JPH04284843A - Fuel modifying device - Google Patents

Fuel modifying device

Info

Publication number
JPH04284843A
JPH04284843A JP4855791A JP4855791A JPH04284843A JP H04284843 A JPH04284843 A JP H04284843A JP 4855791 A JP4855791 A JP 4855791A JP 4855791 A JP4855791 A JP 4855791A JP H04284843 A JPH04284843 A JP H04284843A
Authority
JP
Japan
Prior art keywords
tube
preheating
pipe
regeneration
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4855791A
Other languages
Japanese (ja)
Inventor
Hiromi Sasaki
広美 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4855791A priority Critical patent/JPH04284843A/en
Publication of JPH04284843A publication Critical patent/JPH04284843A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To preheat raw material gas without damaging regeneration function and to simplify a fuel battery power plant by providing a preheating pipe in the inner pipe of a fuel modifying device having inner and outer pipes, and further providing a regeneration pipe in the preheating pipe. CONSTITUTION:A preheating pipe 22 is provided in an inner pipe 8 and a regeneration pipe 21 is further provided in the preheating pipe 22 to provide a quadruplex pipe. A preheating path 19 is formed by the regeneration pipe 21 and the preheating pipe 22, and a return path 20 is formed by the inner pipe 8 and the preheating pipe 22, and a regeneration path 17 is formed inside the regeneration pipe 21. Fuel gas of 1000 deg.C or higher flows through a reaction tube 3 downward to be subjected to the heat exchange with raw material gas 15 and, thereafter, the raw material gas 15 flows through the preheating path 19 upward and is subjected to the heat exchange with modified gas 16 through the preheating pipe 22 to be heated to about 500 deg.C or higher. Next, the raw material gas 15 is reversed at the upper end of the preheating pipe 22 to flow through the return path 20 downward and subjected to the heat exchange with the raw material gas in the preheating path 19 through the preheating pipe 22 and the heat exchange with the raw material gas 15 in a modifying catalyst bed 9 through the inner pipe 18 to slightly drop in its temp.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は、炭化水素ガスに水蒸気
を混合したガス(以下原料ガス)を燃焼ガスによって加
熱し、触媒を用いた改質反応により水素を主成分とする
ガス(以下改質ガス)を生成する燃料改質器に係り、特
に、燃料電池発電プラントに使用するのに適した燃料改
質器の改質反応管(以下反応管)の機能の複合化により
燃料電池発電プラントの簡素化を図る燃料改質器に関す
る。
[Industrial Application Field] The present invention heats a gas (hereinafter referred to as raw material gas), which is a mixture of hydrocarbon gas and water vapor, with combustion gas, and performs a reforming reaction using a catalyst to produce a gas whose main component is hydrogen (hereinafter referred to as raw material gas). In particular, the fuel reformer is suitable for use in fuel cell power generation plants by combining the functions of the reforming reaction tubes (hereinafter referred to as reaction tubes) of fuel reformers that are suitable for use in fuel cell power plants. This invention relates to a fuel reformer that aims to simplify the process.

【0002】0002

【従来の技術】燃料電池発電プラントは、一般に、燃料
電池本体と燃料改質器と電力変換装置、制御装置および
多くの熱交換器類によって構成されており、非常に複雑
なシステムである。
2. Description of the Related Art A fuel cell power generation plant is generally a very complex system consisting of a fuel cell main body, a fuel reformer, a power converter, a control device, and many heat exchangers.

【0003】本発明の対象である燃料改質器について、
一般に用いられている二重管式反応管を含む燃料改質器
の一例を図3に示す。以下図3を用いて、その構成およ
び機能を説明する。
Regarding the fuel reformer that is the object of the present invention,
An example of a commonly used fuel reformer including a double-tube reaction tube is shown in FIG. The configuration and functions will be explained below using FIG. 3.

【0004】内面に適当な厚さの断熱材2を施した収納
容器1内に反応管3が立設され、この収納容器1の上端
にはバーナ空気入口4、バーナ燃料入口5を付属するバ
ーナ6が設けられている。反応管3は外管7と内管8と
からなる二重管構造となっており、また、外管7と内管
8の間には粒状の改質触媒が充填され改質触媒層9が形
成され、この改質触媒層9は目皿10によって保持され
ている。
A reaction tube 3 is installed upright in a storage container 1 whose inner surface is covered with a heat insulating material 2 of appropriate thickness, and a burner air inlet 4 and a burner fuel inlet 5 are connected to the upper end of the storage container 1. 6 is provided. The reaction tube 3 has a double tube structure consisting of an outer tube 7 and an inner tube 8, and a granular reforming catalyst is filled between the outer tube 7 and the inner tube 8, and a reforming catalyst layer 9 is formed. This reforming catalyst layer 9 is held by a perforated plate 10.

【0005】また、収納容器1の下端には容器壁を貫通
して原料ガス入口11、改質ガス出口12および排ガス
出口14が設けられており、原料ガス入口11に通じる
系の上流側には、原料ガス予熱器18が備えられている
Further, a raw material gas inlet 11, a reformed gas outlet 12, and an exhaust gas outlet 14 are provided at the lower end of the storage container 1 through the container wall, and on the upstream side of the system leading to the raw material gas inlet 11, , a raw material gas preheater 18 are provided.

【0006】バーナ空気入口4およびバーナ燃料入口5
から供給されたバーナ空気およびバーナ燃料はバーナ6
で燃焼して1000℃以上の高温の燃焼ガス13となり
、収納容器1内に導入される。さらに燃焼ガス13は、
反応管3の周囲を長さ方向に沿って下向きに流動する。 その際、燃焼ガス13は、反応管3の内部を流れる原料
ガス15と熱交換し、徐々に温度が降下する。そして、
既定の温度まで下がった燃焼ガス13は排ガスとなって
排ガス出口14から器外に流出する。一方、炭化水素ガ
スに水蒸気を混合した原料ガス15は、原料ガス予熱器
18によって約450 ℃に予熱され、原料ガス入口1
1より反応管3の下端に流入する。次に、原料ガス15
は改質触媒層9内を反応管3の長さ方向に沿って上向き
に流動する。
Burner air inlet 4 and burner fuel inlet 5
The burner air and burner fuel supplied from burner 6
The gas is combusted to become a high-temperature combustion gas 13 of 1000° C. or higher, which is introduced into the storage container 1. Furthermore, the combustion gas 13 is
It flows downward around the reaction tube 3 along its length. At this time, the combustion gas 13 exchanges heat with the raw material gas 15 flowing inside the reaction tube 3, and its temperature gradually decreases. and,
The combustion gas 13 whose temperature has dropped to a predetermined temperature becomes exhaust gas and flows out of the device from the exhaust gas outlet 14. On the other hand, the raw material gas 15, which is a mixture of hydrocarbon gas and water vapor, is preheated to about 450°C by the raw material gas preheater 18, and the raw material gas inlet 1
1 and flows into the lower end of the reaction tube 3. Next, the raw material gas 15
flows upward in the reforming catalyst layer 9 along the length of the reaction tube 3.

【0007】その際、原料ガス15は、反応管3の外部
を流れる高温の燃焼ガス13と外管7を介して熱交換し
て熱せられ、徐々に温度が上昇すると共に触媒作用によ
って改質反応が起こり、改質触媒層9の上端に達するま
でに約800 ℃の水素を主成分とする改質ガス16に
転化する。
At this time, the raw material gas 15 is heated by exchanging heat with the high-temperature combustion gas 13 flowing outside the reaction tube 3 via the outer tube 7, and as the temperature gradually rises, a reforming reaction occurs due to the catalytic action. occurs, and by the time it reaches the upper end of the reforming catalyst layer 9, it is converted to a reformed gas 16 whose main component is hydrogen at about 800°C.

【0008】さらに、改質ガス16は反応管3の上端で
反転し、内管8によって形成される再生パス17を下向
きに流動する。ここで、高温の改質ガス16は内管8を
介して改質触媒層9内を流動する原料ガス15を加熱す
る。尚、この作用は再生機能と呼ばれ、高温の改質ガス
16の熱量を有効に利用するものである。
Furthermore, the reformed gas 16 is reversed at the upper end of the reaction tube 3 and flows downward through a regeneration path 17 formed by the inner tube 8. Here, the high-temperature reformed gas 16 heats the raw material gas 15 flowing in the reforming catalyst layer 9 via the inner pipe 8 . Note that this action is called a regeneration function, and effectively utilizes the amount of heat of the high-temperature reformed gas 16.

【0009】そして、約550 ℃に温度降下した改質
ガス16は、改質ガス出口12より器外に排出され、原
料ガス予熱器18の高温側ガスとしての役割を果たした
後、図示しない種々の機器を経由して燃料電池本体に導
かれる。
Then, the reformed gas 16 whose temperature has dropped to about 550° C. is discharged from the reformed gas outlet 12 to the outside of the vessel, and after playing the role as the high temperature side gas of the raw material gas preheater 18, various gases (not shown) are used. The fuel is guided to the fuel cell body via the following equipment.

【0010】0010

【発明が解決しようとする課題】以上のような構成およ
び機能を有する従来の燃料改質器を備えた燃料電池発電
プラントにおいては、多くの機器の中で燃料改質器が最
も大きな機器であり、したがってシステムを全体に占め
るスペースなコストの割合も大きくなっている。このた
め過去においても、構造上の様々な工夫や改質性能の向
上およびシステムの改良によって少しでも小型にするよ
うな努力が払われてきたが、最近のコンパクト化に対す
る要求は一層強いものがある。
[Problems to be Solved by the Invention] In a fuel cell power generation plant equipped with a conventional fuel reformer having the configuration and functions as described above, the fuel reformer is the largest piece of equipment among many pieces of equipment. Therefore, the proportion of space cost in the entire system is also increasing. For this reason, efforts have been made in the past to make the product as compact as possible through various structural innovations, improvements in reforming performance, and system improvements, but recently the demand for compactness has become even stronger. .

【0011】次に、燃料改質器に要求されるもう一つの
特徴は、原料ガス15の温度を約450℃に予熱しなけ
ればならないことである。低温の、原料ガス15には水
蒸気が水滴となって分離されている場合があり、もし、
直接に改質触媒層9に原料ガス15を導入して、水滴が
触媒に付着して急激に蒸発したとき、熱的な衝撃によっ
て触媒の破壊を引き起こす原因となる。また、一般に低
温においては触媒の活性が非常に低いために改質反応が
起こりにくく、したがって、低温領域の改質触媒層9は
所期の目的を果たし得なくなる。原料ガス予熱器18は
上記の理由により原料ガス15を適正な温度まで予熱す
るために設けられているものであり、必要不可欠な機器
の一つである。
Another feature required of the fuel reformer is that the temperature of the raw material gas 15 must be preheated to about 450°C. Water vapor may be separated into water droplets in the low-temperature raw material gas 15, and if
When the raw material gas 15 is directly introduced into the reforming catalyst layer 9 and water droplets adhere to the catalyst and evaporate rapidly, the thermal shock causes destruction of the catalyst. Furthermore, since the activity of the catalyst is generally very low at low temperatures, the reforming reaction is difficult to occur, and therefore the reforming catalyst layer 9 in the low temperature region cannot serve its intended purpose. The raw material gas preheater 18 is provided to preheat the raw material gas 15 to an appropriate temperature for the above-mentioned reason, and is one of the essential devices.

【0012】しかし、原料ガス予熱器18のような類の
機器を必要とすることが、燃料電池発電プラントの複雑
さの一つの要因であり、システムの簡素化やコンパクト
化を阻害する原因となっている。
[0012] However, the necessity of equipment such as the raw gas preheater 18 is one of the factors contributing to the complexity of fuel cell power generation plants, and is a cause of hindering system simplification and compactness. ing.

【0013】そこで、本発明は上記の課題を解決するた
めになされたものであり、その目的とするところは、反
応管の構造の改良によって、燃料改質器の機能の複合化
を図り、もって燃料電池発電プラントの簡素化に寄与す
る燃料改質器を提供することにある。 [発明の構成]
The present invention has been made to solve the above-mentioned problems, and its purpose is to combine the functions of a fuel reformer by improving the structure of the reaction tube. An object of the present invention is to provide a fuel reformer that contributes to the simplification of a fuel cell power generation plant. [Structure of the invention]

【0014】[0014]

【課題を解決するための手段】上記の目的を達成するた
めに本発明は以下の手段を講じている。
[Means for Solving the Problems] In order to achieve the above object, the present invention takes the following measures.

【0015】内管の内側に再生管、さらにその内側に予
熱管を設けることによって四重管式反応管とし、原料ガ
スが流動する予熱パス、リターンパスおよび改質ガスが
流動する再生パスを形成する。
[0015] A regeneration tube is provided inside the inner tube, and a preheating tube is further provided inside the inner tube to form a quadruple tube type reaction tube, forming a preheating path through which raw material gas flows, a return path, and a regeneration path through which reformed gas flows. do.

【0016】[0016]

【作用】上記の手段によって下記の作用が得られる。原
料ガスを予熱パスおよびリターンパスで予熱し、改質触
媒層の入口で約450 ℃以上になるため、原料ガス予
熱器が不要、もしくは非常に小形化できる。
[Action] The following effects can be obtained by the above means. Since the raw material gas is preheated in the preheating pass and the return pass to a temperature of about 450°C or higher at the inlet of the reforming catalyst layer, a raw gas preheater is not required or can be made very compact.

【0017】[0017]

【実施例】以下、本発明の一実施例を図1を参照して説
明する。図1において、図3と同一符号で示す部分はそ
の構成が同様であるから説明を省略する。
Embodiment An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, the parts indicated by the same reference numerals as those in FIG. 3 have the same configuration, and therefore the description thereof will be omitted.

【0018】内管8の内側に予熱管22を、さらにその
内側に再生管21を設けて四重管を構成し、再生管21
と予熱管22によって予熱パス19および、内管8と予
熱管22によってリターンパス20が形成され、また、
再生管21の内側には再生パス17が形成されている。 予熱パス19の下端部は原料ガス入口11に、また上端
部はリターンパス20に接続している。さらに、改質触
媒層9の下端部はリターンパス20に、また上端部は再
生パス17に接続している。次に、本発明の実施例の作
用について、ガスの流れに沿って説明する。尚、従来と
同様の作用を有する部分はその説明を省略する。
A preheating tube 22 is provided inside the inner tube 8, and a regeneration tube 21 is further provided inside the inner tube 8 to form a quadruple tube.
A preheating path 19 is formed by the and preheating tube 22, and a return path 20 is formed by the inner tube 8 and the preheating tube 22, and
A regeneration path 17 is formed inside the regeneration tube 21 . The lower end of the preheating path 19 is connected to the raw material gas inlet 11, and the upper end is connected to the return path 20. Further, the lower end of the reforming catalyst layer 9 is connected to a return path 20, and the upper end thereof is connected to a regeneration path 17. Next, the operation of the embodiment of the present invention will be explained along the flow of gas. Note that the explanation of parts having the same functions as those of the conventional one will be omitted.

【0019】図1において、1000℃以上の高温の燃
焼ガス13は、反応管3の周囲を長さ方向に沿って下向
きに流動する。この際、燃焼ガス13は外管7を介して
反応管3の内部を流れる原料ガス15と熱交換して徐々
に温度が降下する。一方、炭化水素ガスに水蒸気を混合
した。約200 〜250 ℃の原料ガス15は、原料
ガス入口11より反応管3の下端に流入する。
In FIG. 1, combustion gas 13 at a high temperature of 1000° C. or higher flows downward along the length of the reaction tube 3. At this time, the combustion gas 13 exchanges heat with the raw material gas 15 flowing inside the reaction tube 3 via the outer tube 7, and its temperature gradually decreases. On the other hand, water vapor was mixed with hydrocarbon gas. Raw material gas 15 at about 200 to 250° C. flows into the lower end of reaction tube 3 from raw material gas inlet 11 .

【0020】次に原料ガス15は予熱パス19内を上向
きに流動する。この際、原料ガス15は予熱管22を介
してリターンパス20を流れる原料ガス15および再生
管21を介して再生パス17を流れる改質ガス16とそ
れぞれ熱交換して徐々に温度が上昇し、予熱管22の上
端に達するまでに500 ℃以上に加熱される。次に、
加熱された原料ガス15は予熱管22の上端で反転し、
リターンパス20内を下向きに流動する。この際、原料
ガス15は予熱管22を介して予熱パス19を流れる原
料ガス15および内管8を介して改質触媒層9を流れる
原料ガス15とそれぞれ熱交換して若干温度が低下する
。そして、改質触媒層9の入口に達するまでに約450
 ℃となる。
Next, the raw material gas 15 flows upward in the preheating path 19. At this time, the raw material gas 15 exchanges heat with the raw material gas 15 flowing through the return path 20 via the preheating tube 22 and the reformed gas 16 flowing through the regeneration path 17 via the regeneration tube 21, and the temperature gradually increases. By the time it reaches the upper end of the preheating tube 22, it is heated to 500°C or more. next,
The heated raw material gas 15 is reversed at the upper end of the preheating tube 22,
It flows downward in the return path 20. At this time, the raw material gas 15 exchanges heat with the raw material gas 15 flowing through the preheating path 19 via the preheating pipe 22 and with the raw material gas 15 flowing through the reforming catalyst layer 9 via the inner tube 8, and its temperature is slightly lowered. Approximately 450
℃.

【0021】したがって、従来は原料ガス予熱器18で
行なわれていた原料ガス15の予熱が反応管3の内部で
行なわれるため、原料ガス予熱器18が不要、もしくは
非常に小形化することが可能であり、燃料電池発電プラ
ントの簡素化や、コンパクト化に多大な効果がある。
[0021] Therefore, since the preheating of the raw material gas 15, which was conventionally performed in the raw material gas preheater 18, is performed inside the reaction tube 3, the raw material gas preheater 18 is not necessary or can be made very small. This has a great effect on simplifying and downsizing fuel cell power generation plants.

【0022】次に、予熱された原料ガス15は改質触媒
層9を上向きに流動する。このとき、原料ガス15は外
管7を介して反応管3の外部を流れる高温の燃焼ガス1
3によって加熱され、徐々に温度が上昇すると共に、触
媒作用によって改質反応が起こり、改質触媒層9の上端
に達するまでには約800℃の水素を主成分とする改質
ガス16に転化する。次に改質ガス16は反応管3の上
端部で再度反転して再生管21の内側の再生パス17を
下向きに流れる。 この際、高温の改質ガス16が保有する熱量は、再生管
21を介して予熱パス19を流れる原料ガス15に伝え
られ、改質ガス16は所定の温度まで降下する。このよ
うに、本発明においても、従来の改質器と同様の再生機
能を備えており、高温の改質ガス16の熱量の有効利用
が図られている。次に改質ガス16は反応管3の上端部
から改質ガス出口14を経て図示しない次の機器に送ら
れる。その他の実施例として、予熱パス19および再生
パス17に伝熱促進部材を設ける。
Next, the preheated raw material gas 15 flows upward through the reforming catalyst layer 9. At this time, the raw material gas 15 is a high-temperature combustion gas 1 flowing outside the reaction tube 3 via the outer tube 7.
As the temperature gradually rises, a reforming reaction occurs due to the catalytic action, and by the time it reaches the upper end of the reforming catalyst layer 9, it has been converted to a reformed gas 16 whose main component is hydrogen at about 800°C. do. Next, the reformed gas 16 is turned around again at the upper end of the reaction tube 3 and flows downward through the regeneration path 17 inside the regeneration tube 21 . At this time, the amount of heat held by the high temperature reformed gas 16 is transmitted to the raw material gas 15 flowing through the preheating path 19 via the regeneration pipe 21, and the reformed gas 16 is lowered to a predetermined temperature. In this way, the present invention also has a regeneration function similar to that of the conventional reformer, and is intended to effectively utilize the calorific value of the high-temperature reformed gas 16. Next, the reformed gas 16 is sent from the upper end of the reaction tube 3 through the reformed gas outlet 14 to the next device (not shown). As another embodiment, a heat transfer promoting member is provided in the preheating path 19 and the regeneration path 17.

【0023】図2に伝熱促進部材を設けた実施例を示す
。伝熱促進部材としては、例えば、セラミック等の伝熱
促進粒子や、伝熱フィン等が考えられるが、本実施例で
はセラミックの伝熱促進粒子23を用いている。伝熱促
進粒子23を設けることにより原料ガス15の予熱効果
や、改質ガス16の再生効果が向上し、反応管3のコン
パクト化が可能となる。尚、伝熱促進粒子23は予熱パ
ス19または再生パス17のどちらか一方のみに設け上
記と同様の効果を得ることが可能である。
FIG. 2 shows an embodiment in which a heat transfer promoting member is provided. As the heat transfer accelerating member, for example, heat transfer accelerating particles such as ceramic, heat transfer fins, etc. can be considered, but in this embodiment, ceramic heat transfer accelerating particles 23 are used. By providing the heat transfer promoting particles 23, the effect of preheating the raw material gas 15 and the effect of regenerating the reformed gas 16 are improved, and the reaction tube 3 can be made more compact. Note that the heat transfer promoting particles 23 can be provided only in either the preheating path 19 or the regeneration path 17 to obtain the same effect as described above.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
従来の燃料改質器の優れた作用である再生機能を損なう
ことなく、原料ガスの予熱機能を備えているため、原料
ガス予熱器が不要もしくは非常に小形化できる利点を有
しており、燃料電池発電プラントの簡素化に寄与する燃
料改質器を提供するのに優れた効果を奏する。
[Effects of the Invention] As explained above, according to the present invention,
Because it has a raw material gas preheating function without sacrificing the excellent regeneration function of conventional fuel reformers, it has the advantage of eliminating the need for a raw gas preheater or making it extremely compact. The present invention has excellent effects in providing a fuel reformer that contributes to the simplification of battery power generation plants.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る燃料改質器の一実施例を示す断面
図。
FIG. 1 is a sectional view showing one embodiment of a fuel reformer according to the present invention.

【図2】本発明の他の実施例を示す断面図。FIG. 2 is a sectional view showing another embodiment of the present invention.

【図3】従来の燃料改質器の一例を示す構成図。FIG. 3 is a configuration diagram showing an example of a conventional fuel reformer.

【符号の説明】[Explanation of symbols]

3…反応管                    
      7…外管8…内管           
                 9…改質触媒層1
5…原料ガス                   
     16…改質ガス17…再生パス      
                  19…予熱パス
20…リターンパス                
    21…再生管22…予熱管         
                 23…伝熱促進粒
3...Reaction tube
7...Outer tube 8...Inner tube
9...Reforming catalyst layer 1
5... Raw material gas
16...Reformed gas 17...Regeneration path
19...Preheating pass 20...Return pass
21... Regeneration tube 22... Preheating tube
23...Heat transfer accelerating particles

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  同心状に配置された内管と外管とから
なる二重管式反応管を具備する燃料改質器において、前
記内管の内側に予熱管、さらにその予熱管の内側に再生
管を設け、これにより四重管式反応管として構成したこ
とを特徴とする燃料改質器。
Claim 1: A fuel reformer equipped with a double-tube reaction tube consisting of an inner tube and an outer tube arranged concentrically, a preheating tube inside the inner tube, and a preheating tube inside the preheating tube. 1. A fuel reformer characterized in that a regeneration tube is provided and the fuel reformer is configured as a quadruple tube reaction tube.
【請求項2】  該反応管の下端から導入した原料ガス
を該再生管と該予熱管との間の予熱パスに通して予熱し
、上端で反転させて該内管と該予熱管との間のリターン
パスを通し、再度下端で反転させて改質触媒層に導き改
質反応によって高温の改質ガスにするととに、改質ガス
を上端においてさらに反転させて該再生管の内側の再生
パスに導入し、該反応管の下端から改質ガスを流出させ
るようにしたことを特徴とする請求項1記載の燃料改質
器。
2. The raw material gas introduced from the lower end of the reaction tube is preheated by passing it through a preheating path between the regeneration tube and the preheating tube, and is reversed at the upper end to pass between the inner tube and the preheating tube. The reformed gas is passed through the return path at the lower end, inverted again at the lower end, and guided to the reforming catalyst layer to undergo a reforming reaction to become a high-temperature reformed gas.The reformed gas is further inverted at the upper end and passed through the regeneration path inside the regeneration tube. 2. The fuel reformer according to claim 1, wherein the reformed gas is introduced into the reaction tube and flows out from the lower end of the reaction tube.
【請求項3】  該反応管の再生管と予熱管との間の予
熱パスおよび/または再生管の内側の再生パスに伝熱促
進部材を設けたことを特徴とする請求項1記載の燃料改
質器。
3. The fuel reformer according to claim 1, wherein a heat transfer promoting member is provided in a preheating path between a regeneration tube and a preheating tube of the reaction tube and/or a regeneration path inside the regeneration tube. A pawn.
JP4855791A 1991-03-14 1991-03-14 Fuel modifying device Pending JPH04284843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4855791A JPH04284843A (en) 1991-03-14 1991-03-14 Fuel modifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4855791A JPH04284843A (en) 1991-03-14 1991-03-14 Fuel modifying device

Publications (1)

Publication Number Publication Date
JPH04284843A true JPH04284843A (en) 1992-10-09

Family

ID=12806686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4855791A Pending JPH04284843A (en) 1991-03-14 1991-03-14 Fuel modifying device

Country Status (1)

Country Link
JP (1) JPH04284843A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100417362B1 (en) * 1995-04-12 2004-04-17 인터내셔널 퓨얼 셀즈 코포레이션 Fuel processing apparatus having a furnace for fuel cell power plant
US8163382B2 (en) 2006-03-27 2012-04-24 3M Innovative Properties Company Glass ceramic self-supporting film and process for its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100417362B1 (en) * 1995-04-12 2004-04-17 인터내셔널 퓨얼 셀즈 코포레이션 Fuel processing apparatus having a furnace for fuel cell power plant
US8163382B2 (en) 2006-03-27 2012-04-24 3M Innovative Properties Company Glass ceramic self-supporting film and process for its production

Similar Documents

Publication Publication Date Title
US4816353A (en) Integrated fuel cell and fuel conversion apparatus
US7494518B2 (en) Highly integrated fuel processor for distributed hydrogen production
US4642272A (en) Integrated fuel cell and fuel conversion apparatus
JP4520100B2 (en) Hydrogen production apparatus and fuel cell system
JP2006160602A (en) Small cylindrical reformer
JP2000178003A (en) Liquid treating device
JP2006076850A (en) Apparatus and method for reforming, and fuel cell system
JPH04284843A (en) Fuel modifying device
JPH04161244A (en) Fuel reformer
US20090199475A1 (en) Reformer and Method of Startup
JP2572251B2 (en) Fuel reformer
JP4278393B2 (en) Hydrogen production apparatus and fuel cell system
JPH0375201A (en) Methanol reformer
JP2752242B2 (en) Fuel reformer
JPH0335241B2 (en)
CN101132985B (en) Fuel reforming apparatus
JPH0471637A (en) Fuel reformer
JPH0611641B2 (en) Methanol reformer
US20040005249A1 (en) Apparatus for converting a hydrocarbon-containing flow of matter
US20030219364A1 (en) Apparatus for converting a hydrocarbon-containing flow of matter
JP4236496B2 (en) Hydrogen-containing gas generator
JPH08208203A (en) Fuel reformer
JPH0437862Y2 (en)
JPH035302A (en) Method and device for production of reformed gas
JPH0329723B2 (en)