JPH04285290A - Method for constructing deep circular vertical shaft - Google Patents

Method for constructing deep circular vertical shaft

Info

Publication number
JPH04285290A
JPH04285290A JP4818691A JP4818691A JPH04285290A JP H04285290 A JPH04285290 A JP H04285290A JP 4818691 A JP4818691 A JP 4818691A JP 4818691 A JP4818691 A JP 4818691A JP H04285290 A JPH04285290 A JP H04285290A
Authority
JP
Japan
Prior art keywords
shaft
vertical shaft
retaining wall
constructed
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4818691A
Other languages
Japanese (ja)
Other versions
JP2571730B2 (en
Inventor
Hiramasa Aokage
平昌 青景
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP3048186A priority Critical patent/JP2571730B2/en
Publication of JPH04285290A publication Critical patent/JPH04285290A/en
Application granted granted Critical
Publication of JP2571730B2 publication Critical patent/JP2571730B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Underground Or Underwater Handling Of Building Materials (AREA)

Abstract

PURPOSE:To construct a circular vertical shaft of great depth wherein the thickness of a landslide protection wall and the depth of embedment are reduced, workability is improved, and economy is increased. CONSTITUTION:A vertical shaft is excavated inwater inside a cylindrical landslide protection wall 2 constructed inside the ground 1 and a plurality of flexible tubes 7 are cylindrically arranged inside the vertical shaft. A liquid-setting material 10 is pressed into the tubes 7 and a reinforcing ring 13 is constructed inside the landslide protection wall 2. Bottom concrete 15 is placed inwater and then water is drained from the inside of the vertical shaft.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は地下水圧の影響を受ける
大深度の円形立坑の構築方法に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for constructing a deep circular shaft which is affected by groundwater pressure.

【0002】0002

【従来の技術】深い円形立坑の構築には一般に地下連続
壁工法が採用され、掘削が深い場合には逆打ちにより補
強リングを構築する。掘削は掘削側をドライアツプして
行うため、山留壁には水圧が作用し、深い掘削の場合に
は地盤が固くなるため、水圧荷重が荷重の大部分を占め
る。
BACKGROUND OF THE INVENTION The underground continuous wall construction method is generally used to construct deep circular shafts, and if the excavation is deep, a reinforcing ring is constructed by reverse drilling. Since excavation is carried out by dry-up the excavation side, water pressure acts on the retaining wall, and when excavating deep, the ground becomes hard, so the hydraulic load accounts for most of the load.

【0003】0003

【発明が解決しようとする課題】前記従来工法において
は水圧が高いため漏水が多く、山留壁は下からの揚圧に
対する安全性を確保するため、根入れ部を非常に長くと
る必要があり、ますます大きくなる。また山留壁の厚み
は水圧が最も大きくなる下部で決まるため、上部の壁厚
が徒らに大きくなり、不経済となる。
[Problems to be solved by the invention] In the conventional construction method, there are many water leaks due to high water pressure, and in order to ensure safety against uplift pressure from below, the retaining wall needs to have a very long embedded part. , getting bigger and bigger. In addition, the thickness of the retaining wall is determined at the bottom where the water pressure is greatest, so the wall thickness at the top becomes unnecessarily large, which is uneconomical.

【0004】更にまた、一般に逆打ち工法が採用される
ため作業が煩雑になる。本発明は前記従来技術の有する
問題点に鑑みて提案されたもので、その目的とする処は
、山留壁の壁厚及び根入れ深さが節減され、作業性が改
善され、経済性が向上された大深度の円形立坑の構築方
法を提供する点にある。
Furthermore, since the reverse pouring method is generally adopted, the work becomes complicated. The present invention has been proposed in view of the problems of the prior art, and its objectives are to reduce the wall thickness and penetration depth of retaining walls, improve workability, and improve economic efficiency. The object of the present invention is to provide an improved method for constructing a deep circular shaft.

【0005】[0005]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係る立坑の構築方法によれば、地盤内に円
筒状山留壁を構築し、同山留壁内側に立坑を水中掘削し
、同立坑内に複数の可撓性チユーブを円筒状に配設し、
同チユーブ内に液体硬化材料を圧入して前記山留壁内側
に補強リングを構築し、前記立坑内に底版コンクリート
を水中で施工したのち、同立坑内の水を排水するもので
ある。
[Means for Solving the Problems] In order to achieve the above object, according to the method for constructing a shaft according to the present invention, a cylindrical mountain retaining wall is constructed in the ground, and the shaft is constructed underwater inside the mountain retaining wall. excavated and placed multiple flexible tubes in a cylindrical shape within the same shaft.
A reinforcing ring is constructed inside the retaining wall by press-fitting a liquid hardening material into the tube, and a concrete bottom slab is constructed underwater in the shaft, after which water in the shaft is drained.

【0006】[0006]

【作用】本発明によれば所要の地盤に円筒状山留壁を構
築したのち、山留壁内側を水中掘削することによって、
同山留壁の内側に水圧を作用させた状態で立坑を掘削す
ることとなり、山留壁外側に作用する地下水圧と相殺す
る。次いで複数の可撓性チユーブを立坑内に円筒状に配
設し、同チユーブに液体硬化材料を圧入することによっ
て、同チユーブを膨脹させ、前記山留壁内壁面に圧着さ
れた補強リングを構築し、山留壁に水圧を作用させた状
態で立坑の掘削を可能ならしめる。
[Operation] According to the present invention, after constructing a cylindrical mountain retaining wall on the required ground, by underwater excavating the inside of the mountain retaining wall,
The shaft will be excavated with water pressure acting on the inside of the mountain retaining wall, which will offset the groundwater pressure acting on the outside of the mountain retaining wall. Next, a plurality of flexible tubes are arranged in a cylindrical shape in the shaft, and a liquid hardening material is press-fitted into the tubes to expand the tubes, thereby constructing a reinforcing ring that is crimped to the inner wall surface of the retaining wall. This makes it possible to excavate a vertical shaft while applying water pressure to the retaining wall.

【0007】次いで立坑内に底版コンクリートを水中施
工したのち、同立坑内の水を排水することによって、前
記補強リングを構成する可撓性チユーブにより水密性が
保持された大深度の立坑を構築するものである。
[0007] Next, after constructing the bottom concrete submerged in the shaft, the water in the shaft is drained to construct a deep shaft whose watertightness is maintained by the flexible tube constituting the reinforcing ring. It is something.

【0008】[0008]

【実施例】以下本発明を図示の実施例について説明する
と、図1及び図8に示すように、所要の地盤1に円筒状
に山留部材を配置して円筒状山留壁2を構築する。(第
1工程)次いで図2に示すように、円筒状山留壁2の内
側水位3を一定にして、同山留壁2の内側面に所定の水
圧をかけた状態で掘削機4によって立坑を水中掘削する
。(第2工程)図中5はクレーン、6は頂部補強リング
である。
[Embodiment] The present invention will be described below with reference to the illustrated embodiment. As shown in FIGS. 1 and 8, a cylindrical retaining wall 2 is constructed by arranging retaining members in a cylindrical shape on a required ground 1. . (First step) Next, as shown in FIG. 2, the water level 3 inside the cylindrical retaining wall 2 is kept constant, and the excavator 4 is used to dig the vertical shaft while applying a predetermined water pressure to the inner surface of the retaining wall 2. excavate underwater. (Second process) In the figure, 5 is a crane and 6 is a top reinforcing ring.

【0009】次いで図3に示すように深さ方向に連続し
た気密性、耐圧性を有する可撓性チユーブ7よりなる円
筒状体を前記円筒状山留壁2に沿ってセツトする。(第
3工程)図中8は可撓性チユーブ7の吊込み用上部補強
リング、9は可撓性チユーブ7の保形用下部補強リング
である。次いで図4及び図9に示すように、前記可撓性
チユーブ7にセメントモルタル等の液体硬化材料10を
圧入し、前記可撓性チユーブ7を膨脹、硬化させる。 (第4工程)前記各可撓性チユーブ7には図11に示す
如く注入管11及び排気管12が接続され、下部の可撓
性チユーブ7から順次液体硬化材料10を圧入していく
。なお下部の可撓性チユーブ7内の液体硬化材料10が
硬化したのち、隣接する上部の可撓性チユーブ7に液体
硬化材料10を注入する。なお上下の可撓性チユーブ7
の接続強度に余裕があれば、複数の可撓性チユーブ7に
同時に液体硬化材料10を注入してもよい。また可撓性
チユーブ接続部の荷重を減少するため、上部の可撓性チ
ユーブ7内に空気を封入して浮力を利用してもよい。 また液体硬化材料の強度特性を改善するため、繊維を混
入してもよい。
Next, as shown in FIG. 3, a cylindrical body consisting of a flexible tube 7 having airtightness and pressure resistance that is continuous in the depth direction is set along the cylindrical retaining wall 2. (Third Step) In the figure, 8 is an upper reinforcing ring for suspending the flexible tube 7, and 9 is a lower reinforcing ring for retaining the shape of the flexible tube 7. Next, as shown in FIGS. 4 and 9, a liquid hardening material 10 such as cement mortar is press-fitted into the flexible tube 7, and the flexible tube 7 is expanded and hardened. (Fourth step) An injection pipe 11 and an exhaust pipe 12 are connected to each of the flexible tubes 7 as shown in FIG. 11, and the liquid hardening material 10 is sequentially press-fitted from the lower flexible tube 7. Note that after the liquid curable material 10 in the lower flexible tube 7 is cured, the liquid curable material 10 is injected into the adjacent upper flexible tube 7. In addition, the upper and lower flexible tubes 7
If there is sufficient connection strength, the liquid hardening material 10 may be injected into a plurality of flexible tubes 7 at the same time. Furthermore, in order to reduce the load on the flexible tube connection part, air may be sealed in the upper flexible tube 7 to utilize buoyancy. Fibers may also be incorporated to improve the strength properties of the liquid curable material.

【0010】かくして前記山留壁2内側に、液体硬化材
料10の注入によって膨脹した補強リング13を構築し
たのち、図5に示すように立坑内底版の鉄筋篭14を挿
入する。(第5工程)次いで図6に示すように立坑内の
底版コンクリート15をトレミー管16を介して打設す
る。(第6工程)なお前記コンクリート15は締固めの
必要のない高流動コンクリートを使用する。
After the reinforcing ring 13 expanded by injecting the liquid hardening material 10 is thus constructed inside the retaining wall 2, the reinforcing bar cage 14 of the bottom plate of the shaft is inserted into the shaft as shown in FIG. (Fifth step) Next, as shown in FIG. 6, a bottom slab concrete 15 is placed in the shaft via a tremie pipe 16. (Sixth step) As the concrete 15, high fluidity concrete that does not require compaction is used.

【0011】かくして底版コンクリート15が所要強度
に達すると、図7及び図10に示すように立坑内の水を
排水し、必要に応じて立坑内面に仕上げ用コンクリート
17を打設して円形立坑を完成する。(第7工程、最終
工程)
When the bottom slab concrete 15 reaches the required strength, the water in the shaft is drained as shown in FIGS. 7 and 10, and finishing concrete 17 is placed on the inner surface of the shaft as necessary to complete the circular shaft. Complete. (7th step, final step)

【0012】0012

【発明の効果】本発明によれば地盤内に構築された円筒
状山留壁内の掘削時に、同山留壁内側に水圧を作用させ
て、同山留壁外側に作用する地下水圧と相殺させるので
、施工時パイピングやヒービングに対して安全であるた
め、山留壁の根入れ長さを短かくすることができ、仮設
時の補強が少なくなる。また切梁がないため掘削作業が
安全に行なわれる。
According to the present invention, when excavating a cylindrical mountain retaining wall constructed in the ground, water pressure is applied to the inside of the mountain retaining wall to offset the groundwater pressure acting on the outside of the mountain retaining wall. Since it is safe against piping and heaving during construction, the length of the retaining wall to be embedded can be shortened, reducing the need for reinforcement during temporary construction. Additionally, excavation work can be carried out safely because there are no struts.

【0013】また前記山留壁の内側には水中において、
円筒状に接続された複数の可撓性チユーブに液体硬化材
料を注入して、同材料の硬化によって補強リングを構築
するようにしたことによって、山留壁の壁厚を薄くする
ことができるとともに、可撓性チユーブが連続的に配設
された補強リングが山留壁の内側に構築されることによ
って、水密性の高い立坑が構築される。
[0013] Also, inside the mountain retaining wall, underwater,
By injecting a liquid hardening material into a plurality of flexible tubes connected in a cylindrical shape and constructing a reinforcing ring by hardening the same material, the wall thickness of the retaining wall can be reduced. A highly watertight vertical shaft is constructed by constructing a reinforcing ring in which flexible tubes are continuously arranged inside the retaining wall.

【0014】更に本発明によれば施工時に周辺地盤から
地下水を揚水しないため、地盤の沈下や、地下水位の変
動も抑制される。更にまた本発明によれば煩雑な型枠工
が不要となり、施工性が向上される。
Furthermore, according to the present invention, groundwater is not pumped up from the surrounding ground during construction, so ground subsidence and fluctuations in the groundwater level are suppressed. Furthermore, according to the present invention, complicated form work is not necessary, and workability is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る深い円形立坑の構築方法の一実施
例の第1工程を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing the first step of an embodiment of the method for constructing a deep circular shaft according to the present invention.

【図2】本発明の方法の第2工程を示す縦断面図である
FIG. 2 is a longitudinal sectional view showing the second step of the method of the invention.

【図3】本発明の方法の第3工程を示す縦断面図である
FIG. 3 is a longitudinal sectional view showing the third step of the method of the invention.

【図4】本発明の方法の第4工程を示す縦断面図である
FIG. 4 is a longitudinal sectional view showing the fourth step of the method of the present invention.

【図5】本発明の方法の第5工程を示す縦断面図である
FIG. 5 is a longitudinal sectional view showing the fifth step of the method of the present invention.

【図6】本発明の方法の第6工程を示す縦断面図である
FIG. 6 is a longitudinal sectional view showing the sixth step of the method of the present invention.

【図7】本発明の方法の最終工程を示す縦断面図である
FIG. 7 is a longitudinal cross-sectional view showing the final step of the method of the invention.

【図8】図1の横断平面図である。FIG. 8 is a cross-sectional plan view of FIG. 1;

【図9】図4の横断平面図である。FIG. 9 is a cross-sectional plan view of FIG. 4;

【図10】図7の横断平面図である。FIG. 10 is a cross-sectional plan view of FIG. 7;

【図11】可撓性チユーブの連続体の部分縦断面図であ
る。
FIG. 11 is a partial longitudinal sectional view of a series of flexible tubes.

【符号の説明】[Explanation of symbols]

1    地盤 2    円筒状山留壁 4    掘削機 7    可撓性チユーブ 11  注入管 12  排気管 13  補強リング 15  底版コンクリート 1. Ground 2 Cylindrical mountain retaining wall 4 Excavator 7 Flexible tube 11 Injection tube 12 Exhaust pipe 13 Reinforcement ring 15 Bottom slab concrete

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  地盤内に円筒状山留壁を構築し、同山
留壁内側に立坑を水中掘削し、同立坑内に複数の可撓性
チユーブを円筒状に配設し、同チユーブ内に液体硬化材
料を圧入して前記山留壁内側に補強リングを構築し、前
記立坑内に底版コンクリートを水中で施工したのち、同
立坑内の水を排水することを特徴とする深い円形立坑の
構築方法。
[Claim 1] A cylindrical mountain retaining wall is constructed in the ground, a vertical shaft is excavated underwater inside the mountain retaining wall, a plurality of flexible tubes are arranged in a cylindrical shape within the vertical shaft, and a plurality of flexible tubes are arranged in a cylindrical shape within the vertical shaft. A deep circular shaft is characterized in that a reinforcing ring is constructed inside the retaining wall by press-fitting a liquid hardening material into the shaft, and a bottom slab concrete is constructed underwater in the shaft, and then water in the shaft is drained. Construction method.
JP3048186A 1991-03-13 1991-03-13 How to build a deep circular shaft Expired - Lifetime JP2571730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3048186A JP2571730B2 (en) 1991-03-13 1991-03-13 How to build a deep circular shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3048186A JP2571730B2 (en) 1991-03-13 1991-03-13 How to build a deep circular shaft

Publications (2)

Publication Number Publication Date
JPH04285290A true JPH04285290A (en) 1992-10-09
JP2571730B2 JP2571730B2 (en) 1997-01-16

Family

ID=12796357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3048186A Expired - Lifetime JP2571730B2 (en) 1991-03-13 1991-03-13 How to build a deep circular shaft

Country Status (1)

Country Link
JP (1) JP2571730B2 (en)

Also Published As

Publication number Publication date
JP2571730B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
US3431736A (en) Method of constructing underground concrete walls
CN105887806A (en) Assembled type underground diaphragm wall and construction method thereof
US20160376762A1 (en) Construction method for planting hollow columns in a seabed of a marine environment for supporting waterborne structures thereon
CN108612111B (en) Steel pipe pile, foundation pit support structure and construction method of foundation pit support structure
CN104452829A (en) Piled raft foundation anti-floating structure and construction method
CN102561371A (en) Steel caisson enclosure structure at island-tunnel combination part
JP3423394B2 (en) Underwater frame structure
CN111576406A (en) Construction process of bored pile in complex soil layer and steel casing for construction
CN205776157U (en) Assembled underground continuous wall
CN111779022A (en) Novel structure of underground comprehensive pipe gallery in anti-settling and anti-inclining soft soil foundation and construction method thereof
KR20010096389A (en) Construction Method of Direct Foundation for using Caisson
JP2007009505A (en) Foundation reinforcing method
CN105625480A (en) Anti-floating method and structure for open-segment tunnel structure
CN110700270B (en) Construction method for non-drainage earthwork excavation of ultra-deep foundation pit
CN217419736U (en) Compensation type construction structure for underground engineering construction
JP2571730B2 (en) How to build a deep circular shaft
CN1107536A (en) Splitting grouting and water-proof curtain construction method and equipment
CN211113774U (en) Assembled PC basement lateral wall post-cast strip structure
CN109778873B (en) Method and device for grouting and water stopping between enclosure piles
JPS62268418A (en) Formation of pile
JPS5936058B2 (en) How to construct a structure using underground continuous walls
CN212477843U (en) Anti-floating structure for implanting prefabricated anchor rod by utilizing substrate reinforcement body
CN213926295U (en) Hole wall supporting device of pile foundation pit hole
CN114232601B (en) Construction method of lower building envelope wall of pipeline
CN116537198B (en) Pipe pile sectional grouting device without filling karst cave and construction method thereof