JPH04285174A - Ecr plasma treating device - Google Patents

Ecr plasma treating device

Info

Publication number
JPH04285174A
JPH04285174A JP4527391A JP4527391A JPH04285174A JP H04285174 A JPH04285174 A JP H04285174A JP 4527391 A JP4527391 A JP 4527391A JP 4527391 A JP4527391 A JP 4527391A JP H04285174 A JPH04285174 A JP H04285174A
Authority
JP
Japan
Prior art keywords
solenoid
ecr
plasma
magnetic field
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4527391A
Other languages
Japanese (ja)
Other versions
JP2976553B2 (en
Inventor
Yasuaki Nagao
長尾 泰明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3045273A priority Critical patent/JP2976553B2/en
Publication of JPH04285174A publication Critical patent/JPH04285174A/en
Application granted granted Critical
Publication of JP2976553B2 publication Critical patent/JP2976553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a diffused magnetic field capable of uniformizing the infrasurface distribution of the speed to treat the surface of a substrate in the ECR plasma treating device in which ECR plasma is produced by the interaction between the magnetic field and microwave in the cylindrical microwave resonator, and the plasma is introduced into the adjacent reaction chamber from the plasma drawing port in the end face of the resonator by the diffused magnetic field to apply CVD, etc., to the surface of the substrate in the reaction chamber. CONSTITUTION:A diffused magnetic field is formed by the cylindrical solenoid 6 arranged coaxially with a cylindrical microwave resonator 5, the length of the solenoid 6 is controlled to 0.8 times its inner diameter to reduce the axial thickness of the ECR resonance magnetic flux density region, hence the effect of the radial thickness distribution of the region on the radial distribution of the plasma density is reduced at the substrate position, and the end of the solenoid where the radial distribution of the magnetic flux density is uniformized or an external magnetic field is utilized for the treatment.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、半導体の製造などに
使用される装置であって、マイクロ波と磁場との電子サ
イクロトロン共鳴 (以下ECRと略記する) により
生じたプラズマを、CVD (Chemical Va
por Deposition)による薄膜形成やエッ
チング等、基板表面の処理に利用するECRプラズマ処
理装置に関する。
[Industrial Application Field] The present invention is an apparatus used in the manufacture of semiconductors, etc., which converts plasma generated by electron cyclotron resonance (hereinafter abbreviated as ECR) between microwaves and a magnetic field into CVD (Chemical Vapor Deposition).
The present invention relates to an ECR plasma processing apparatus used for processing substrate surfaces, such as thin film formation and etching by por deposition.

【0002】0002

【従来の技術】この種のマイクロ波プラズマ処理装置と
してECR (Electron Cycrotron
 Resonance) プラズマを用いたプロセス技
術が注目されている。ECRプラズマとは、磁場とマイ
クロ波との共鳴効果を用いて電子を加速し、この電子の
運動エネルギーを用いてガスを電離してプラズマを発生
させる原理にもとづくものである。 マイクロ波に励振された電子は磁力線の周りを円運動し
、その際、遠心力とローレンツ力とがバランスする条件
をECR条件と呼んでいる。遠心力をmrω2 ,ロー
レンツ力を−qrωBで表すと、これらがバランスする
条件は、ω/B=q/mである。ここでωはマイクロ波
の角周波数, Bは磁束密度, q/mは電子の比電荷
である。マイクロ波周波数は工業的に認められている2
.45GHz が一般に用いられ、その場合の共鳴磁束
密度は875ガウスである。
[Prior Art] As this type of microwave plasma processing apparatus, an ECR (Electron Cyclotron) is used.
(Resonance) Process technology using plasma is attracting attention. ECR plasma is based on the principle of accelerating electrons using the resonance effect of a magnetic field and microwaves, and using the kinetic energy of the electrons to ionize gas to generate plasma. Electrons excited by microwaves move circularly around magnetic lines of force, and the condition in which centrifugal force and Lorentz force are balanced is called the ECR condition. When the centrifugal force is represented by mrω2 and the Lorentz force is represented by -qrωB, the condition for these to be balanced is ω/B=q/m. Here, ω is the angular frequency of the microwave, B is the magnetic flux density, and q/m is the specific charge of the electron. Microwave frequencies are industrially recognized2
.. 45 GHz is commonly used, with a resonant magnetic flux density of 875 Gauss.

【0003】上記のようなECRプラズマCVD, エ
ッチング装置として、例えば図5に示すものが知られて
いる。この装置の構成および動作の概要を以下に説明す
る。まず、プラズマ生成室3, 反応室9を図示しない
排気手段により真空排気しておき、ガス供給手段4から
例えばO2 ガスをプラズマ生成室3に流したところへ
、マイクロ波発生器17で発生したマイクロ波を、その
伝達手段である導波管1を介してプラズマ生成室3へ導
入する。前記導波管1とプラズマ生成室3との間には大
気圧下にある導波管1側と真空排気されたプラズマ生成
室3とを気密に隔離するための真空窓2を設けてある。 プラズマ生成室3の上部には中心に大口径の開口7aを
有する金属板製アパーチャ7が取りつけられており、こ
のアパーチャ7とプラズマ生成室3とで半解放のマイク
ロ波共振器を構成している。この共振器の外部には励磁
用ソレノイド6が配置され、共振器5内に共鳴磁束密度
領域が形成され、効率よくプラズマを発生する。このプ
ラズマがソレノイド6が形成する磁力線に沿って反応室
9内に押し出され、基板台10に向かう空間内に反応ガ
ス供給シャワ20から例えばモノシランガス (SiH
4 ) を供給して、このガスを前記プラズマにより活
性化すると、活性種が、被加工試料である基板11と反
応して基板表面にシリコン酸化膜が形成される。
As an example of the ECR plasma CVD and etching apparatus described above, the one shown in FIG. 5 is known. The configuration and operation of this device will be outlined below. First, the plasma generation chamber 3 and the reaction chamber 9 are evacuated by an evacuation means (not shown), and the microwave generated by the microwave generator 17 is supplied to the plasma generation chamber 3 by flowing O2 gas from the gas supply means 4 into the plasma generation chamber 3. Waves are introduced into the plasma generation chamber 3 via a waveguide 1 which is a means of transmitting the waves. A vacuum window 2 is provided between the waveguide 1 and the plasma generation chamber 3 to airtightly isolate the waveguide 1 side under atmospheric pressure from the evacuated plasma generation chamber 3. A metal plate aperture 7 having a large-diameter opening 7a in the center is attached to the upper part of the plasma generation chamber 3, and this aperture 7 and the plasma generation chamber 3 constitute a semi-open microwave resonator. . An excitation solenoid 6 is arranged outside this resonator, and a resonant magnetic flux density region is formed within the resonator 5 to efficiently generate plasma. This plasma is pushed out into the reaction chamber 9 along the magnetic field lines formed by the solenoid 6, and is supplied from the reaction gas supply shower 20 into the space facing the substrate table 10 using, for example, monosilane gas (SiH).
4) is supplied and this gas is activated by the plasma, the activated species react with the substrate 11, which is the sample to be processed, and a silicon oxide film is formed on the surface of the substrate.

【0004】0004

【発明が解決しようとする課題】従来のこの種のECR
プラズマ処理装置として特公昭62−43335 号公
報のほか、種々の技術内容が開示されている。
[Problem to be solved by the invention] Conventional ECR of this type
In addition to Japanese Patent Publication No. Sho 62-43335, various technical contents have been disclosed as a plasma processing apparatus.

【0005】ところで一般に半導体加工プロセスの最も
重要な特性の一つに加工速度の面内分布の均一性がある
。たとえば今日もっとも一般的に用いられている6イン
チウエハの加工装置で普通要求される加工速度の面内分
布は±5%以下である。しかし、ECRプラズマにおい
ては、面内分布を均一にするための反応制御は技術が未
成熟であり、そのため、6インチ程度の大きさのウエハ
に対しては良くても面内分布±15%が限界であった。
Generally speaking, one of the most important characteristics of a semiconductor processing process is the uniformity of the in-plane distribution of processing speed. For example, in the 6-inch wafer processing equipment most commonly used today, the in-plane distribution of processing speed normally required is ±5% or less. However, in ECR plasma, the technology for reaction control to make the in-plane distribution uniform is still immature, so for a 6-inch wafer, at best the in-plane distribution is ±15%. That was the limit.

【0006】本発明の目的は、この加工速度の面内分布
を大幅に改善することのできるECRプロセス処理装置
を提供することである。
An object of the present invention is to provide an ECR processing apparatus that can significantly improve the in-plane distribution of processing speed.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、この発明においては、円筒状に形成され両端面にそ
れぞれマイクロ波透過窓により気密に閉鎖される開口と
,アパーチャが形成するプラズマ引出し口とを備えたマ
イクロ波共振器内で磁場とマイクロ波との相互作用によ
りECRプラズマを発生させ、このプラズマを該共振器
端面のプラズマ引出し口から磁場拡散効果により隣接の
反応室に導き、反応室内の基板台に装着した半導体基板
上にCVD, エッチング等の加工反応を、プラズマに
より生じた活性種およびイオンの作用で行わせるECR
プラズマ処理装置において、前記磁場を発生する手段と
してマイクロ波共振器と同軸に配される円筒形ソレノイ
ドを用い、その軸方向長さをその内径の0.8倍以下と
するものとする。
[Means for Solving the Problems] In order to solve the above problems, the present invention has an opening formed in a cylindrical shape and hermetically closed by microwave transmission windows on both end faces, and a plasma drawer formed by an aperture. ECR plasma is generated in a microwave resonator equipped with an opening by the interaction of a magnetic field and microwaves, and this plasma is guided to an adjacent reaction chamber from a plasma extraction port on the end face of the resonator by the magnetic field diffusion effect, and a reaction occurs. ECR uses the action of active species and ions generated by plasma to perform processing reactions such as CVD and etching on a semiconductor substrate mounted on a substrate stand in the room.
In the plasma processing apparatus, a cylindrical solenoid disposed coaxially with the microwave resonator is used as a means for generating the magnetic field, and its axial length is 0.8 times or less the inner diameter.

【0008】そして、このように形成された円筒形ソレ
ノイドは、該ソレノイドの幾何学的中心が、マイクロ波
共振器の一方の端面の開口を気密に閉鎖するマイクロ波
透過窓のマイクロ波共振器内部空間側の面の該内部空間
と反対の側に位置するように配置するのがよい。
The cylindrical solenoid thus formed has a geometric center located inside the microwave resonator of the microwave transmission window that hermetically closes the opening on one end face of the microwave resonator. It is preferable to arrange it so that it is located on the side opposite to the internal space on the surface on the space side.

【0009】また、軸方向長さを内径の0.8倍以下と
した円筒形ソレノイドによって形成される共鳴磁束密度
領域が、ソレノイドの幾何学的中心から軸方向にソレノ
イド長の1/4 以上離れて位置するようにソレノイド
電流が調整された装置とすれば好適である。
[0009] Furthermore, the resonant magnetic flux density region formed by a cylindrical solenoid whose axial length is 0.8 times or less the inner diameter is spaced axially from the geometric center of the solenoid by at least 1/4 of the solenoid length. It is preferable to use a device in which the solenoid current is adjusted so that the solenoid is located at the same position.

【0010】さらに、磁場を発生する手段としての円筒
形ソレノイドとマイクロ波共振器との軸方向相対位置を
可変とするための円筒形ソレノイドの駆動および位置決
めの手段を設けた装置とすればさらに好適である。
[0010] Furthermore, it is even more preferable that the device is provided with means for driving and positioning the cylindrical solenoid in order to vary the relative position in the axial direction between the cylindrical solenoid as the means for generating a magnetic field and the microwave resonator. It is.

【0011】また、円筒形ソレノイドは、巻線に内部水
冷銅管を用いて作成するようにするのがよい。
[0011] The cylindrical solenoid is also preferably constructed using an internally water-cooled copper tube for the winding.

【0012】0012

【作用】ECRプラズマ処理装置において、加工速度の
面内分布を一様にするためには、プラズマ発生領域での
プラズマ密度の均一性をはかることが重要である。EC
Rプラズマはマイクロ波がもたらす電場とソレノイドが
もたらす磁場との相互作用により生じるが、このうち、
電場の影響は、電離に与かる電子エネルギーが電場の強
度に比例することから、同一磁場中では、電場の強さを
増すことにより、プラズマ密度の半径方向分布の均一性
を改善することができるが、磁場とマイクロ波電界とが
組み合わされたときの電離度は、磁束密度が共鳴磁束密
度を外れると急に小さくなり、共鳴磁束密度領域の半径
方向分布はプラズマ密度の半径方向分布にクリティカル
に影響する。そして、共鳴磁束密度領域の半径方向分布
によるプラズマ密度の不均一を電場の強度により補うこ
とはもはや困難である (静磁場と交番電界の存在にお
ける電子運動の理論的考察については奥田孝美著, 電
磁力学 (コロナ社) に詳述されている) 。従って
、共鳴磁束密度領域の共振器内半径方向の均一性はマイ
クロ波強度の均一性に比して決定的に比重が大きい。
[Operation] In an ECR plasma processing apparatus, in order to make the in-plane distribution of processing speed uniform, it is important to ensure uniformity of plasma density in the plasma generation region. EC
R plasma is generated by the interaction between the electric field generated by microwaves and the magnetic field generated by the solenoid.
The effect of the electric field is that the electron energy that contributes to ionization is proportional to the electric field strength, so in the same magnetic field, increasing the electric field strength can improve the uniformity of the radial distribution of plasma density. However, the degree of ionization when a magnetic field and a microwave electric field are combined suddenly decreases when the magnetic flux density deviates from the resonant magnetic flux density, and the radial distribution of the resonant magnetic flux density region becomes critical to the radial distribution of the plasma density. Affect. It is now difficult to compensate for the non-uniformity of plasma density due to the radial distribution of the resonant magnetic flux density region by the strength of the electric field. Mechanics (described in detail in Corona Publishing). Therefore, the uniformity of the resonant magnetic flux density region in the radial direction within the resonator is decisively more important than the uniformity of the microwave intensity.

【0013】本発明は、ソレノイドの形状を工夫するこ
とにより、ECR共鳴磁束密度領域の半径方向の均一な
分布を従来とちがった方法によって与え、従来方法では
得られなかったウエハ加工の面内分布の向上を得ようと
するものである。
The present invention provides a uniform distribution in the radial direction of the ECR resonance magnetic flux density region by devising the shape of the solenoid using a method different from the conventional method, thereby improving the in-plane distribution of wafer processing that could not be obtained with the conventional method. The aim is to improve the

【0014】磁束密度の半径方向の分布を均一化するた
めに通常考えつくことは理想ソレノイドの使用である。 理想ソレノイドとは長さ無限大のソレノイドであり、具
体的設計にあたってはこれに近づけるために口径に比し
て長さの大きいソレノイドをつくり、その幾何学的中心
付近の磁場を用いるのが一般的であった。事実、ソレノ
イドの幾何学的中心を基準にみると半径方向の磁束密度
の分布は ”長い” ソレノイドほど均一である。
[0014] In order to equalize the radial distribution of magnetic flux density, the usual idea is to use an ideal solenoid. An ideal solenoid is a solenoid with infinite length, and in order to approximate this in concrete design, it is common to create a solenoid with a longer length than its diameter and use a magnetic field near its geometric center. Met. In fact, when viewed from the geometric center of the solenoid, the distribution of magnetic flux density in the radial direction is more uniform the longer the solenoid is.

【0015】図2にソレノイドの形状と半径方向磁束密
度の均一性に関する線図を示す。円筒形ソレノイドの幾
何学的中心の磁束密度をBo , ソレノイド内周面の
軸方向中央の磁束密度をBm とし、κ=Bm/Bo 
とおくと、κ=1に近づけるほどソレノイドとしては良
いと考えられ、そのためにはソレノイドの長さと内径の
比すなわちβ=b/a1 を大きくするべきだと考えら
れ、事実そのような設計が実際に採用されてきた。とこ
ろが、このようなβの大きい, 細長い円筒ソレノイド
をその中心近傍で用いる方法には大きいデメリットが存
在することが実験的に明らかとなった。これを理論的に
考察してみると、 ”細長い” ソレノイドは軸方向の
磁束密度分布も均一性が高く、これがデメリットの原因
を構成していることが分かる。そのデメリットとは、 
”細長い” ソレノイドを用いて作ったECR共鳴磁束
密度領域 (以下ECRゾーンとも記す) は軸方向の
奥ゆきが深く、そのため、電子が磁力線に沿って下流へ
進むさい電子の磁力線まわりの加速が極めて強く行われ
る。その反面、ECRゾーンの奥ゆき深さの半径方向分
布のわずかな不均一でも反応速度には極端な差異となっ
てあらわれ、CVDを例にとれば、膜質が極めて良く膜
厚も大きい場所と膜質が劣り膜厚も小さい場所とがウエ
ハ上に共存し、結局、プラズマの加工能力の面内分布が
悪すぎて実用には耐えないという結果に導く点である。
FIG. 2 shows a diagram regarding the shape of the solenoid and the uniformity of the radial magnetic flux density. The magnetic flux density at the geometric center of the cylindrical solenoid is Bo, the magnetic flux density at the axial center of the inner peripheral surface of the solenoid is Bm, and κ=Bm/Bo
Therefore, it is considered that the closer the solenoid is to κ = 1, the better the solenoid is, and for this purpose, the ratio of the solenoid's length to inner diameter, that is, β = b / a1, should be increased, and in fact, such a design is not practical. has been adopted by However, experiments have revealed that there are major disadvantages to the method of using such a long and thin cylindrical solenoid with a large β near its center. If we consider this theoretically, we can see that the ``elongated'' solenoid has a highly uniform magnetic flux density distribution in the axial direction, and this constitutes the cause of the disadvantage. What are its disadvantages?
The ECR resonance magnetic flux density region (hereinafter also referred to as the ECR zone) created using a "slender" solenoid has a deep depth in the axial direction, so when electrons move downstream along the magnetic field lines, the acceleration of the electrons around the magnetic field lines is extremely strong. It will be done. On the other hand, even a slight non-uniformity in the radial depth distribution of the ECR zone results in an extreme difference in the reaction rate. Taking CVD as an example, there are areas where the film quality is extremely good and the film thickness is large, and where the film quality is very thick. The problem is that areas with poor quality and small film thickness coexist on the wafer, leading to the result that the in-plane distribution of plasma processing ability is too poor to be practical.

【0016】この発明は、 ”細長い” コイルのそう
した欠点を克服するための方法であり、その特徴を端的
に言い表すと、 ”太く短い” ソレノイドを用いた装
置ということになる。その利点を以下に述べる。
The present invention is a method for overcoming such drawbacks of the "long and thin" coil, and its features can be simply described as a device using a "thick and short" solenoid. The advantages are described below.

【0017】長さの有限な円筒ソレノイドのつくる磁束
密度を計算する手法のひとつとして、図3に示すような
,4個の半無限長の円柱コイルのつくる磁束密度をさし
ひきする方法が知られている。この方法は、図の下方に
示す, 長さがz1 −z2 , 内径が2a1 , 
外径が2a2 の円筒形コイルの軸線上z1 , 半径
方向ρの位置Pの磁場を求めるのに、半径がa2 で端
面から左方へ無限の長さをもつ第1の円柱コイルに軸ま
わり電流密度がコイルの全縦断面にわたり1となるよう
に励磁電流を流したときに位置Pに生じる磁場h1 と
、半径がa2 で端面が第1の円柱コイルよりz1 −
z2 だけ左方へずれた位置にあって左方へ無限の長さ
をもつ第2の円柱コイルに励磁電流を第1の円柱コイル
と反対の方向に同一電流密度で流したときに位置Pに生
じる磁場h2 と、半径がa1 で端面が第2の円柱コ
イルと同位置にあって左方へ無限の長さをもつ第3の円
柱コイルに励磁電流を第2の円柱コイルと反対の方向に
同一電流密度で流したときに位置Pに生じる磁場h3 
と、半径がa1 で端面が第1の円柱コイルと同位置に
あって左方へ無限の長さをもつ第4の円柱コイルに励磁
電流を第3の円柱コイルと反対の方向に同一電流密度で
流したときに位置Pに生じる磁場h4 とをベクトル的
に加算して求めるものであり、従って、半無限長円柱コ
イルが作る磁場の軸方向成分の半径方向分布が軸方向の
距離zとともにどのように変化するかを知れば、有限長
円筒形コイルが作る磁場の軸方向成分の半径方向分布の
軸方向変化を知ることができる。
One of the methods for calculating the magnetic flux density produced by a cylindrical solenoid with a finite length is to subtract the magnetic flux density produced by four semi-infinite length cylindrical coils, as shown in FIG. It is being This method is shown at the bottom of the figure, with a length of z1 - z2, an inner diameter of 2a1,
To find the magnetic field at position P on the axis z1 and radial direction ρ of a cylindrical coil with an outer diameter of 2a2, apply an axial current to the first cylindrical coil with a radius a2 and an infinite length from the end face to the left. The magnetic field h1 generated at position P when an excitation current is passed so that the density is 1 over the entire longitudinal section of the coil, and the magnetic field h1 which is generated at position P and whose radius is a2 and whose end face is z1 − from the first cylindrical coil.
When an excitation current is passed at the same current density in the opposite direction to the first cylindrical coil through a second cylindrical coil which is located at a position shifted to the left by z2 and has an infinite length to the left, it reaches position P. Using the generated magnetic field h2, an excitation current is applied in the opposite direction to the second cylindrical coil to a third cylindrical coil with a radius a1 and an end face located at the same position as the second cylindrical coil and having an infinite length to the left. Magnetic field h3 generated at position P when flowing with the same current density
Then, an excitation current is applied to a fourth cylindrical coil whose radius is a1, whose end face is located at the same position as the first cylindrical coil, and which has an infinite length to the left with the same current density in the opposite direction to that of the third cylindrical coil. It is calculated by vectorially adding the magnetic field h4 generated at position P when flowing at If we know how the axial component of the magnetic field generated by the finite length cylindrical coil changes in the radial direction, we can know the axial change in the radial distribution.

【0018】円柱コイルによる点P (ρ, z) の
磁束密度ベクトルB (ρ, z) は、
The magnetic flux density vector B (ρ, z) at the point P (ρ, z) due to the cylindrical coil is:

【0019】[0019]

【数1】[Math 1]

【0020】なる函数で表される。ここにμは真空の透
磁率, iは円柱コイルの軸まわり電流の電流密度, 
aは円柱の半径であり、zの原点は円柱の端面に選ぶ、
函数hは磁場強度ベクトルを表し、線図の形で公知資料
 (例えば電気学会発行, 超伝導ハンドブック) に
与えられており、磁場強度の軸方向成分hz は、ρ,
 zをaで正規化したとき、図4に示すグラフで求めら
れる。
It is expressed by the function: Here, μ is the vacuum permeability, i is the current density of the current around the axis of the cylindrical coil,
a is the radius of the cylinder, and the origin of z is chosen at the end face of the cylinder.
The function h represents the magnetic field strength vector and is given in the form of a diagram in publicly known materials (for example, the Superconductivity Handbook published by the Institute of Electrical Engineers of Japan), and the axial component hz of the magnetic field strength is ρ,
When z is normalized by a, the graph shown in FIG. 4 is obtained.

【0021】このグラフでたとえばρ=0とρ=0.1
のカーブを比較したとき、z=−2では10:9程の比
をもっているhz が、zが0に近づくにつれてその比
が1に近づき、z≧0では比は1となることが分かる。 このことは、磁束がソレノイドの幾何学的中心から軸方
向に進むにつれて発散する際に、軸線上の磁束の発散の
仕方が、軸線を外れた位置の磁束の発散の仕方よりも大
きくなり、磁束密度が軸方向の距離とともに半径方向に
均一化して行くことを示し、 ”太く短い” ソレノイ
ドであっても、ソレノイドの端部付近もしくは外部で用
いることにより磁束密度の半径方向の均一性は保ちうる
ことを意味する。ECRプラズマ加工プロセスは磁場発
散効果を用いているため、6インチ程度以上のウエハで
あっても、その加工のもととなるECRプラズマに要求
される横方向の寸法はそう大きくはないため、 ”太く
短い” ソレノイドは、実用上十分な半径方向の磁束密
度分布を与える。しかも、このようにして得たECR共
鳴磁束密度領域は軸方向の奥ゆきが浅いため、共鳴領域
の奥ゆき深さの分布を非共鳴領域の電子加速で補う余地
が残されており、総合的にみて均一性にすぐれたECR
プラズマ処理装置を提供することが判明した。
In this graph, for example, ρ=0 and ρ=0.1
When comparing the curves, it can be seen that hz has a ratio of about 10:9 at z=-2, but as z approaches 0, the ratio approaches 1, and when z≧0, the ratio becomes 1. This means that as the magnetic flux diverges as it travels axially from the geometric center of the solenoid, the way the magnetic flux diverges on the axis is greater than the way the magnetic flux diverges off-axis, and the magnetic flux This shows that the density becomes uniform in the radial direction as the distance in the axial direction increases, and even with a "thick and short" solenoid, the uniformity of the magnetic flux density in the radial direction can be maintained by using it near the end of the solenoid or outside. It means that. Since the ECR plasma processing process uses the magnetic field divergence effect, the lateral dimension required of the ECR plasma that is the source of processing is not so large, even for wafers of about 6 inches or more. A thick and short solenoid provides a practically sufficient radial magnetic flux density distribution. Moreover, since the ECR resonance magnetic flux density region obtained in this way has a shallow depth in the axial direction, there is still room to compensate for the depth distribution of the resonance region by electron acceleration in the non-resonance region, and from a comprehensive perspective. ECR with excellent uniformity
It has been found that plasma processing equipment is provided.

【0022】また、円筒形ソレノイドの幾何学的中心を
、マイクロ波透過窓のマイクロ波共振器内部空間側の面
よりも外側に位置させると、プラズマが発散磁場の低磁
束密度方向へ移動する性質から、マイクロ波透過窓方向
へ進むプラズマがなくなり、マイクロ波透過窓の熱損傷
を防止することができ、半導体基板の加工速度の面内分
布均一化のための処理条件 (例えばECR共鳴磁束密
度領域の形成位置, マイクロ波電力など) の大幅な
変化が可能になる。
Furthermore, if the geometric center of the cylindrical solenoid is located outside the surface of the microwave transmission window facing the microwave resonator internal space, the plasma will move in the direction of low magnetic flux density of the divergent magnetic field. As a result, there is no plasma moving toward the microwave transmission window, and thermal damage to the microwave transmission window can be prevented. (formation position, microwave power, etc.) can be changed significantly.

【0023】また、ソレノイドの軸方向の長さを内径の
0.8倍以下とした短いソレノイドの幾何学的中心から
軸方向にソレノイド長の1/4 以上離れた位置にEC
R共鳴磁束密度領域を形成すると、電子の加速に与かる
ECR共鳴磁束密度領域の奥ゆき深さが十分短くなり、
奥ゆき深さの半径方向分布がプラズマ密度の半径方向分
布に与える影響がウエハ位置では実質的に消滅し、実験
によれば、均一化された磁束密度に従い、ウエハ位置で
のプラズマ密度が半径方向に均一な分布を示すことが確
認された。
[0023] Furthermore, an EC is installed at a position axially away from the geometrical center of a short solenoid whose axial length is 0.8 times or less than the inner diameter.
When the R resonance magnetic flux density region is formed, the depth of the ECR resonance magnetic flux density region that contributes to electron acceleration becomes sufficiently short,
Experiments have shown that the influence of the radial depth distribution on the radial distribution of plasma density virtually disappears at the wafer position, and that the plasma density at the wafer position changes in the radial direction according to the uniform magnetic flux density. It was confirmed that the distribution was uniform.

【0024】なお、ECRプラズマ装置を、磁場を発生
する手段としての円筒形ソレノイドとマイクロ波共振器
との軸方向相対位置を可変とするための円筒形ソレノイ
ドの駆動および位置決めの手段を設けた装置とすれば、
ソレノイド電流を変えてECR共鳴磁束密度領域の形成
位置を変化させたとき、ウエハに対するソレノイドの最
適相対位置を容易に求めることができる。
[0024] The ECR plasma apparatus is an apparatus provided with means for driving and positioning the cylindrical solenoid in order to vary the relative axial position of the cylindrical solenoid as a means for generating a magnetic field and the microwave resonator. given that,
When the formation position of the ECR resonance magnetic flux density region is changed by changing the solenoid current, the optimum relative position of the solenoid with respect to the wafer can be easily determined.

【0025】また、円筒形ソレノイドを、巻線に内部水
冷銅管を用いて形成すれば、巻線に大電流を流すことが
できるので、ECR共鳴磁束密度領域の形成位置を幅広
く変えることができ、最適処理条件をより完全に求める
ことができる。
Furthermore, if a cylindrical solenoid is formed using an internal water-cooled copper tube for the winding, a large current can be passed through the winding, so the formation position of the ECR resonance magnetic flux density region can be varied widely. , the optimal processing conditions can be determined more completely.

【0026】[0026]

【実施例】図1に本発明の一実施例を示す。図において
、図5と同一の部材には同一符号が付されている。この
実施例では、マイクロ波共振器5はTE113モードの
ものとして形成され、また、励磁ソレノイド6の寸法は
、内径Dを350mm, 長さLを250mm, 厚み
を40mmとし、マイクロ波共振器5と同軸に配置され
ている。 ソレノイド6は、これを軸方向に駆動し、かつ所望の位
置に固定させる駆動・位置決め装置として、ここには特
に詳細構造を図示していないが、ソレノイド6を載置す
る台を上下駆動するねじ棒と,ねじ棒を回転駆動する,
減速手段を備えたモータとからなる駆動機構と、モータ
の回転数とソレノイドの上下方向移動量との関係から、
所要回転数を予めセットしかつセットされた回転数回転
した時点でモータの回転を停止させる制御手段からなる
位置決め装置とからなる駆動・位置決めのメカニズムを
備えている。ソレノイド6の電流を増大させることによ
り、ECR共鳴磁束密度の発生域を、ソレノイド6の幾
何学的中心21からソレノイド長の1/4 より遠方に
位置させることができる。このとき、コイル中の電流密
度が大きくなり、コイルが過熱されることの対策として
、ソレノイド6の巻線には内部水冷銅管が用いてある。
Embodiment FIG. 1 shows an embodiment of the present invention. In the figure, the same members as in FIG. 5 are given the same reference numerals. In this embodiment, the microwave resonator 5 is formed in the TE113 mode, and the excitation solenoid 6 has an inner diameter D of 350 mm, a length L of 250 mm, and a thickness of 40 mm. arranged coaxially. The solenoid 6 is a drive/positioning device that drives the solenoid 6 in the axial direction and fixes it at a desired position.Although the detailed structure is not shown here, there is a screw that drives the table on which the solenoid 6 is placed up and down. Rotating rod and threaded rod,
From the relationship between the drive mechanism consisting of a motor equipped with a deceleration means, the rotation speed of the motor, and the amount of vertical movement of the solenoid,
The motor is equipped with a drive/positioning mechanism comprising a positioning device comprising a control means for setting a required number of revolutions in advance and stopping the rotation of the motor when the motor has rotated at the set number of revolutions. By increasing the current in the solenoid 6, the region where the ECR resonance magnetic flux density occurs can be located farther from the geometric center 21 of the solenoid 6 than 1/4 of the solenoid length. At this time, an internal water-cooled copper tube is used for the winding of the solenoid 6 to prevent the coil from becoming overheated due to the increase in current density in the coil.

【0027】この実施例の装置において、ECR共鳴磁
束密度領域をソレノイド6の幾何学的中心21からソレ
ノイド長の1/4 より遠方に形成し、プラズマ密度を
プローブを用いて測定すると、反応室の基板位置で半径
方向に均一な分布を示した。そして、シリコン酸化膜の
成膜では、6インチ基板に±4%の膜厚分布が得られた
In the apparatus of this embodiment, when the ECR resonance magnetic flux density region is formed at a distance of more than 1/4 of the solenoid length from the geometric center 21 of the solenoid 6 and the plasma density is measured using a probe, it is found that the plasma density in the reaction chamber is It showed a uniform distribution in the radial direction at the substrate position. In forming the silicon oxide film, a film thickness distribution of ±4% was obtained on a 6-inch substrate.

【0028】[0028]

【発明の効果】本発明によれば、以下に記載する効果を
得ることができる。
[Effects of the Invention] According to the present invention, the following effects can be obtained.

【0029】請求項1の装置では、軸方向の長さを内径
の0.8倍以下の寸法とした,太く短いソレノイドを用
いてECR共鳴磁束密度領域を形成するようにしたので
、ECR共鳴磁束密度領域の軸方向奥ゆき深さが浅くな
り、ECR共鳴磁束密度領域の奥ゆき深さの半径方向分
布が、基板位置でのプラズマ密度の半径方向分布に与え
る影響が、この領域の奥ゆき深さの深い,従来の細く長
いソレノイドと比較して小さくなり、かつ、円筒形ソレ
ノイドが形成する磁束が軸方向に進むにつれて発散する
際の軸線上の磁束の発散の仕方が、軸線を外れた位置の
磁束の発散の仕方よりも大きく、これにより、磁束密度
の半径方向分布が軸方向の距離とともに均一化されて行
く発散磁場の性質を利用して、ソレノイドの端部近傍あ
るいソレノイド外部の磁束をプラズマ形成に利用するよ
うにしたので、基板位置で十分均一なプラズマ密度の面
内分布が得られるようになった。
In the device of the first aspect, since the ECR resonance magnetic flux density region is formed using a thick and short solenoid whose axial length is 0.8 times or less the inner diameter, the ECR resonance magnetic flux is The axial depth of the density region becomes shallower, and the influence of the radial distribution of the depth of the ECR resonance magnetic flux density region on the radial distribution of plasma density at the substrate position becomes smaller as the depth of this region becomes deeper. , it is smaller than the conventional thin and long solenoid, and the way the magnetic flux on the axis diverges as the magnetic flux formed by the cylindrical solenoid diverges as it advances in the axial direction is different from that of the magnetic flux at a position off the axis. The magnetic flux near the end of the solenoid or outside the solenoid can be used to form a plasma by utilizing the property of the divergent magnetic field, which is larger than the way it diverges, and as a result, the radial distribution of magnetic flux density becomes uniform with the axial distance. As a result, a sufficiently uniform in-plane distribution of plasma density can be obtained at the substrate position.

【0030】請求項2の装置では、プラズマが発散磁場
の低磁束密度方向へ移動する性質から、マイクロ波透過
窓方向へ進むプラズマがなくなり、マイクロ波透過窓の
熱損傷を防止することができ、半導体基板の加工速度の
面内分布均一化のための処理条件 (例えばECR共鳴
磁束密度領域の形成位置, マイクロ波電力など) の
大幅な変化が可能になった。
In the apparatus of the second aspect, due to the property that the plasma moves in the direction of low magnetic flux density of the divergent magnetic field, there is no plasma moving in the direction of the microwave transmission window, and thermal damage to the microwave transmission window can be prevented. It has become possible to significantly change the processing conditions (for example, the formation position of the ECR resonance magnetic flux density region, microwave power, etc.) in order to uniformize the in-plane distribution of the processing speed of the semiconductor substrate.

【0031】請求項3の装置では、電子の加速に与かる
ECR共鳴磁束密度領域の奥ゆき深さが十分短くなり、
奥ゆき深さの半径方向分布がプラズマ密度の半径方向分
布に与える影響がウエハ位置では実質的に消滅する。実
験によれば、均一化された磁束密度に従い、ウエハ位置
でのプラズマ密度が半径方向に均一な分布を示すことが
確認され、シリコン酸化膜の成膜では、6インチ基板に
±4%の膜厚分布が得られた。
In the apparatus of the third aspect, the depth of the ECR resonance magnetic flux density region that contributes to the acceleration of electrons is sufficiently short;
The influence of the radial distribution of depth on the radial distribution of plasma density virtually disappears at the wafer location. According to experiments, it has been confirmed that the plasma density at the wafer position exhibits a uniform distribution in the radial direction in accordance with the uniform magnetic flux density. Thickness distribution was obtained.

【0032】請求項4の装置では、ソレノイド電流を変
えてECR磁束密度領域の形成位置を変化させたとき、
ウエハに対するソレノイドの最適相対位置を容易に求め
ることができ、最適処理条件を短時間に設定することが
できる。
In the device of the fourth aspect, when the formation position of the ECR magnetic flux density region is changed by changing the solenoid current,
The optimal relative position of the solenoid with respect to the wafer can be easily determined, and the optimal processing conditions can be set in a short time.

【0033】請求項5の装置では、巻線に大電流を流す
ことができるので、ECR共鳴磁束密度領域の形成位置
を幅広く変えることができ、最適処理条件をより完全に
求めることができる。
In the apparatus of the fifth aspect, since a large current can be passed through the winding, the formation position of the ECR resonance magnetic flux density region can be varied widely, and the optimum processing conditions can be determined more completely.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例によるソレノイドを用いたE
CRプラズマ処理装置の全体構成例を示す縦断面図
FIG. 1: E using a solenoid according to an embodiment of the present invention.
Vertical cross-sectional view showing an example of the overall configuration of a CR plasma processing apparatus

【図
2】ソレノイドの幾何学的中心と内周面の軸方向中心部
との磁束密度の比がソレノイドの軸方向断面形状により
どのように変化するかを示す線図
[Figure 2] Diagram showing how the ratio of magnetic flux density between the geometric center of the solenoid and the axial center of the inner peripheral surface changes depending on the axial cross-sectional shape of the solenoid.

【図3】円筒形ソレノイドの端面近傍より外側の磁場の
強さを半無限長円柱ソレノイドを用いて求める方法を示
す説明図
[Figure 3] An explanatory diagram showing a method for determining the strength of the magnetic field outside the vicinity of the end face of a cylindrical solenoid using a semi-infinitely long cylindrical solenoid.

【図4】半無限長円柱ソレノイドが作る磁場中ソレノイ
ド端面近傍磁場強度の位置による変化を示す線図
[Figure 4] Diagram showing changes in magnetic field strength near the solenoid end face depending on position in the magnetic field created by a semi-infinitely long cylindrical solenoid

【図5
】従来のECRプラズマ処理装置に用いられたソレノイ
ドの軸方向断面形状と配置位置の例を示す装置全体の縦
断面図
[Figure 5
] A vertical sectional view of the entire device showing an example of the axial cross-sectional shape and arrangement position of a solenoid used in a conventional ECR plasma processing device.

【符号の説明】[Explanation of symbols]

2    真空窓(マイクロ波透過窓)3    プラ
ズマ生成室 5    マイクロ波共振器 7    アパーチャ 9    反応室 10    基板台 11    基板 17    マイクロ波発生器
2 Vacuum window (microwave transmission window) 3 Plasma generation chamber 5 Microwave resonator 7 Aperture 9 Reaction chamber 10 Substrate stand 11 Substrate 17 Microwave generator

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】円筒状に形成され両端面にそれぞれマイク
ロ波透過窓により気密に閉鎖される開口と,アパーチャ
が形成するプラズマ引出し口とを備えたマイクロ波共振
器内で磁場とマイクロ波との相互作用によりECRプラ
ズマを発生させ、このプラズマを該共振器端面のプラズ
マ引出し口から磁場拡散効果により隣接の反応室に導き
、反応室内の基板台に装着した半導体基板上にCVD,
 エッチング等の加工反応を、プラズマにより生じた活
性種およびイオンの作用で行わせるECRプラズマ処理
装置において、前記磁場を発生する手段としてマイクロ
波共振器と同軸に配される円筒形ソレノイドを用い、そ
の軸方向長さをその内径の0.8倍以下としたことを特
徴とするECRプラズマ処理装置。
Claim 1: A magnetic field and a microwave are transmitted in a microwave resonator formed in a cylindrical shape and equipped with an opening hermetically closed by a microwave transmission window on each end face, and a plasma extraction port formed by an aperture. ECR plasma is generated by the interaction, and this plasma is guided from the plasma extraction port on the end face of the resonator to the adjacent reaction chamber by the magnetic field diffusion effect, and CVD,
In an ECR plasma processing apparatus in which processing reactions such as etching are performed by the action of active species and ions generated by plasma, a cylindrical solenoid arranged coaxially with a microwave resonator is used as a means for generating the magnetic field. An ECR plasma processing apparatus characterized in that its axial length is 0.8 times or less the inner diameter.
【請求項2】請求項第1項に記載のECRプラズマ処理
装置において、磁場を発生する手段としての円筒形ソレ
ノイドを、該ソレノイドの幾何学的中心が、マイクロ波
共振器の一方の端面の開口を気密に閉鎖するマイクロ波
透過窓のマイクロ波共振器内部空間側の面の該内部空間
と反対の側に位置するように配置したことを特徴とする
ECRプラズマ処理装置。
2. The ECR plasma processing apparatus according to claim 1, wherein the cylindrical solenoid as a means for generating a magnetic field is arranged such that the geometric center of the solenoid is located at an opening in one end face of the microwave resonator. An ECR plasma processing apparatus characterized in that a microwave transmission window that airtightly closes the microwave resonator is located on the opposite side of the inner space side of the microwave resonator.
【請求項3】請求項第1項または第2項に記載のECR
プラズマ処理装置において、ECR条件を満たす磁束密
度の存在する領域が、ソレノイドの幾何学的中心から軸
方向にソレノイド長の1/4 以上離れて位置するよう
にソレノイド電流が調整されていることを特徴とするE
CRプラズマ処理装置。
Claim 3: ECR according to claim 1 or 2.
In the plasma processing apparatus, the solenoid current is adjusted so that the region where the magnetic flux density that satisfies the ECR condition exists is located at least 1/4 of the solenoid length in the axial direction from the geometric center of the solenoid. E to be
CR plasma processing equipment.
【請求項4】請求項第1項または第2項に記載のECR
プラズマ処理装置において、磁場を発生する手段として
の円筒形ソレノイドとマイクロ波共振器との軸方向相対
位置を可変とするための円筒形ソレノイドの駆動および
位置決めの手段を設けたことを特徴とするECRプラズ
マ処理装置。
Claim 4: ECR according to claim 1 or 2.
An ECR in a plasma processing apparatus, characterized in that it is provided with means for driving and positioning a cylindrical solenoid for varying the relative axial position of a cylindrical solenoid serving as a means for generating a magnetic field and a microwave resonator. Plasma processing equipment.
【請求項5】請求項第1項または第2項に記載のECR
プラズマ処理装置において、磁場を発生する手段として
の円筒形ソレノイドを、巻線に内部水冷銅管を用いて作
成したことを特徴とするECRプラズマ処理装置。
Claim 5: ECR according to claim 1 or 2.
An ECR plasma processing apparatus characterized in that a cylindrical solenoid serving as a means for generating a magnetic field is made using an internal water-cooled copper tube as a winding.
JP3045273A 1991-03-12 1991-03-12 ECR plasma processing equipment Expired - Fee Related JP2976553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3045273A JP2976553B2 (en) 1991-03-12 1991-03-12 ECR plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3045273A JP2976553B2 (en) 1991-03-12 1991-03-12 ECR plasma processing equipment

Publications (2)

Publication Number Publication Date
JPH04285174A true JPH04285174A (en) 1992-10-09
JP2976553B2 JP2976553B2 (en) 1999-11-10

Family

ID=12714708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3045273A Expired - Fee Related JP2976553B2 (en) 1991-03-12 1991-03-12 ECR plasma processing equipment

Country Status (1)

Country Link
JP (1) JP2976553B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086417A (en) * 2013-10-29 2015-05-07 株式会社 セルバック Inductively-coupled plasma cvd apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086417A (en) * 2013-10-29 2015-05-07 株式会社 セルバック Inductively-coupled plasma cvd apparatus

Also Published As

Publication number Publication date
JP2976553B2 (en) 1999-11-10

Similar Documents

Publication Publication Date Title
US5003152A (en) Microwave transforming method and plasma processing
JP2581255B2 (en) Plasma processing method
JPH06283470A (en) Plasma processing device
US8075733B2 (en) Plasma processing apparatus
SE521904C2 (en) Hybrid Plasma Treatment Device
JP7085828B2 (en) Plasma processing equipment
JP3199957B2 (en) Microwave plasma processing method
JP2546405B2 (en) Plasma processing apparatus and operating method thereof
JP3973283B2 (en) Plasma processing apparatus and plasma processing method
JPH04285174A (en) Ecr plasma treating device
US5292395A (en) ECR plasma reaction apparatus having uniform magnetic field gradient
JP3458912B2 (en) Plasma processing equipment
JP4478352B2 (en) Plasma processing apparatus, plasma processing method, and structure manufacturing method
JP3089116B2 (en) Electron cyclotron resonance plasma CVD equipment
JPH076998A (en) Microwave plasma processing equipment
JP3220528B2 (en) Vacuum processing equipment
JP3337266B2 (en) Scientific deposition equipment for electron cyclotron resonance plasma
JPS6377120A (en) Plasma processor
JP3077144B2 (en) Sample holding device
JP3319971B2 (en) Plasma processing equipment
JP3655966B2 (en) Plasma generator
JP2003086398A (en) Plasma treatment apparatus
JP2019220532A (en) Plasma processing device and plasma processing method
JPH0799100A (en) Plasma treating device
JPS61214523A (en) Plasma reaction processor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees