JPH04284851A - Photo-catalyst body - Google Patents

Photo-catalyst body

Info

Publication number
JPH04284851A
JPH04284851A JP3075840A JP7584091A JPH04284851A JP H04284851 A JPH04284851 A JP H04284851A JP 3075840 A JP3075840 A JP 3075840A JP 7584091 A JP7584091 A JP 7584091A JP H04284851 A JPH04284851 A JP H04284851A
Authority
JP
Japan
Prior art keywords
nickel
photocatalyst
powder
substrate
photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3075840A
Other languages
Japanese (ja)
Other versions
JP3374143B2 (en
Inventor
Yuko Fujita
藤田 雄耕
Masaki Kitamura
北村 雅紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP07584091A priority Critical patent/JP3374143B2/en
Publication of JPH04284851A publication Critical patent/JPH04284851A/en
Application granted granted Critical
Publication of JP3374143B2 publication Critical patent/JP3374143B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catching Or Destruction (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To obtain a photo-catalyst having sufficiently high mechanical strength and extremely enhanced in photo-catalytic activity by using porous nickel as a substrate and using fluoroplastics as a binder, and laminating and bonding porous nickel to a mixture of a photo-catalyst powder and fluoroplastics under pressure. CONSTITUTION:A sintered nickel plate formed by sintering a nickel powder or a foamed nickel plate having a three-dimensional reticulated structure obtained by decomposing polyurethane to which the electroless plating of nickel is applied under heating, is used as a substrate 1. A mixture 2 of a fluoroplastic binder such as polytetrafluoroethylene and a photo-catalyst powder such as a TiO2 or ZnO powder is placed on the substrate 1 to be pressed. The photo- catalyst thus obtained is strong and hardly generates rust or corrosion in water or air and has high activity.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、殺菌,脱臭,排水処理
,藻の成育抑止,各種有機化学反応等に用いられる光触
媒体に関するものである。
FIELD OF INDUSTRIAL APPLICATION This invention relates to a photocatalyst used for sterilization, deodorization, wastewater treatment, inhibition of algae growth, various organic chemical reactions, and the like.

【0002】0002

【従来の技術】半導体にそのバンドギャップ以上のエネ
ルギーを有するしかるべき波長の光を照射すると、光励
起により、価電子帯から伝導体に電子が移行すると同時
に、価電子帯に正孔が生成し、いわゆる電荷分離が起こ
る。また半導体に光を照射しつつ水あるいは溶液を接触
させると、ショットキーバリヤに類似した接合が形成さ
れ、半導体がn型の場合には正孔が、p型の場合には電
子が、それぞれ半導体の固−液界面側の表面に集まって
くることはよく知られている。そして、n型半導体の場
合には、正孔が水あるいは溶液種から電子を引き抜き、
その結果水が分解したり、溶液中の溶質が酸化される。 また、p型半導体の場合には、電子が隣接する水あるい
は溶液に付与され、その水あるいは溶液種の還元反応が
起こる。このように、光酸化還元反応を促進する半導体
を特に半導体光触媒あるいは、単に光触媒という。
BACKGROUND ART When a semiconductor is irradiated with light of a suitable wavelength having an energy greater than its band gap, electrons are transferred from the valence band to a conductor due to photoexcitation, and at the same time, holes are generated in the valence band. A so-called charge separation occurs. Also, when a semiconductor is exposed to water or a solution while being irradiated with light, a junction similar to a Schottky barrier is formed, and holes are transferred to the semiconductor if the semiconductor is n-type, and electrons are transferred if the semiconductor is p-type. It is well known that the particles gather on the surface of the solid-liquid interface. In the case of n-type semiconductors, holes extract electrons from water or solution species,
As a result, water decomposes and solutes in the solution are oxidized. Further, in the case of a p-type semiconductor, electrons are added to adjacent water or solution, and a reduction reaction of the water or solution species occurs. A semiconductor that promotes a photooxidation-reduction reaction in this way is particularly called a semiconductor photocatalyst or simply a photocatalyst.

【0003】従来、光触媒を用いた酸化還元反応もしく
は酸化還元反応操作としては、水の分解反応、微生物を
殺す反応、脱臭反応、殺菌反応、水の浄化排水処理その
他各種有機化学反応などが提案されている。光触媒とし
ては、具体的には、n型半導体としての酸化チタンが、
その化学的安定性の故に最も広く使用されている。酸化
チタンは、粉末状で溶液に懸濁された形で用いられる場
合と、何らかの基体上に担持した形で使用される場合と
がある。光触媒の活性という見地からみると、その表面
積の大きさから、一般に前者の方がより活性であるが、
実用的見地からすると、その取扱い易さからいって前者
より後者の方を採用せざるを得ない場合が多い。
Conventionally, as redox reactions or redox reaction operations using photocatalysts, water decomposition reactions, microorganism killing reactions, deodorizing reactions, sterilization reactions, water purification and wastewater treatment, and various other organic chemical reactions have been proposed. ing. Specifically, titanium oxide as an n-type semiconductor is used as a photocatalyst.
Most widely used because of its chemical stability. Titanium oxide may be used in powdered form suspended in a solution or supported on some kind of substrate. From the standpoint of photocatalytic activity, the former is generally more active due to its larger surface area;
From a practical standpoint, it is often necessary to adopt the latter method over the former method due to its ease of handling.

【0004】光触媒を基体に担持する方法としては、種
々提案されている。例えば、(A)ニトロセルロース、
ガラス、ポリ塩化ビニル、ナイロン、メタクリル樹脂,
ポリプロピレン等の光透過性物質材料からなるフィルム
状、ビーズ状、ボード状、繊維状等の形状の基体に酸化
チタン微粉末を付着させる方法(特開昭62−6686
1)、(B)多孔性ガラス支持体にチタン(IV)テト
ラブトキシオキサイドのアルコール溶液を含浸し、加熱
して、アナターゼ型の酸化チタンにすることによって多
孔性ガラス支持体に保持・固定する方法(特開平2−5
0154)、(C)色素または金属錯体などの光増感剤
を側鎮としてもつ多孔性高分子膜(例えば、ポリフッ化
エチレン樹脂)中に圧入、含浸、付着等の方法により、
半導体触媒粉末を保持・固定する方法(特開昭58−1
25602)、(D)ポリプロピレン繊維あるいはセラ
ミックからなる濾過フィルターに酸化チタンを担持する
方法(特開平2−68190)、(E)石英、ガラス、
プラスチックの繊維のからみの中に酸化チタン粉末を保
持・固定しその両面を光透過性のガラスでおさえつける
方法(アメリカ特許、4,888,101)、(F)ア
ルミナ基板に白金をスパッタリング法により固着させ、
その上にアナターゼ型の酸化チタン粉末とメチルメタク
リレートの有機溶媒溶液との混合分散液をスピンコーテ
ィング法により塗着し、しかるのちに結着剤としてのメ
チルメタクリートを加熱分解するとともにアナターゼ型
の酸化チタンをルチル型の酸化チタンにする方法《ロバ
ート,イー,ヘトリック  −Robert E. H
etrick, Applied Physics C
ommunications, 5,(3), 177
−187(1985)》, (G)ポリエステル布の表
面に酸化チタンを低温溶射方法で溶射担持する方法(桜
田司、表面技術41巻,10号,P60(1990))
などが提案されている。
Various methods have been proposed for supporting photocatalysts on substrates. For example, (A) nitrocellulose,
Glass, polyvinyl chloride, nylon, methacrylic resin,
A method of attaching fine titanium oxide powder to a substrate in the form of a film, bead, board, fiber, etc. made of a light-transmitting material such as polypropylene (Japanese Patent Laid-Open No. 62-6686)
1), (B) A method of holding and fixing to a porous glass support by impregnating a porous glass support with an alcohol solution of titanium (IV) tetrabutoxy oxide and heating it to form anatase-type titanium oxide. (Unexamined Japanese Patent Publication No. 2-5
(C) By press-fitting, impregnating, adhering, etc. into a porous polymer membrane (e.g., polyfluoroethylene resin) having a photosensitizer such as a dye or a metal complex as a sidewall,
Method for holding and fixing semiconductor catalyst powder (JP-A-58-1
25602), (D) A method of supporting titanium oxide on a filtration filter made of polypropylene fiber or ceramic (Japanese Unexamined Patent Publication No. 2-68190), (E) Quartz, glass,
A method of holding and fixing titanium oxide powder in a tangle of plastic fibers and covering both sides with light-transmitting glass (U.S. Patent No. 4,888,101), (F) Sputtering platinum onto an alumina substrate. Fix it,
A mixed dispersion of anatase-type titanium oxide powder and an organic solvent solution of methyl methacrylate is applied onto it by spin coating, and then methyl methacrylate as a binder is thermally decomposed and anatase-type oxidation is performed. Method of converting titanium into rutile-type titanium oxide《Robert E. Hetrick - Robert E. H
etrick, Applied Physics C
communications, 5, (3), 177
-187 (1985)》, (G) A method of spraying and depositing titanium oxide on the surface of polyester cloth using a low-temperature spraying method (Tsukasa Sakurada, Surface Technology Vol. 41, No. 10, P60 (1990))
etc. have been proposed.

【0005】[0005]

【発明が解決すべき課題】上述のような従来の光触媒の
基体への保持・固定方法を検討すると、まず、いずれの
場合も、基体として有機高分子フィルム,ガラス,セラ
ミックといった必ずしも壁牢とはいえない材料を採用し
ているため、これらの基体に光触媒を保持・固定したも
のを酸化還元反応器に装着しようとすると、実用上不具
合が生ずることが多い。また、(B)あるいは(G)の
方法を除けば、上述の各方法では光触媒粉末が基体に保
持・固定される強度は実用上不充分である。さらには、
上述のいずれの方法の場合にも共通することは、一般に
光触媒を基体に保持・固定することによって、光触媒粉
末を液中に懸濁させる場合に比して、その触媒活性が相
対的に低下するということである。
[Problems to be Solved by the Invention] When considering the conventional methods of holding and fixing photocatalysts on substrates as described above, first of all, in any case, the substrate is not necessarily a wall cell such as an organic polymer film, glass, or ceramic. Because these materials are made of non-transparent materials, practical problems often occur when attempting to install these substrates holding and fixing photocatalysts into redox reactors. Furthermore, except for method (B) or (G), the strength with which the photocatalyst powder is held and fixed to the substrate is insufficient for practical use in each of the above-mentioned methods. Furthermore,
What all of the above methods have in common is that generally by holding and fixing the photocatalyst on a substrate, the catalytic activity is relatively reduced compared to when the photocatalyst powder is suspended in a liquid. That's what it means.

【0006】[0006]

【課題を解決するための手段】本発明は、多孔性ニッケ
ルを基体とし、この基体に光触媒粉末とフッ素樹脂結着
剤との混合物層を積層圧着することによって上述の如き
問題を解決しようとするものである。
[Means for Solving the Problems] The present invention attempts to solve the above-mentioned problems by using porous nickel as a base and laminating and pressing a layer of a mixture of photocatalyst powder and a fluororesin binder onto this base. It is something.

【0007】[0007]

【作用】本発明にかかる光触媒体の特長は機械的強度が
充分大きく、しかも、光触媒活性が極めて大きい点にあ
る。以下、本発明にかかる光触媒体の製造過程、構成お
よびその意義について詳述する。
[Operation] The photocatalyst according to the present invention is characterized by sufficiently high mechanical strength and extremely high photocatalytic activity. Hereinafter, the manufacturing process, structure, and significance of the photocatalyst according to the present invention will be explained in detail.

【0008】多孔性ニッケル基体としては、ニッケル粉
末を焼結して得られる焼結ニッケル板、ポリウレタンに
ニッケルを無電解メッキし、しかるのちに、ポリウレタ
ンを加熱分解して得られる三次元的網目構造をもったい
わゆる発泡ニッケル板、あるいはびびり振動加工法等で
得られたニッケル繊維を抄造したのち、焼結したもの等
従来、主として、ニッケル−カドミウム電池あるいは燃
料電池の電極用材料として公知のものが適用できる。多
孔性ニッケル基体としては、ニッケル線をあるいはエキ
スパンデッドニッケルを芯体とし、その表面にニッケル
粉末と例えばメチルセルロースの粘稠水溶液等の糊材と
の混合物を塗着し、しかるのちに焼結したものも有効な
ことがある。エキスパンデッドニッケルを芯体として得
られる多孔性ニッケル基体の場合には、基体全面が多孔
性ニッケル層で被覆されるわけではなく、エキスパンデ
ッドニッケルの開口部が残っている。この多孔性ニッケ
ル基体に、半導体光触媒粉末とフッ素樹脂結着剤との混
合物を塗着するか、半導体光触媒粉末とフッ素樹脂結着
剤との混合物を予じめシート状としたものを前記多孔性
ニッケル基体に載置したのち、プレスし、多孔性ニッケ
ル基体−半導体光触媒二重層体を製作する。半導体光触
媒粉末としては、TiO2 (アナターゼ型,ルチル型
),ZnO,SrTiO3 ,CdS,GaP,GaI
nP,GaAs等従来公知のものがすべて本発明に適用
できる。フッ素樹脂結着剤としては、ポリテトラフルオ
ロエエチレン、テトラフルオロエチレン−ヘキサフルオ
ロプロピレンコポリマー,テトラフルオロエチレン−エ
チレンコポリマー等の単独または、混合物が用いられる
。また、これらのフッ素樹脂は、水懸濁液状、有機溶媒
懸渇液状あるいは粉末状のものが用いられる。プレスし
たのち、あるいはプレス時に、フッ素樹脂の結着強度を
大きくするために、100〜300℃の温度で加熱する
ことも有効である。
Porous nickel substrates include sintered nickel plates obtained by sintering nickel powder, and three-dimensional network structures obtained by electrolessly plating nickel on polyurethane and then thermally decomposing the polyurethane. So-called foamed nickel plates with a nickel-foamed material, or nickel fibers obtained by chatter vibration processing, etc., are made into paper and then sintered. Applicable. The porous nickel substrate is made of a nickel wire or expanded nickel core, a mixture of nickel powder and a glue such as a viscous aqueous solution of methylcellulose is applied to the surface, and then sintered. Things can also be effective. In the case of a porous nickel substrate obtained using expanded nickel as a core, the entire surface of the substrate is not covered with a porous nickel layer, and openings in the expanded nickel remain. A mixture of a semiconductor photocatalyst powder and a fluororesin binder is coated on this porous nickel substrate, or a mixture of a semiconductor photocatalyst powder and a fluororesin binder is made into a sheet shape in advance to form the porous nickel substrate. After placing it on a nickel base, it is pressed to produce a porous nickel base-semiconductor photocatalyst double layer body. Semiconductor photocatalyst powders include TiO2 (anatase type, rutile type), ZnO, SrTiO3, CdS, GaP, GaI
All conventionally known materials such as nP and GaAs can be applied to the present invention. As the fluororesin binder, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-ethylene copolymer, etc. may be used alone or in mixtures. Further, these fluororesins are used in the form of an aqueous suspension, a liquid suspended in an organic solvent, or a powder. After pressing or during pressing, it is also effective to heat the fluororesin at a temperature of 100 to 300° C. in order to increase the binding strength of the fluororesin.

【0009】線状多孔性ニッケル基体を用いる場合には
、その表面に光触媒層を形成したのち、線状光触媒体と
なるがこれは、そのまま用いてもよいが、例えば、らせ
ん状にしたり、さらに編組みすると有効なことがある。
When a linear porous nickel substrate is used, a photocatalyst layer is formed on the surface of the substrate to form a linear photocatalyst. Although this may be used as is, it may be formed into a spiral shape or Braiding may be effective.

【0010】かくして得られる光触媒体において、まず
、多孔性ニッケル基体を用いる意義は、第1に、それ自
体、従来の有機多孔性ポリマーフィルム,ガラスファイ
バー,セラミック等に比較して堅牢であること、第2に
、光触媒体がおかれる環境下、例えば水中、空気中で錆
あるいは腐食が起こりにくいこと、第3に、多孔性(6
0〜90%の気孔率)で塑性を有しているため、光触媒
粉末とフッ素樹脂結着剤との混合層を積層・圧着する際
、多孔性ニッケル基体層と混合触媒層とが強固に接合す
ること、第4に、光触媒として、n型半導体を用いた場
合には、多孔性ニッケルが電荷分離に寄与していること
である。
In the photocatalyst thus obtained, the significance of using the porous nickel substrate is, first, that it is more robust than conventional organic porous polymer films, glass fibers, ceramics, etc.; Second, it is difficult to rust or corrode under the environment in which the photocatalyst is placed, such as in water or in the air. Third, it is porous (6
Since it has plasticity with a porosity of 0 to 90%, the porous nickel base layer and mixed catalyst layer are firmly bonded when laminating and pressing a mixed layer of photocatalyst powder and fluororesin binder. Fourthly, when an n-type semiconductor is used as a photocatalyst, porous nickel contributes to charge separation.

【0011】これらの多孔性ニッケル基体を用いる意義
は、例えば、ガラスファイバーあるいはセラミックを基
体として、光触媒体粉末−フッ素樹脂混合層を圧着した
場合には、基体が破壊されること、多孔性でない通常の
金属板を用いた場合には塑性がないために、光触媒層と
の強固な接合が首尾よくいかないことなどからも理解さ
れよう。第4の電荷分離について説明するならば、次の
ようになる。すなわち、従来、例えば酸化チタン粉末の
一部表面に白金を担持させたものを、光照射下で水中に
懸渇させると電荷分離によって正孔が酸化チタンの露出
表面に移動して、酸素を発生させ、電子が白金の部分に
移行して、水素の発生を促進することがよく知られてい
る。前述の従来例(F)のようにアルミナ基板上にスパ
ッタリングされた白金も同様の効果を示す。本発明にお
ける多孔性ニッケルは、このような白金と同じような役
割を果す、このことは、後段で詳細に述べるが、藻の枯
死に対する光触媒の効力の実験において、本発明の特に
多孔性ニッケル基体を用いた場合と多孔性ニッケル基体
の代りに多孔性のポリテトラフルオロエチレンシートを
用いた場合とを比較したとき、前者は、後者よりはるか
に顕著な効力を示したことからも推定される。なお、当
然のことながら、白金は一般に高価であるのに対し、ニ
ッケルはより安価であるし、白金で多孔体を製作するこ
とは一般に技術上、比較的困難である。
The significance of using these porous nickel substrates is that, for example, when a photocatalyst powder-fluororesin mixed layer is pressure-bonded to a glass fiber or ceramic substrate, the substrate will be destroyed; This can be understood from the fact that when using a metal plate, strong bonding with the photocatalyst layer cannot be achieved due to lack of plasticity. The fourth charge separation will be explained as follows. In other words, conventionally, for example, when a titanium oxide powder with platinum supported on a portion of its surface is suspended in water under light irradiation, holes move to the exposed surface of the titanium oxide due to charge separation, generating oxygen. It is well known that the electrons transfer to the platinum portion and promote the generation of hydrogen. Platinum sputtered onto an alumina substrate as in the conventional example (F) described above also exhibits a similar effect. The porous nickel of the present invention plays a role similar to that of platinum. This will be described in detail later, but in experiments on the effectiveness of photocatalysts against algae death, the porous nickel of the present invention plays a role similar to that of platinum. This is also inferred from the fact that when comparing the case where a porous polytetrafluoroethylene sheet was used in place of the porous nickel substrate with the case where a porous polytetrafluoroethylene sheet was used instead of the porous nickel substrate, the former showed much more pronounced efficacy than the latter. Note that, as a matter of course, platinum is generally expensive, while nickel is cheaper, and it is generally relatively technically difficult to manufacture a porous body with platinum.

【0012】次に、光触媒粉末−フッ素樹脂混合層の意
義は、既にさまざまの分野でよく知られているように結
着力が強く、良好な耐食性を示すフッ素樹脂を結着剤に
用いることによる混合層の堅牢さにかてて加えて、光触
媒活性が極めて高く、しかもその活性の持続性が良好で
あることである。
Next, the significance of the photocatalyst powder-fluororesin mixed layer is that, as is already well known in various fields, it is possible to mix the layer by using a fluororesin as a binder, which has strong binding strength and good corrosion resistance. In addition to the robustness of the layer, the photocatalytic activity is extremely high and the durability of the activity is good.

【0013】従来、光触媒に関する実験は、ほとんど粉
末状光触媒を溶液の中に懸濁された形でなされてきて、
その反応機構の説明は、溶液種が光触媒の表面で酸化あ
るいは還元を受けるというものであり、したがって、そ
の光触媒の活性は、その表面積に依存し、光触媒と溶液
との接触界面積が大きければ、大きいほどよいとされて
きた。このような考え方からすると、光触媒は溶液に、
より“濡れ易い”方がいいということになる。従来、光
触媒に撥水処理を施すことが試みられていないのは撥水
処理によって、“濡れにくく”なり、その結果、光触媒
の有効反応面積が減ると考えられていたからであると想
像される。前述の従来の光触媒の基体への担持方法のう
ち、(F)法において、折角酸化チタン粉末を撥水性の
結着剤であるメチルメタクリレートの有機溶媒溶液とと
もに基体に付着させても、次の後の工程で、このメチル
メタクリレートを加熱分解しているのは、いかなる理由
になるかは不明であるが、メチルメタクリレートが残っ
ていると酸化チタン粉末が溶液種(この例の場合は水蒸
気)に濡れにくく、それとの触媒面積が減ると考えたせ
いである可能性がある。これに対して、本願発明者らは
、光触媒粉末をフッ素樹脂のような極めて撥水性の高い
結着剤で結着すると、光触媒粉末は明らかに“濡れにく
く”なるにもかかわらず、驚くべきことに実は、その方
が光触媒活性が高くなることを発見した。具体的には、
同じ光触媒粉末を用いても、粉末のまま懸渇して用いた
り、低温溶射法で溶射した場合のように揆水性をもたな
い場合より、本発明のように、フッ素樹脂結着剤で結着
して、撥水性をもたせた方が触媒活性が高い。光触媒の
撥水性と活性との関係の理論的解明は今のところできて
いないが、ひとつの仮説としては、従来の撥水性のない
光触媒の場合、そのある特定のサイトで吸着種からラジ
カルが生成し、そのラジカルが溶液種の酸化還元反応に
関与していたのに対し、撥水性がある場合には、ラジカ
ルの移動あるいは分解のサイトが異なるとか、その速度
がより速いとか、水溶液中に溶解している種の酸化還元
反応の場合、その種の水に対する溶解度が小さい場合に
は、光触媒の撥水性のあるサイトに近いサイトに近づき
易く、その結果より酸化還元反応が進み易いのではない
かとも考えられる。
Conventionally, most experiments regarding photocatalysts have been carried out using powdered photocatalysts suspended in solutions.
The explanation of the reaction mechanism is that the solution species undergo oxidation or reduction on the surface of the photocatalyst. Therefore, the activity of the photocatalyst depends on its surface area, and if the contact area between the photocatalyst and the solution is large, It has been said that the bigger the better. From this perspective, the photocatalyst is added to the solution,
It means that it is better to "get wet easily". The reason why no attempts have been made to apply water-repellent treatment to photocatalysts is thought to be because it was thought that water-repellent treatment would make them "difficult to get wet" and, as a result, reduce the effective reaction area of the photocatalyst. Among the conventional methods for supporting a photocatalyst on a substrate, in method (F), titanium oxide powder is attached to the substrate together with an organic solvent solution of methyl methacrylate, which is a water-repellent binder, but after the following It is unclear why this methyl methacrylate is thermally decomposed in the process, but if methyl methacrylate remains, the titanium oxide powder will become wet with the solution (in this case, water vapor). This may be due to the fact that the catalyst area was thought to be smaller. In contrast, the inventors of the present application found that when photocatalyst powder is bound with a highly water-repellent binder such as fluororesin, although the photocatalyst powder clearly becomes "difficult to wet," a surprising phenomenon occurs. In fact, they discovered that the photocatalytic activity was higher. in particular,
Even if the same photocatalyst powder is used, it is better to bind it with a fluororesin binder as in the present invention than to use it as a powder or to use it as a powder or to spray it by low-temperature thermal spraying, which does not have water repellency. The more water-repellent the catalyst is, the higher the catalytic activity will be. Although the relationship between the water repellency and activity of photocatalysts has not been theoretically elucidated so far, one hypothesis is that in the case of conventional photocatalysts that do not have water repellency, radicals are generated from adsorbed species at certain sites. However, whereas the radicals were involved in the redox reaction of the solution species, in the case of water repellency, the radical movement or decomposition site is different, the speed is faster, or the radical is dissolved in the aqueous solution. In the case of a redox reaction of a species, if the solubility of the species in water is low, it may be easier to approach sites close to the water-repellent sites of the photocatalyst, and as a result, the redox reaction may proceed more easily. can also be considered.

【0014】なお、従来法の中で、例えば、前述の(C
)法で、多孔性高分子膜にあとから、圧入、含浸、沈着
といった方法で光触媒を保持・固定したとしても本発明
のようにフッ素樹脂結着剤で光触媒粉末を結着した場合
のような撥水効果は得られない。また、光触媒の担持体
として、フッ素樹脂以外の有機ポリマーを用いた場合、
光触媒効果により、その有機ポリマー自体が酸化を受け
て脆くなることが知られているが、フッ素樹脂は、光触
媒効果に対してよりすぐれた耐性を示す。
[0014] Among the conventional methods, for example, the above-mentioned (C
) method, even if the photocatalyst is held and fixed in the porous polymer membrane by a method such as press-fitting, impregnation, or deposition, it will not be possible to bind the photocatalyst powder with a fluororesin binder as in the present invention. No water repellent effect can be obtained. In addition, when an organic polymer other than fluororesin is used as a support for the photocatalyst,
Although it is known that the photocatalytic effect causes the organic polymer itself to undergo oxidation and become brittle, fluororesins exhibit better resistance to the photocatalytic effect.

【0015】[0015]

【実施例】<実施例1>厚さが0.1mmで、部分的に
穿孔が施された鉄板にニッケルメッキした芯体の両面に
、ニッケルカルボニルの熱分解によって得られるいわゆ
るカルボニルニッケル粉末とメチルセルローズの水溶液
からなる糊材との混合物を塗着し、しかるのちに、アン
モニアの分解ガス(水素と窒素との混合ガス)中、85
0℃で、焼結し、気孔率が85%、厚さ1.5mmの多
孔性焼結ニッケル基体を得た。一方、ルチル型の結晶構
造を有するn型半導体である酸化チタン粉末(粒径:0
.3μm)100gに、ポリテトラフルオロエチレンの
水懸渇液(固形分60%,比重約1.5)300mlを
加え、充分攪拌したのち、さらにアルコールを加えて、
凝集を進ませて泥状混練物を得た。
[Example] <Example 1> So-called carbonyl nickel powder obtained by thermal decomposition of nickel carbonyl and methyl A mixture of an aqueous solution of cellulose and a glue material is applied, and then heated to 85% in ammonia decomposition gas (mixed gas of hydrogen and nitrogen).
A porous sintered nickel substrate having a porosity of 85% and a thickness of 1.5 mm was obtained by sintering at 0°C. On the other hand, titanium oxide powder (particle size: 0
.. 3 μm), add 300 ml of polytetrafluoroethylene suspended in water (solid content 60%, specific gravity approximately 1.5), stir thoroughly, and then add alcohol.
Agglomeration proceeded to obtain a slurry-like kneaded material.

【0016】次に、この混練物を、90×90(mm)
の方法に切り出した前記多孔性焼結ニッケル基体の片面
に、コテで塗着(酸化チタンとして6g)したのち、1
00kg/cm2 の圧力でプレスし、さらに、150
℃で1時間熱処理を施した。このプレスによって多孔性
焼結ニッケル基体の厚さが、当初1.5mmであったも
のが、1.0mmにまで圧縮された。かくして、図1に
示すような多孔性ニッケル基体−光触媒粉末・フッ素樹
脂混合光触媒層の二重構造からなる極性堅牢な光触媒体
が得られた。図1において、(1)が多孔性ニッケル板
、(2)が酸化チタン粉末フッ素樹脂混合層である。
[0016] Next, this kneaded material was
After coating (6 g of titanium oxide) with a trowel on one side of the porous sintered nickel substrate cut out by the method of
Press at a pressure of 00 kg/cm2, and then press at a pressure of 150 kg/cm2.
Heat treatment was performed at ℃ for 1 hour. By this pressing, the thickness of the porous sintered nickel substrate, which was originally 1.5 mm, was compressed to 1.0 mm. In this way, a polar and robust photocatalyst body having a double structure of a porous nickel substrate, a photocatalyst powder/fluororesin mixed photocatalyst layer as shown in FIG. 1 was obtained. In FIG. 1, (1) is a porous nickel plate, and (2) is a titanium oxide powder/fluororesin mixed layer.

【0017】なお、比較のために、上述の操作で、多孔
性焼結ニッケル基体の代りにガラス繊維を抄造したマッ
ト(厚さ、0.5mm)およびポリテトロラフルオロチ
レンを抄造して得られる不織布(厚さ、0.5mm)を
用い、それぞれ光触媒粉末・フッ素樹脂混合物を塗着・
プレスしたところ、前者は、ガラスマットがプレスの工
程で破壊され、後者は、いわゆる布状で、柔軟にすぎる
ものであった。
For comparison, a mat (thickness, 0.5 mm) made of glass fiber instead of the porous sintered nickel substrate and polytetrolafluoroethylene were obtained by the above-mentioned operation. Using nonwoven fabric (thickness, 0.5 mm), photocatalyst powder and fluororesin mixture were applied.
When pressed, the glass mat of the former was destroyed during the pressing process, and the latter was so-called cloth-like and too flexible.

【0018】<実施例2>実施例1において、多孔性ニ
ッケル基体として、線状のものを次のようにして製作し
た。すなわち、まず、線径が0.1mmのニッケル線の
表面に、ニッケル粉末とカルボキシメチルセルローズの
粘稠水溶液(糊材)との混合物を塗着し、しかるのちに
、実施例1の場合と同様に焼結した。次にさらに、実施
例1の場合と同様の酸化チタン粉末とポリテトラフルオ
ロエチレンとの混合懸濁液(ただし、水の量を相対的に
よく多くした)を線状多孔性ニッケル基体に吹きつけ、
次いで、ロールプレスした。その断面形状を図2に示す
。また、この線状光触媒体をらせん状にしたものの外観
図を図3に示す。
<Example 2> In Example 1, a linear porous nickel substrate was manufactured in the following manner. That is, first, a mixture of nickel powder and a viscous aqueous solution of carboxymethyl cellulose (gluing material) was applied to the surface of a nickel wire with a wire diameter of 0.1 mm, and then the same process as in Example 1 was applied. sintered. Next, a mixed suspension of titanium oxide powder and polytetrafluoroethylene similar to that in Example 1 (however, the amount of water was relatively increased) was sprayed onto the linear porous nickel substrate. ,
Then, it was roll pressed. Its cross-sectional shape is shown in FIG. Moreover, an external view of this linear photocatalyst body made into a spiral shape is shown in FIG.

【0019】<実施例3>実施例1において、多孔性ニ
ッケル基体として、エキスパンデッドニッケルを芯体と
し、その表面に実施例2と同様にして多孔性ニッケル層
を形成した。その断面形状を図4に示す。図4において
6がエキスパンドニッケル芯体部、7が多孔性ニッケル
層、8が開口部であり、開口部8には反応すべき溶液あ
るいは気体が通りやすい。
Example 3 In Example 1, an expanded nickel core was used as the porous nickel substrate, and a porous nickel layer was formed on the surface thereof in the same manner as in Example 2. Its cross-sectional shape is shown in FIG. In FIG. 4, 6 is an expanded nickel core, 7 is a porous nickel layer, and 8 is an opening, through which the solution or gas to be reacted can easily pass.

【0020】<光触媒の効力に関する試験例>よく、池
などで、光合成により藻が繁殖しすぎることに困惑する
という状況があるが、この藻の過剰成育の抑止のために
、次のような実験を試みた。まず、透明のガラスビーカ
ーに1lの水を入れ、その中に新鮮で緑色をした藻(カ
モンバー)を入れ、さらに各種光触媒を入れ、透明ガラ
スの窓際におき、太陽光がビーカーに照射されるように
し、藻の枯死に及ぼす光触媒効果を比較実験した。
<Example of test on photocatalytic efficacy> Often, people are confused by excessive growth of algae due to photosynthesis in ponds, etc. In order to prevent the excessive growth of algae, the following experiment was conducted. I tried. First, fill a transparent glass beaker with 1 liter of water, add fresh green algae (camonvar), add various photocatalysts, and place it next to a transparent glass window so that sunlight will illuminate the beaker. A comparative experiment was conducted to compare the photocatalytic effect on the death of algae.

【0021】光触媒としては、上述の実施例に述べた本
発明品(A)、ポリテトラフルオロエチレン不織布に酸
化チタン−ポリテトラフルオロチレン混合物を塗着した
光触媒体(B)、ポリエステル布表面に低温溶射法でル
チル型の酸化チタンを付着させた光触媒体(C)、本発
明品(A)と同一のルチル型酸化チタン粉末(水の中に
懸渇)、(D)を用いた。また比較のために、光触媒を
一切用いないもの(E)も用意した。なお、すべての場
合において酸化チタンの使用量を同一とした。
As the photocatalyst, the present invention product (A) described in the above-mentioned Examples, the photocatalyst material (B) prepared by coating a titanium oxide-polytetrafluoroethylene mixture on a polytetrafluoroethylene nonwoven fabric, and the polyester fabric surface coated with a low temperature A photocatalyst (C) to which rutile-type titanium oxide was attached by thermal spraying, a rutile-type titanium oxide powder (suspended in water) identical to the product of the present invention (A), and (D) were used. For comparison, a sample (E) that did not use any photocatalyst was also prepared. Note that the amount of titanium oxide used was the same in all cases.

【0022】藻の色、組織の状態の経時変化を次表に示
す。
The following table shows changes over time in the color and tissue condition of the algae.

【0023】上表から、本発明のように、酸化チタンを
ポリテトロラフルオロチレンで結着して揆水性をもたせ
た光触媒体(A,B)が藻の枯死に対して、光触媒効果
を示すのに対し、従来品(C,D)のように酸化チタン
粉末(ルチル)を懸渇させたり、低温溶射法で溶射した
ものは全くかあまり効果を示さないことが瞭然としてい
る。また、AとBとの効力の差は、多孔性ニッケルが、
電荷分離に対して、一定の効果をもっていることを示す
From the above table, it can be seen that the photocatalysts (A, B) in which titanium oxide is bound with polytetrofluoroethylene to have water repellency as in the present invention exhibit a photocatalytic effect on the death of algae. On the other hand, it is clear that conventional products (C, D) in which titanium oxide powder (rutile) is suspended or sprayed by low-temperature spraying have no or little effect. In addition, the difference in effectiveness between A and B is that porous nickel
This shows that it has a certain effect on charge separation.

【0024】なお、このように、藻の枯死に対して、光
触媒がその有効性を示すことは本願発明者らによっては
じめて見い出された。従来の光触媒効果の研究は、例外
なく、対象とする種が光触媒との接点で酸化還元を受け
るケースについてのみなされてきたが、上述の実験では
、光触媒と藻とが直接触媒しているわけではないので、
この藻の枯死現象を従来の反応機構で説明することはで
きない。すなわち、上述の現象は光触媒によって一旦何
らかの酸化種が生成し、それが水中に浮遊している藻の
あるところまで、水中を拡散していくと考えないと説明
ができない。従来、このような酸化種が光触媒表面から
、沖合まで拡散していく報告は一切ないし、その結果の
当然のことながらその拡散していく酸化種がいかなる物
質であるか確認されていない。本願発明者らは、光触媒
表面でOH− が吸着され次にOH* ラジカルが形成
され、それが会合して、H2 O2 が生成し、これが
水の沖合に拡散していって、藻を攻撃すると一応推量し
ているが、今のところ確認に至っていない。いずれにし
ても、この酸化種の水中沖合への拡散と本発明の光触媒
粉末のフッ素樹脂による結着、ひいては揆水性と何らか
の相関性があることが推定される。換言すると、一般技
術分野で、ある粉末材料を揆水性を付与しつつ結着する
ためにフッ素樹脂を用いることは通例実施されているこ
とであるが、上述のように、光触媒体におけるフッ素樹
脂の効果はこのような一般的効果を越えた新しい発見に
基づいたものであると理解さるべきである。
[0024] As described above, it was discovered for the first time by the inventors of the present application that a photocatalyst is effective in killing algae. Without exception, conventional research on the photocatalytic effect has only focused on cases in which the target species undergoes redox at the point of contact with the photocatalyst. However, in the above experiment, it was found that the photocatalyst and algae were not directly catalyzed. Since there is no,
This algae death phenomenon cannot be explained by conventional reaction mechanisms. In other words, the above-mentioned phenomenon cannot be explained unless we consider that some oxidized species is once generated by the photocatalyst and then diffused through the water to the point where the algae floating in the water are located. Until now, there have been no reports of such oxidizing species diffusing from the photocatalyst surface to offshore, and as a matter of course, it has not been confirmed what kind of substance the oxidizing species is. The inventors have discovered that OH- is adsorbed on the photocatalyst surface, and then OH* radicals are formed, which combine to produce H2O2, which diffuses offshore and attacks algae. I'm guessing, but so far I haven't been able to confirm it. In any case, it is presumed that there is some correlation between the diffusion of the oxidized species underwater and offshore, the binding of the photocatalyst powder of the present invention by the fluororesin, and eventually the water repellency. In other words, in the general technical field, it is common practice to use fluororesin to bind a certain powder material while imparting water repellency to it, but as mentioned above, the use of fluororesin in photocatalysts is common practice. It should be understood that the effects are based on new discoveries that go beyond these general effects.

【0024】以上、評述する如く、本発明は光触媒体を
製作する上で、基体として多孔性ニッケルを用いること
、結着剤としてフッ素樹脂を用いること等、その材料お
よび製法の個々の過程自体は、従来他の技術分野には公
知であるが、それらの組合わせによって、半導体光触媒
として、全く新しい機能と効果を示すものである。
[0024] As described above, in producing the photocatalyst, the present invention uses porous nickel as a substrate, fluororesin as a binder, etc., and the individual steps of the material and manufacturing method themselves are , are conventionally known in other technical fields, but by combining them, they exhibit completely new functions and effects as a semiconductor photocatalyst.

【0025】なお、本光触媒体の利用分野は、主として
水溶液系での酸化還元反応系であるが、例えば、脱臭器
のように、気相での反応に対しても適用可能である。
The field of application of the present photocatalyst is mainly redox reaction systems in an aqueous solution system, but it can also be applied to reactions in a gas phase, such as in deodorizers.

【図面の詳細な説明】[Detailed explanation of drawings]

【図1】本発明の実施例1にかかる光触媒体の断面図で
ある。
FIG. 1 is a sectional view of a photocatalyst according to Example 1 of the present invention.

【図2】本発明の実施例2にかかる光触媒体の断面図で
ある。
FIG. 2 is a sectional view of a photocatalyst according to Example 2 of the present invention.

【図3】本発明の実施例2にかかる光触媒体の外観図で
ある。
FIG. 3 is an external view of a photocatalyst according to Example 2 of the present invention.

【図4】本発明の実施例3にかかる多孔性ニッケル基板
の断面構造を示す図である。
FIG. 4 is a diagram showing a cross-sectional structure of a porous nickel substrate according to Example 3 of the present invention.

【符号の説明】[Explanation of symbols]

1  多孔性ニッケル板 2  酸化チタン粉末−フッ素樹脂混合層3  ニッケ
ル線 4  多孔性ニッケル層 5  酸化チタン粉末−フッ素樹脂混合層6  エキス
パンデッドニッケル芯体部7  多孔性ニッケル層 8  開口部
1 Porous nickel plate 2 Titanium oxide powder-fluororesin mixed layer 3 Nickel wire 4 Porous nickel layer 5 Titanium oxide powder-fluororesin mixed layer 6 Expanded nickel core portion 7 Porous nickel layer 8 Opening

Claims (1)

【特許請求の範囲】[Claims] 【請求項】  多孔性ニッケル基体に、光触媒粉末とフ
ッ素樹脂結着剤との混合物を積層・圧着してなることを
特徴とする光触媒体。
Claim: A photocatalyst body comprising a porous nickel substrate and a mixture of photocatalyst powder and a fluororesin binder laminated and pressed together.
JP07584091A 1991-03-14 1991-03-14 Photocatalyst Expired - Fee Related JP3374143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07584091A JP3374143B2 (en) 1991-03-14 1991-03-14 Photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07584091A JP3374143B2 (en) 1991-03-14 1991-03-14 Photocatalyst

Publications (2)

Publication Number Publication Date
JPH04284851A true JPH04284851A (en) 1992-10-09
JP3374143B2 JP3374143B2 (en) 2003-02-04

Family

ID=13587801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07584091A Expired - Fee Related JP3374143B2 (en) 1991-03-14 1991-03-14 Photocatalyst

Country Status (1)

Country Link
JP (1) JP3374143B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07171408A (en) * 1993-06-28 1995-07-11 Ishihara Sangyo Kaisha Ltd Photocatalytic body and its production
JPH07265714A (en) * 1994-03-30 1995-10-17 Matsushita Seiko Co Ltd Supporting method for forming photocatalyst bed
JPH08117596A (en) * 1994-10-27 1996-05-14 Matsushita Seiko Co Ltd Method for carrying titanium dioxide particle
JPH0938191A (en) * 1995-07-31 1997-02-10 Toyoda Gosei Co Ltd Antibacterial deodorizing sheet
JPH0966238A (en) * 1995-09-04 1997-03-11 Takenaka Komuten Co Ltd Inorganic granular material and its manufacture
US5616532A (en) * 1990-12-14 1997-04-01 E. Heller & Company Photocatalyst-binder compositions
JPH1044346A (en) * 1996-05-27 1998-02-17 Nitto Denko Corp Stainproof film and its manufacture
US5849200A (en) * 1993-10-26 1998-12-15 E. Heller & Company Photocatalyst-binder compositions
JPH1110802A (en) * 1997-06-26 1999-01-19 Achilles Corp Laminated sheet
US6107241A (en) * 1996-03-29 2000-08-22 Tao Inc. Photocatalytic body and method for making same
JP2003053143A (en) * 2001-08-10 2003-02-25 Bitsugu Sons:Kk Photocatalytic member, base material to be used in the member and method for manufacturing the member
KR100494737B1 (en) * 2002-10-11 2005-06-14 주식회사 미래소재 A functionally metal sound-absorbing power materials and manufacturing mathod
JP2006192906A (en) * 1996-05-27 2006-07-27 Nitto Denko Corp Antifouling film and its manufacturing process
JP2007289955A (en) * 2007-05-25 2007-11-08 Ishihara Sangyo Kaisha Ltd Photocatalytic body and set of paint composition for forming the same
DE102011006760A1 (en) 2010-04-15 2011-10-20 Denso Corporation A / D converter device and signal processing unit hereby
CN114308072A (en) * 2022-01-07 2022-04-12 新疆大学 Bifunctional catalyst for photocatalytic oxidation of p-xylene and synchronous reduction of water to produce hydrogen and preparation method and application thereof

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616532A (en) * 1990-12-14 1997-04-01 E. Heller & Company Photocatalyst-binder compositions
US6498000B2 (en) 1993-06-28 2002-12-24 Ishihara Sangyo Kaisha, Ltd. Photocatalyst composite and process for producing the same
EP1157741A1 (en) * 1993-06-28 2001-11-28 Ishihara Sangyo Kaisha Ltd. Photocatalyst composite and process for producing the same
EP1157742A1 (en) * 1993-06-28 2001-11-28 Ishihara Sangyo Kaisha Ltd. Process for removing deleterious materials
US5547823A (en) * 1993-06-28 1996-08-20 Ishihara Sangyo Kaisha, Ltd. Photocatalyst composite and process for producing the same
US6277346B1 (en) 1993-06-28 2001-08-21 Ishihara Sangyo Kaisha, Ltd. Photocatalyst composite and process for producing the same
CN1062194C (en) * 1993-06-28 2001-02-21 石原产业株式会社 Photocatalyst composite and process for producing the same
JPH07171408A (en) * 1993-06-28 1995-07-11 Ishihara Sangyo Kaisha Ltd Photocatalytic body and its production
EP0875289A1 (en) * 1993-06-28 1998-11-04 Ishihara Sangyo Kaisha, Ltd. Photocatalyst composite and process for producing the same
US6093676A (en) * 1993-10-26 2000-07-25 E. Heller & Company Photocatalyst-binder compositions
US5854169A (en) * 1993-10-26 1998-12-29 E. Heller & Company Photocatalyst-binder compositions
US5849200A (en) * 1993-10-26 1998-12-15 E. Heller & Company Photocatalyst-binder compositions
JPH07265714A (en) * 1994-03-30 1995-10-17 Matsushita Seiko Co Ltd Supporting method for forming photocatalyst bed
JPH08117596A (en) * 1994-10-27 1996-05-14 Matsushita Seiko Co Ltd Method for carrying titanium dioxide particle
JPH0938191A (en) * 1995-07-31 1997-02-10 Toyoda Gosei Co Ltd Antibacterial deodorizing sheet
JPH0966238A (en) * 1995-09-04 1997-03-11 Takenaka Komuten Co Ltd Inorganic granular material and its manufacture
US6429169B1 (en) 1996-03-29 2002-08-06 Saga-Ken Photocatalytic body and method for making same
US6107241A (en) * 1996-03-29 2000-08-22 Tao Inc. Photocatalytic body and method for making same
JPH1044346A (en) * 1996-05-27 1998-02-17 Nitto Denko Corp Stainproof film and its manufacture
JP2006192906A (en) * 1996-05-27 2006-07-27 Nitto Denko Corp Antifouling film and its manufacturing process
JPH1110802A (en) * 1997-06-26 1999-01-19 Achilles Corp Laminated sheet
JP2003053143A (en) * 2001-08-10 2003-02-25 Bitsugu Sons:Kk Photocatalytic member, base material to be used in the member and method for manufacturing the member
KR100494737B1 (en) * 2002-10-11 2005-06-14 주식회사 미래소재 A functionally metal sound-absorbing power materials and manufacturing mathod
JP2007289955A (en) * 2007-05-25 2007-11-08 Ishihara Sangyo Kaisha Ltd Photocatalytic body and set of paint composition for forming the same
JP4629700B2 (en) * 2007-05-25 2011-02-09 石原産業株式会社 Set of photocatalyst and coating composition for forming the same
DE102011006760A1 (en) 2010-04-15 2011-10-20 Denso Corporation A / D converter device and signal processing unit hereby
US8344929B2 (en) 2010-04-15 2013-01-01 Denso Corporation A/D converter device and signal processing unit
CN114308072A (en) * 2022-01-07 2022-04-12 新疆大学 Bifunctional catalyst for photocatalytic oxidation of p-xylene and synchronous reduction of water to produce hydrogen and preparation method and application thereof
CN114308072B (en) * 2022-01-07 2023-10-24 新疆大学 Double-function catalyst for synchronously reducing water to produce hydrogen by photocatalytic oxidation of paraxylene, and preparation method and application thereof

Also Published As

Publication number Publication date
JP3374143B2 (en) 2003-02-04

Similar Documents

Publication Publication Date Title
JP3592727B2 (en) Photocatalyst
JPH04284851A (en) Photo-catalyst body
Dong et al. Immobilization of polymeric g-C3N4 on structured ceramic foam for efficient visible light photocatalytic air purification with real indoor illumination
CN100473453C (en) Photolytic and photocatalytic reaction enhancement device
US6235401B1 (en) Method for coating amorphous titanium peroxide
US6284314B1 (en) Porous ceramic thin film and method for production thereof
WO2016039055A1 (en) Photocatalyst laminate, method for manufacturing same, photocatalyst module, and hydrogen producing method
MXPA06010223A (en) High surface area ceramic coated fibers.
Ha et al. Photocatalytic degradation of formic acid via metal-supported titania
US5246737A (en) Method for immobilizing semiconductors and noble metals on solid surfaces
JP2004059507A (en) Method for reducing carbon dioxide by using photocatalyst
Chen et al. Membrane-catalysis integrated system for contaminants degradation and membrane fouling mitigation: A review
JP2001070802A (en) Photocatalyst film and its production
JPH04327851A (en) Photocatalyst body
CN112495403B (en) BiOCl/Bi 2 O 3 Photocatalytic material and preparation method and application thereof
JP3362669B2 (en) Photocatalyst manufacturing method
JP2005254128A (en) Photocatalyst particle and method of immobilizing it, and photocatalytic member
JP2002085967A (en) Photocatalyst membrane and method of producing the same
JP2849177B2 (en) Photocatalyst manufacturing method
JP3250394B2 (en) Member having photocatalytic action, composition for forming photocatalytic thin film, and method for producing member having photocatalytic action
JP2000225349A (en) Filter
CN114522547A (en) Ag/CNQDs/g-C3N4Preparation method and application of-PVDF visible light catalytic self-cleaning microfiltration membrane
Merenda et al. Functional nanoporous titanium dioxide for separation applications: Synthesis routes and properties to performance analysis
JP3952238B2 (en) Removal method of harmful substances by photocatalyst
JP2001000869A (en) Catalyst for photoreaction

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees