機の回転子等の慣性力の影響を少なくす
るため、射出速度をほぼ直線的に減速する制動制
御の後トルク値(電動機の電流上限制限値)の設
定変更によつて、射出圧力制御に移行させてい
た。
This type of injection control method is described in JP-A-59-156726 and JP-A-59-224324. In those prior technologies, in addition to setting the injection speed value and the upper limit torque value, the injection speed is controlled in a closed loop so that the injection speed becomes the set value by feeding back the speed value that is electrically detected by the speed sensor. The injection speed or injection pressure is controlled based on the relationship between the speed and torque settings and the load acting on the drive source, and the injection pressure is controlled in an open loop. Torque value (motor current upper limit value)
The electric motor is driven by setting . In addition, when the injection plunger or injection screw is moving forward and the inertial force of the rotor of the electric motor is acting, if you switch from controlling the injection speed to controlling the injection pressure, the inertial energy will cause the set injection pressure to increase. Because of the problem of overfilling the mold with resin due to the injection pressure acting on the machine, the speed is controlled using closed-loop control from the start of injection until the mold is almost filled with material. In order to reduce the influence of the inertial force of the motor rotor, etc., after braking control that decelerates the injection speed almost linearly, injection pressure control is performed by changing the setting of the torque value (the upper current limit value of the motor). It was being migrated.
電動機の特性上の欠点として、電動機の駆動電
流値が一定であつても、電動機の温度変化により
出力トルクが変動することが挙げられる。そのた
め、オープンループ制御で電動機を制御した場合
には、この特性がそのまま現れることとなり、外
気温の変化や、電動機自体の発熱により電動機の
温度が変化するにつれて駆動電流値が一定であつ
ても実際に発生される出力トルクが変動し、金型
内に充填される樹脂に加えられる圧力が変動する
ことから、成形品に過充填または充填不足による
成形不良が生じる問題があり、また駆動系の機械
的伝達効率の影響などによつても実際に樹脂に付
加される力が変化するため、設定値に対する射出
圧力制御精度が悪く、成形品によつてはその要求
品質に見合つた成形ができない問題があつた。
また、射出速度制御から射出圧力制御への切換
時に慣性力の影響を除去するために徐々に制動制
御を行うものでは、スクリユの速度が低下し、制
御の切換にも時間がかかるが、その間にも金型キ
ヤビテイ内の樹脂の冷却が進行していくことから
成形品の応力が不均一になり易いほか、特に薄肉
の成形品の成形に際して、完全に充填ができない
場合があつた。
発明者らはこのような温度変化による出力トル
ルクの変動や、機械的伝達効率の影響は、フイー
ドバツク制御を採用して、設定値と実行値が一致
するように制御する事により解消することができ
るのではないかと考え、射出速度の制御は射出速
度検出値をフイードバツク信号とする射出速度の
フイードバツク制御により行い、射出圧力の制御
は射出圧力検出器により検出した射出圧力検出信
号をフイードバツク信号として用い、直接電動機
の駆動電流を制御する射出圧力のフイードバツク
制御により行うことを試みた。
しかし、その場合でも単純に射出速度のフイー
ドバツク回路と、射出圧力のフイードバツク回路
を切り換える構成により制御を行うと、設定値に
対する実行値の変動は抑えられるものの、慣性力
が作用している状態で射出速度制御から射出圧力
制御への切換を行うと、射出圧力のフイードバツ
ク値が設定値を上回るまで電動機は前進側に駆動
されることから、射出プランジヤまたはスクリユ
には慣性力及び電動機による前進力が作用するこ
ととなり、その結果設定圧力より大きな射出圧力
が発生して過充填となる問題があつた。
一方ひずみ計による圧力検出器では、圧力を受
けてひずみが生じたときに初めて圧力検出ができ
る構造からなることと、射出圧力の発生源から圧
力検出器に至るまでの間に距離があり、圧力の伝
達に時間がかかることなどから応答性が悪く、射
出圧力制御回路のゲインを上げると、射出速度制
御から射出圧力制御への切換時や、射出速度また
は射出圧力の切換時に大きな圧力変動が生じ、そ
れを防止するために応答性を犠牲にしてゲインを
下げざるを得ず、ゲインを下げるとフイードバツ
ク制御の特性から射出圧力制御時に設定値と実行
値が接近すると偏差が殆どないことから電動機に
は電流が殆ど供給されなくなつてトルクが低下す
るため、樹脂圧によつて射出プラジヤまたはスク
リユが押し戻され圧力の変動が発生するなどの問
題があつた。
A disadvantage in the characteristics of electric motors is that even if the drive current value of the electric motor is constant, the output torque fluctuates due to changes in the temperature of the electric motor. Therefore, when a motor is controlled using open-loop control, this characteristic will appear as is, and even if the drive current value is constant as the temperature of the motor changes due to changes in outside temperature or the heat generated by the motor itself, the actual As the output torque generated by the mold fluctuates and the pressure applied to the resin filled in the mold fluctuates, there is a problem of molding defects due to overfilling or underfilling of the molded product. As the actual force applied to the resin changes due to the influence of physical transmission efficiency, etc., the injection pressure control accuracy for the set value is poor, and some molded products may not be able to be molded to meet the required quality. It was hot. In addition, if braking control is performed gradually to remove the influence of inertia force when switching from injection speed control to injection pressure control, the screw speed will decrease and it will take time to switch control, but during that time, However, as the cooling of the resin in the mold cavity progresses, the stress in the molded product tends to become uneven, and in some cases, especially when molding thin-walled molded products, complete filling is not possible. The inventors believe that the effects of such changes in output torque and mechanical transmission efficiency due to temperature changes can be eliminated by using feedback control to control the set value and actual value to match. Therefore, the injection speed was controlled using the injection speed detection value as the feedback signal, and the injection pressure was controlled using the injection pressure detection signal detected by the injection pressure detector as the feedback signal. An attempt was made to achieve this by feedback control of the injection pressure, which directly controls the drive current of the motor. However, even in such a case, if control is performed by simply switching between the injection speed feedback circuit and the injection pressure feedback circuit, fluctuations in the actual value relative to the set value can be suppressed, but injection will still occur under the influence of inertial force. When switching from speed control to injection pressure control, the electric motor is driven forward until the injection pressure feedback value exceeds the set value, so inertia force and forward force from the electric motor act on the injection plunger or screw. As a result, an injection pressure higher than the set pressure was generated, causing a problem of overfilling. On the other hand, pressure detectors using strain gauges have a structure that allows pressure to be detected only when strain occurs due to pressure, and there is a distance between the injection pressure source and the pressure detector. The response is poor because it takes time to transmit the injection pressure, and when the gain of the injection pressure control circuit is increased, large pressure fluctuations occur when switching from injection speed control to injection pressure control, or when switching injection speed or injection pressure. In order to prevent this, the gain has to be lowered at the expense of responsiveness.When the gain is lowered, due to the characteristics of feedback control, when the set value and the actual value are close to each other during injection pressure control, there is almost no deviation, so the electric motor Since almost no current is supplied and the torque decreases, the injection plunger or screw is pushed back by the resin pressure, causing pressure fluctuations.
この発明の目的は、電動機を駆動源として用い
た射出装置において、射出速度、射出圧力(保圧
圧力)のそれぞれの制御を速度センサー、圧力検
出器(射出圧力の検出用センサー)を用いてフイ
ードバツク制御により高精度で行うものでありな
がら、上記のような問題を生じない新たな射出制
御方法を提供することにある。
上記目的によるこの発明の特徴は、射出機構の
駆動源として電動機を用いた電動式射出装置の射
出制御方法において、金型キヤビテイ内に材料を
充填する充填工程は、射出プランジヤまたは射出
スクリユの速度指令信号と、電動機側からの速度
検出信号とを加算器により比較演算して生じた差
信号を電流指令信号とし、その電流指令信号と電
動機の入力電流を電流検出器で検出して得た電流
検出信号との差電圧に基づいて電動機を駆動する
速度のフイードバツク制御回路により行い、圧
縮、保圧工程は、射出圧力センサーとして射出時
の反力によるひずみから射出圧力を電気的に検出
するひずみ計を用い、その射出圧力センサーによ
り検出した圧力検出信号と、射出圧力設定器に設
定された射出圧力指令信号とを比較して得た圧力
制御信号を、上記速度指令信号に換えて上記加算
器に供給し、上記速度のフイードバツク制御回路
を備えた圧力のフイードバツク制御回路により行
い、上記速度指令信号V1と圧力制御信号の切換
は、上記速度のフイードバツク制御による材料の
充填量が、予め設定された値に達したときに作動
する信号切換器により行うことにある。
An object of the present invention is to provide feedback for controlling injection speed and injection pressure (holding pressure) using a speed sensor and a pressure detector (sensor for detecting injection pressure) in an injection device that uses an electric motor as a drive source. It is an object of the present invention to provide a new injection control method that does not cause the above-mentioned problems, although it is controlled with high precision. The feature of the present invention for the above-mentioned purpose is that, in an injection control method of an electric injection device using an electric motor as a drive source of an injection mechanism, the filling process of filling a material into a mold cavity is performed by a speed command of an injection plunger or an injection screw. The difference signal generated by comparing the signal and the speed detection signal from the motor side with an adder is used as a current command signal, and current detection is obtained by detecting the current command signal and the input current of the motor with a current detector. This is performed by a speed feedback control circuit that drives the motor based on the voltage difference from the signal, and the compression and pressure holding processes are performed using a strain gauge that electrically detects the injection pressure from the strain caused by the reaction force during injection as an injection pressure sensor. A pressure control signal obtained by comparing the pressure detection signal detected by the injection pressure sensor with the injection pressure command signal set in the injection pressure setting device is supplied to the adder in exchange for the speed command signal. However, the switching between the speed command signal V1 and the pressure control signal is performed by a pressure feedback control circuit equipped with the speed feedback control circuit, and the switching between the speed command signal V1 and the pressure control signal is performed so that the amount of material filled by the speed feedback control reaches a preset value. This is done using a signal switch that activates when the target is reached.
上記構成では、射出速度制御は射出速度指令信
号と射出速度検出信号に基づく速度のフイードバ
ツク制御回路により行われ、それによる材料の充
填量が予め設定された値に達したことの検出によ
り、上記射出速度制御回路に入力される射出速度
指令信号に代えて射出圧力指令信号と射出圧力検
出信号の偏差に基づく圧力制御信号が入力され、
圧力制御信号は更に速度検出信号と比較演算、増
幅されて電動機に電機子電流を供給する。つま
り、射出圧力制御時には速度のフイードバツク制
御回路がマイナーループとして働く圧力のフイー
ドバツク制御回路が構成され、これにより圧力制
御信号が速度検出信号とも比較演算、増幅されて
指令信号となり、さらに電流検出信号とも比較演
算、増幅されて電力変換器に供給される。そして
該電力変換器から出力された電気子電流により電
動機が制御されることになる。
In the above configuration, injection speed control is performed by a speed feedback control circuit based on an injection speed command signal and an injection speed detection signal, and when it is detected that the amount of material filled has reached a preset value, the injection speed is Instead of the injection speed command signal input to the speed control circuit, a pressure control signal based on the deviation between the injection pressure command signal and the injection pressure detection signal is input,
The pressure control signal is further compared with the speed detection signal and amplified to supply armature current to the motor. In other words, during injection pressure control, a pressure feedback control circuit is constructed in which the speed feedback control circuit works as a minor loop, and as a result, the pressure control signal is compared with the speed detection signal, amplified, and becomes a command signal, and is also used with the current detection signal. Comparison operation, amplification and supply to power converter. The motor is then controlled by the armature current output from the power converter.
以下この発明を図示の例により詳細に説明す
る。
射出装置は、スクリユ1による射出部材を内装
した射出加熱筒2と、射出加熱筒の保持を兼ねる
機台3上のハウジング4とを有する。該ハウジン
グ4の内部には、スクリユ1の後端部に連結した
回動軸5を介して接続したスクリユ可動部材6
と、第3図に示すように、回動軸5と平行にして
ハウジング前後壁4a,4bにわたり架設した両
側の支軸7,7とがあり、その支軸7,7に上記
スクリユ可動部材6が前後方向に摺動自在に両端
部を貫挿して取付けてある。
上記回動軸5の後端には、スクリユ回転用の歯
車8を有する小径の延長軸5aが突設してあり、
この延長軸5aの端部にスラスト軸受け9を介し
て、上記スクリユ可動部材6が接続してある。ま
たスクリユ可動部材6の中央部は円筒形で、その
中央部の後端内にねじを内周面に施したねじ受部
材10が嵌着してあり、そのねじ受部材10にね
じ軸11が、上記スクリユ1と同心にしてねじ込
んである。
このねじ軸11の後端は、スラスト軸受12を
もつてハウジング後壁4bに回転自在に保持した
軸部11aとなつており、その軸部11aに歯車
13が取付けてある。
上記歯車8,13は、ハウジング4の内部下側
の伝動軸14に、クラツチ15,116を設けて
取付けた歯車17,18とそれぞれ噛合してお
り、伝動軸14とハウジング4の下側面に連結し
た直流電動式のサーボモータ19の駆動軸は、駆
動ベルト20をもつて連絡し、サーボモータ19
を駆動源として、上記スクリユ1を回転及び軸方
向に可動することができるようにしてある。
21はハウジング後壁4bの変形量を測定する
ためのひずみ計で、スクリユ1が射出前進した際
の反力を受ける部位、即ち、上記軸部11aを保
持した部分の壁部に取付けてある。
なお22は軸部11aを介してスクリユ1の回
転力を制御するブレーキ装置である。
上記ひずみ計21はモールド型ひずみ計として
市販されているもので、ひずみゲージをプラスチ
ツクケース内にモールドしたものからなり、ねじ
ビスを用いて止着してある。
上記構造の電動式射出装置におけるスクリユ1
の回転後退(材料チヤージ)は、歯車17,8を
もつて行われ、またスクリユ1の射出前進は歯車
18,13を介して行われる。即ち、歯車13の
回転によりねじ軸11も回転し、この回転力は回
動を阻止されたスクリユ可動部材側のねじ受部材
10によつて推力に変換される。そしてスクリユ
可動部材6と共にスクリユ1が前進し、スクリユ
前方にチヤージされた射出加熱筒2内の溶融樹脂
をノズルから射出する。
この前進力が射出圧力であり、反力として上記
ねじ軸11に同等の後退力が発生する。この後退
力はスラスト軸受12を介してハウジング後壁4
bに支えられ、この結果、その後壁4bにも応力
が掛かり、ひずみ計21を取付けた部分にも射出
圧力に対応して微小ではあるが変形が生じ、その
変形量はひずみ計21によつて電気的に測定さ
れ、更に射出圧力として検出される。
上記ひずみ計21では、ひずみ増幅器23から
のブリツジ用電源が入力されると、後壁4bの変
形量に対応した出力を発生する(以下第1図参
照)。
この出力は電圧信号として、ひずみ増幅器23
により増幅されて、射出圧力に対応した圧力検出
信号V5となり、記録計23aと後述の加算器2
4及び比較器25の入力信号となる。
上記ひずみ増幅器23から比較器25に入力さ
れた圧力検出信号V5′は、射出速度制御を射出
圧力制御に切換える圧力が設定された設定器26
の設定値と比較され、、さらに切換信号V7とし
て信号切換器27に常時入力される。
この信号切換器27は速度設定器(図は省略)
からの速度指令信号V1と圧力制御信号ΔV4と
を切換え、制御を射出速度制御或いは射出圧力制
御のいずれか一方に切換えるためのスイツチであ
る。
また上記圧力制御信号ΔV4は、射出圧力設定
器(図示なし)により設定された圧力指令信号V
4と、計測された上記射出圧力検出信号V5とが
加算器24に入力され、その差信号が演算されて
出力された信号である。
上記速度指令信号V1とタコメータジエネレー
タ29により検出された速度検出信号V6とを加
算器28に加えて得られた差信号ΔVは、増幅器
30にて増幅されて電流指令信号V2となり、そ
の信号V2とフイードバツクされる電流検出信号
V3とを、加算器31に加えて得られた差電圧
ΔV2は、増幅器32にて増幅されたのち、電力
変換器33に供給される。
上記電力変換器33は、サイリスタを使用した
点弧制御回路またはトランジスタを使用したパル
スワイド制御回路にて構成され、入力される信号
に応じた電機子電流Iaがサーボモータ19に流れ
る。
また電機子電流Iaを検出するために、電力変換
器33とサーボモータ19との回路に電流検出器
34が設けられ、その検出電流に対応した電流検
出信号V3は加算器31にフイードバツクされ
る。
射出開始時における上記信号切換器27は、速
度指令信号V1が加算器28に加わるように切換
操作されており、速度指令信号V1と上記サーボ
モータ19のタコメータジエネレータ29の速度
検出信号V6との差信号ΔVに基づいてサーボモ
ータ19の駆動制御がなされ、スクリユ前進速度
が射出速度設定値となるようにフイードバツク制
御されて、スクリユ1は前進する。
したがつて、金型キヤビテイ内に材料を充填す
る充填工程は、射出スクリユ(プランジヤ)の速
度指令信号V1と、電動機側からの速度検出信号
V6とを加算器28により比較演算し、そこに生
じた差信号ΔVを電流指令信号V2とし、上記電
流指令信号V2と電動機の入力電流を電流検出器
34で検出して得た電流検出信号V3との差電圧
ΔV2に基づいて電動機を駆動する速度のフイー
ドバツク制御回路により行われることになる。
次にスクリユ1の前進に伴い、ノズルから金型
(図示なし)内に溶融樹脂が充填され、そこに負
荷が増加して、上記ひずみ計21により検出され
た射出圧力が、上記設定器26により予め設定さ
れた値以上になると、比較器25が作動して切換
信号V7を信号切換器27に出力する。
この切換信号V7の入力により信号切換器27
は射出速度制御(実線)から射出圧力制御(鎖
線)に切換わる。これにより上記加算器24にて
演算された射出圧力検出信号V5と圧力設定器
(図は省略)からの圧力指令信号V4との差信号
ΔV4が、上記速度指令信号V1に換わり圧力制
御信号ΔV4として加算器28に入力する。
この加算器28において圧力制御信号ΔV4は
上記速度指令信号V1の場合と同様に速度検出信
号V6と加算され、その差信号ΔVが増幅され
て、結局、圧力制御信号ΔV4は上記電流指令信
号V2として出力されるようになる。
これにより充填工程における速度のフイードバ
ツク制御回路は圧力のフイードバツク制御回路の
マイナーループとして働き、圧力制御信号ΔV4
が速度検出信号V6とも比較演算、増幅され、そ
れによりサーボモータ19の駆動制御がなされて
射出圧力は力のフイードバツク制御により、予め
設定された値と一致するようになる。
また圧力制御時には既に金型キヤビテイ内が樹
脂で満たされており、スクリユは殆ど移動しない
ことから、圧力制御信号ΔV4が小さい場合で
も、速度検出信号V6の値も小さくなるので、差
信号ΔVは圧力制御信号ΔV4と殆ど変わらない
状態で大きなゲインを有する増幅器30で増幅さ
れて、大きな電流指令信号V2として電動機に供
給されることから、速度のマイナーループを介さ
ずに、小さな圧力制御信号ΔV4をそのまま電流
指令信号V2として電動機の電流を制御する場合
に比べて、電動機に供給される電流が大きくな
り、電動機の出力トルクも大きくなるので、所定
の圧力に到達するまでの時間が短くなり、極めて
応答性のよい制御が可能となる。
またスクリユが前進中で電動機の回転子慣性力
が作用しているときに圧力制御に移行し、しかも
圧力検出信号V5の値が圧力指令信号V4の値よ
りも小さな状態で、圧力制御信号ΔV4が加算器
28に入力された場合でも、速度検出信号V6が
移動中で大きいことから差信号ΔVは圧力制御信
号ΔV4とは逆の極性とされ、電動機を反対方向
に駆動する電機子電流が供給されることから、ス
クリユは急速に制動されるので、過充填となるこ
ともない。
なお上記実施例では直流サーボモータを使用し
ているが、電動機はブラシレスDCサーボモータ
あるいはACサーボモータ等であつてもよい。
The present invention will be explained in detail below using illustrated examples. The injection device has an injection heating cylinder 2 in which an injection member formed by a screw 1 is housed, and a housing 4 on a machine base 3 which also serves to hold the injection heating cylinder. Inside the housing 4 is a screw movable member 6 connected via a rotation shaft 5 connected to the rear end of the screw 1.
As shown in FIG. 3, there are support shafts 7, 7 on both sides extending parallel to the rotation shaft 5 and spanning the front and rear walls 4a, 4b of the housing. is attached by penetrating both ends so that it can slide freely in the front-back direction. A small-diameter extension shaft 5a having a gear 8 for rotating the screw is protruded from the rear end of the rotation shaft 5.
The screw movable member 6 is connected to the end of the extension shaft 5a via a thrust bearing 9. The central part of the screw movable member 6 is cylindrical, and a screw receiving member 10 having a screw threaded on the inner peripheral surface is fitted into the rear end of the central part. , is screwed in concentrically with the screw 1. The rear end of this screw shaft 11 is a shaft portion 11a rotatably held on the housing rear wall 4b with a thrust bearing 12, and a gear 13 is attached to the shaft portion 11a. The gears 8 and 13 mesh with gears 17 and 18, which are attached to a transmission shaft 14 on the lower side inside the housing 4 with clutches 15 and 116, respectively, and are connected to the transmission shaft 14 and the lower surface of the housing 4. The drive shafts of the DC electric servo motors 19 are connected via a drive belt 20, and the servo motors 19
The screw 1 can be rotated and moved in the axial direction using the screw 1 as a driving source. Reference numeral 21 denotes a strain gauge for measuring the amount of deformation of the rear wall 4b of the housing, and is attached to a portion of the wall that receives the reaction force when the screw 1 moves forward with injection, that is, a portion of the wall that holds the shaft portion 11a. Note that 22 is a brake device that controls the rotational force of the screw 1 via the shaft portion 11a. The strain gauge 21 is commercially available as a molded strain gauge, and consists of a strain gauge molded inside a plastic case, which is fixed using screws. Screw 1 in the electric injection device with the above structure
The rotational retraction (material charge) of the screw 1 takes place via gears 17, 8, and the injection advance of the screw 1 takes place via gears 18, 13. That is, as the gear 13 rotates, the screw shaft 11 also rotates, and this rotational force is converted into thrust by the screw receiving member 10 on the side of the screw movable member whose rotation is prevented. Then, the screw 1 moves forward together with the screw movable member 6, and the molten resin in the injection heating cylinder 2, which is charged in front of the screw, is injected from the nozzle. This forward force is the injection pressure, and an equivalent backward force is generated in the screw shaft 11 as a reaction force. This backward force is applied to the housing rear wall 4 through the thrust bearing 12.
As a result, stress is applied to the rear wall 4b, and the portion where the strain gauge 21 is attached also undergoes slight deformation in response to the injection pressure, and the amount of deformation is determined by the strain gauge 21. It is measured electrically and further detected as injection pressure. When the bridge power source from the strain amplifier 23 is input to the strain meter 21, an output corresponding to the amount of deformation of the rear wall 4b is generated (see FIG. 1 below). This output is applied as a voltage signal to the distortion amplifier 23.
The pressure detection signal V5 corresponding to the injection pressure is amplified by the recorder 23a and the adder 2 described later.
4 and the comparator 25. The pressure detection signal V5' inputted from the strain amplifier 23 to the comparator 25 is sent to the setting device 26 where the pressure for switching the injection speed control to the injection pressure control is set.
It is compared with the setting value of V7, and is constantly inputted to the signal switch 27 as a switching signal V7. This signal switch 27 is a speed setting device (figure omitted)
This is a switch for switching between the speed command signal V1 and the pressure control signal ΔV4, and switching the control to either injection speed control or injection pressure control. The pressure control signal ΔV4 is a pressure command signal V set by an injection pressure setting device (not shown).
4 and the measured injection pressure detection signal V5 are input to the adder 24, and the difference signal therebetween is calculated and outputted. The difference signal ΔV obtained by adding the speed command signal V1 and the speed detection signal V6 detected by the tachometer generator 29 to the adder 28 is amplified by the amplifier 30 to become the current command signal V2. A difference voltage ΔV2 obtained by adding the current detection signal V3 fed back to the adder 31 is amplified by an amplifier 32 and then supplied to a power converter 33. The power converter 33 is configured with an ignition control circuit using a thyristor or a pulse wide control circuit using a transistor, and an armature current Ia flows to the servo motor 19 according to an input signal. Further, in order to detect the armature current Ia, a current detector 34 is provided in the circuit between the power converter 33 and the servo motor 19, and a current detection signal V3 corresponding to the detected current is fed back to the adder 31. At the start of injection, the signal switch 27 is switched so that the speed command signal V1 is added to the adder 28, and the speed command signal V1 is switched between the speed command signal V1 and the speed detection signal V6 of the tachometer generator 29 of the servo motor 19. Drive control of the servo motor 19 is performed based on the difference signal ΔV, and feedback control is performed so that the screw advance speed becomes the injection speed setting value, and the screw 1 moves forward. Therefore, in the filling process of filling the material into the mold cavity, the speed command signal V1 of the injection screw (plunger) and the speed detection signal V6 from the electric motor side are compared and calculated by the adder 28, and the resulting The difference signal ΔV is set as the current command signal V2, and the speed at which the motor is driven is determined based on the difference voltage ΔV2 between the current command signal V2 and the current detection signal V3 obtained by detecting the input current of the motor with the current detector 34. This will be done by the feedback control circuit. Next, as the screw 1 moves forward, the mold (not shown) is filled with molten resin from the nozzle, and the load increases, so that the injection pressure detected by the strain gauge 21 is adjusted by the setting device 26. When the value exceeds a preset value, the comparator 25 operates and outputs the switching signal V7 to the signal switching device 27. By inputting this switching signal V7, the signal switching device 27
switches from injection speed control (solid line) to injection pressure control (dashed line). As a result, the difference signal ΔV4 between the injection pressure detection signal V5 calculated by the adder 24 and the pressure command signal V4 from the pressure setting device (not shown) replaces the speed command signal V1 and serves as the pressure control signal ΔV4. input to adder 28; In this adder 28, the pressure control signal ΔV4 is added to the speed detection signal V6 in the same way as the speed command signal V1, and the difference signal ΔV is amplified, so that the pressure control signal ΔV4 is converted into the current command signal V2. It will be output. As a result, the speed feedback control circuit in the filling process works as a minor loop of the pressure feedback control circuit, and the pressure control signal ΔV4
is compared with the speed detection signal V6 and amplified, thereby driving the servo motor 19 and controlling the injection pressure to match a preset value through force feedback control. Furthermore, during pressure control, the inside of the mold cavity is already filled with resin and the screw hardly moves, so even if the pressure control signal ΔV4 is small, the value of the speed detection signal V6 will also be small, so the difference signal ΔV will be Since it is amplified by the amplifier 30 with a large gain in a state that is almost unchanged from the control signal ΔV4 and is supplied to the motor as a large current command signal V2, the small pressure control signal ΔV4 is directly transmitted without going through a minor speed loop. Compared to the case where the motor current is controlled by the current command signal V2, the current supplied to the motor is larger and the output torque of the motor is also larger, so the time required to reach the predetermined pressure is shorter and the response is extremely high. This allows for better control of performance. In addition, when the screw is moving forward and the inertia of the rotor of the electric motor is acting, the pressure control is started, and when the value of the pressure detection signal V5 is smaller than the value of the pressure command signal V4, the pressure control signal ΔV4 is Even when input to the adder 28, since the speed detection signal V6 is moving and large, the difference signal ΔV has a polarity opposite to that of the pressure control signal ΔV4, and an armature current that drives the motor in the opposite direction is supplied. As a result, the screw is braked rapidly and there is no possibility of overfilling. Although a DC servo motor is used in the above embodiment, the electric motor may be a brushless DC servo motor, an AC servo motor, or the like.
この発明は上述のように、射出速度制御は射出
速度指令信号と射出速度検出信号に基づく速度の
フイードバツク制御回路により行い、それによる
材料の充填量が予め設定された値に達したことの
検出により、速度のフイードバツク制御回路がマ
イナーループとして作用する圧力フイードバツク
制御回路による射出圧力制御に切換えて制御され
ることから、射出速度および射出圧力はそれぞれ
フイードバツク制御により常に指令信号に一致す
るように制御され、従来のオープンループ制御に
よる場合のようにモータの温度変化や、駆動系の
機械的伝動効率により出力トルクが変動する事が
ないので安定した制御が行える。
また、射出圧力制御時には速度のフイードバツ
ク制御回路がマイナーループとして作用すること
から、圧力制御信号ΔV4が小さくても増幅器3
0の作用により電流指令信号V2を大きくできる
ので、射出圧力制御時の応答性が向上し、より高
品質な成形品の成形が可能となる。
さらに、射出速度制御から射出圧力制御への切
換時に慣性力の影響を除去するための特別な制動
制御を行わなくとも、自動的に制動作用が発生す
ることから、過充填を生じることなく制御状態の
切換ができ、速やかな充填による高品質な成形品
の成形が可能となる。
したがつて、駆動源が電動機であつても、射出
工程を射出速度制御工程と射出圧力制御工程とに
分けて、速度及び圧力のフイードバツク制御が従
来よりも簡単にできるようになる等の特長を有す
る。
さらにまた、射出時の反力によるひずみから射
出圧力を電気的に検出するひずみ計を射出圧力セ
ンサー21として用いたので、射出圧力の検出を
直接的に行うことができ、それにより電動機の温
度変化による出力トルクの変動や、駆動系の機械
的伝達効率の影響を少なくすることができるな
ど、従来よりも高精度な射出制御を行うことがで
きる等の特長をも有する。
As described above, this invention performs injection speed control using a speed feedback control circuit based on an injection speed command signal and an injection speed detection signal, and detects that the amount of material filled has reached a preset value. Since the speed feedback control circuit is controlled by switching to injection pressure control by the pressure feedback control circuit acting as a minor loop, the injection speed and injection pressure are each controlled by feedback control so as to always match the command signal, Stable control is possible because the output torque does not fluctuate due to changes in motor temperature or mechanical transmission efficiency of the drive system, unlike in conventional open-loop control. In addition, since the speed feedback control circuit acts as a minor loop during injection pressure control, even if the pressure control signal ΔV4 is small, the amplifier 3
Since the current command signal V2 can be increased by the action of 0, the responsiveness during injection pressure control is improved, making it possible to mold a higher quality molded product. Furthermore, when switching from injection speed control to injection pressure control, braking action is automatically generated without the need for special braking control to remove the influence of inertia force, so the control condition can be maintained without overfilling. This makes it possible to quickly fill and mold high-quality molded products. Therefore, even if the drive source is an electric motor, the injection process can be divided into an injection speed control process and an injection pressure control process, making it easier to perform feedback control of speed and pressure than before. have Furthermore, since a strain gauge that electrically detects the injection pressure from the strain caused by the reaction force during injection is used as the injection pressure sensor 21, the injection pressure can be directly detected, thereby causing temperature changes in the motor. It also has the advantage of being able to perform injection control with higher precision than conventional methods, such as by being able to reduce the effects of fluctuations in the output torque caused by the mechanical transmission of the drive system and the mechanical transmission efficiency of the drive system.
図面はこの発明に係る電動式射出装置の射出制
御装置を例示するもので、第1図は射出制御装置
のブロツク図、第2図は射出装置の一部を切除し
た側面図、第3図は第2図−線断面図、第4
図は一部を切除した射出装置の背面図である。
V1……速度指令信号、V2……電流指令信
号、V3……電流検出信号、V4……圧力指令信
号、V5,V5′……射出圧力検出信号、V6…
…速度検出信号、V7……切換信号、ΔV……差
信号、ΔV2……差信号、ΔV4……圧力制御信
号、1……射出スクリユ、21……ひずみ計、1
9……サーボモータ、23……ひずみ増幅器、2
4……加算器、25……比較器、26……設定
器、27……信号切換器、28……加算器、29
……タコメータジエネレータ、30,32……増
幅器、31……加算器、32……電力変換器。
The drawings illustrate an injection control device for an electric injection device according to the present invention, and FIG. 1 is a block diagram of the injection control device, FIG. 2 is a partially cutaway side view of the injection device, and FIG. 3 is a side view of the injection device. Figure 2 - Line sectional view, 4th
The figure is a rear view of the injection device with a portion cut away. V1...Speed command signal, V2...Current command signal, V3...Current detection signal, V4...Pressure command signal, V5, V5'...Injection pressure detection signal, V6...
...Speed detection signal, V7...Switching signal, ΔV...Difference signal, ΔV2...Difference signal, ΔV4...Pressure control signal, 1...Injection screw, 21...Strain gauge, 1
9... Servo motor, 23... Strain amplifier, 2
4... Adder, 25... Comparator, 26... Setting device, 27... Signal switcher, 28... Adder, 29
... Tachometer generator, 30, 32 ... Amplifier, 31 ... Adder, 32 ... Power converter.
Claims (1)
式射出装置の射出制御方法において、 金型キヤビテイ内に材料を充填する充填工程
は、射出プランジヤまたは射出スクリユの速度指
令信号V1と、電動機側からの速度検出信号V6
とを加算器28により比較演算して生じた差信号
ΔVを電流指令信号V2とし、その電流指令信号
V2と電動機の入力電流を電流検出器34で検出
して得た電流検出信号V3との差電圧ΔV2に基
づいて電動機を駆動する速度のフイードバツク制
御回路により行い、 圧縮、保圧工程は、射出圧力センサー21とし
て射出時の反力によるひずみから射出圧力を電気
的に検出するひずみ計を用い、その射出圧力セン
サーにより検出した圧力検出信号V5と、射出圧
力設定器に設定された射出圧力指令信号V4とを
比較して得た圧力制御信号ΔV4を、上記速度指
令信号V1に換えて上記加算器28に供給し、上
記速度のフイードバツク制御回路を備えた圧力の
フイードバツク制御回路により行い、 上記速度指令信号V1と圧力制御信号ΔV4の
切換は、上記速度のフイードバツク制御による材
料の充填量が、予め設定された値に達したときに
作動する信号切換器27により行うことを特徴と
する電動式射出装置の射出制御方法。[Claims] 1. In an injection control method for an electric injection device using an electric motor as a drive source of an injection mechanism, the filling step of filling a material into a mold cavity is performed using a speed command signal V1 of an injection plunger or an injection screw. and speed detection signal V6 from the motor side.
The difference signal ΔV generated by comparing and calculating with the adder 28 is set as the current command signal V2, and the difference between the current command signal V2 and the current detection signal V3 obtained by detecting the input current of the motor with the current detector 34. The compression and pressure holding steps are performed by a speed feedback control circuit that drives the electric motor based on the voltage ΔV2, and a strain gauge that electrically detects the injection pressure from the strain caused by the reaction force during injection is used as the injection pressure sensor 21 for the compression and pressure holding steps. The pressure control signal ΔV4 obtained by comparing the pressure detection signal V5 detected by the injection pressure sensor and the injection pressure command signal V4 set in the injection pressure setting device is converted into the speed command signal V1 by the adder. 28, and is performed by a pressure feedback control circuit equipped with the speed feedback control circuit, and switching between the speed command signal V1 and the pressure control signal ΔV4 is performed so that the filling amount of material by the speed feedback control is set in advance. An injection control method for an electric injection device, characterized in that the injection control method is carried out by a signal switching device 27 that is activated when a specified value is reached.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1992586A JPS61222718A (en) | 1986-01-31 | 1986-01-31 | Injection control of electrically operated injection unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1992586A JPS61222718A (en) | 1986-01-31 | 1986-01-31 | Injection control of electrically operated injection unit |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1579484A Division JPS60174625A (en) | 1984-01-31 | 1984-01-31 | Detecting method of injection force in motor-driven injection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61222718A JPS61222718A (en) | 1986-10-03 |
JPH0567410B2 true JPH0567410B2 (en) | 1993-09-24 |
Family
ID=12012799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1992586A Granted JPS61222718A (en) | 1986-01-31 | 1986-01-31 | Injection control of electrically operated injection unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61222718A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990002032A1 (en) * | 1988-08-31 | 1990-03-08 | Kabushiki Kaisha Komatsu Seisakusho | Injection press composite molding machine |
JP2638626B2 (en) * | 1988-10-24 | 1997-08-06 | 住友重機械工業株式会社 | Feedback control method for injection molding machine |
JPH03178416A (en) * | 1989-12-07 | 1991-08-02 | Niigata Eng Co Ltd | Method and apparatus for controlling injection and dwelling of motorized injection molder |
JPH04182111A (en) * | 1990-07-06 | 1992-06-29 | Toyo Mach & Metal Co Ltd | Method and mechanism of pressure oil feed control for injection molding machine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52124062A (en) * | 1976-04-12 | 1977-10-18 | Sumitomo Heavy Industries | Injection molding machine controller |
JPS56105945A (en) * | 1980-01-25 | 1981-08-22 | Meiki Co Ltd | Device for controlling injection speed of injection molding machine |
JPS5867430A (en) * | 1981-10-19 | 1983-04-22 | Hitachi Ltd | Injection control method of injection molding machine |
JPS58179630A (en) * | 1982-06-30 | 1983-10-20 | Nissei Plastics Ind Co | Injection molder |
-
1986
- 1986-01-31 JP JP1992586A patent/JPS61222718A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52124062A (en) * | 1976-04-12 | 1977-10-18 | Sumitomo Heavy Industries | Injection molding machine controller |
JPS56105945A (en) * | 1980-01-25 | 1981-08-22 | Meiki Co Ltd | Device for controlling injection speed of injection molding machine |
JPS5867430A (en) * | 1981-10-19 | 1983-04-22 | Hitachi Ltd | Injection control method of injection molding machine |
JPS58179630A (en) * | 1982-06-30 | 1983-10-20 | Nissei Plastics Ind Co | Injection molder |
Also Published As
Publication number | Publication date |
---|---|
JPS61222718A (en) | 1986-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2866019B2 (en) | Injection device of electric injection molding machine | |
KR0136385B1 (en) | Motor control device for electric injection molding machine | |
KR100405834B1 (en) | Apparatus and method for controlling an injection molding machine capable of reducing variations in weight of molded products | |
EP1163993B1 (en) | Injection molding machine and method for controlling screw position in the same | |
JP3434243B2 (en) | Injection device pressure sensor zero point adjustment method | |
JPH0567410B2 (en) | ||
JPH0440176B2 (en) | ||
JP2002144391A (en) | Method for controlling injection molding machine | |
US5336073A (en) | Injection pressure limiting device for injection molding machine | |
KR20000006224A (en) | Method For Controlling Drive Of Screw In Injection Molding Machine | |
JP3719501B2 (en) | Control method of electric injection molding machine | |
JPH0613185B2 (en) | Holding pressure control device for electric injection molding machine | |
JP3140996B2 (en) | Injection device of electric injection molding machine | |
US20020005598A1 (en) | Method of controlling the screw of injection molding machine | |
JPH0464493B2 (en) | ||
JP3534990B2 (en) | Control method of injection molding machine | |
JP3198800B2 (en) | Mold compression molding method and apparatus | |
JPH0446213B2 (en) | ||
JP2919167B2 (en) | Injection control method for electric injection molding machine | |
JP2000006207A (en) | Starting method of rotation of screw in injection molder | |
JPH0435144Y2 (en) | ||
JP3052187B2 (en) | Back pressure control method of electric injection molding machine | |
KR930003743B1 (en) | Method for controlling back pressure in electrically operated injection apparatus | |
JP3535063B2 (en) | Injection molding machine | |
JPH072358B2 (en) | Mold clamping control method for electric injection molding machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |