JPH04284827A - Exhaust gas purifying apparatus - Google Patents

Exhaust gas purifying apparatus

Info

Publication number
JPH04284827A
JPH04284827A JP3049658A JP4965891A JPH04284827A JP H04284827 A JPH04284827 A JP H04284827A JP 3049658 A JP3049658 A JP 3049658A JP 4965891 A JP4965891 A JP 4965891A JP H04284827 A JPH04284827 A JP H04284827A
Authority
JP
Japan
Prior art keywords
exhaust gas
adsorbent
zeolite
temperature
gas purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3049658A
Other languages
Japanese (ja)
Other versions
JP2827546B2 (en
Inventor
Tomomi Nagase
智美 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3049658A priority Critical patent/JP2827546B2/en
Publication of JPH04284827A publication Critical patent/JPH04284827A/en
Application granted granted Critical
Publication of JP2827546B2 publication Critical patent/JP2827546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0835Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0878Bypassing absorbents or adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/18Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an adsorber or absorber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/12Combinations of different methods of purification absorption or adsorption, and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/12By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device in case of absorption, adsorption or desorption of exhaust gas constituents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To provide an exhaust gas purifying apparatus capable of more effectively adsorbing cold HC contained in exhaust gas. CONSTITUTION:In an exhaust gas purifying apparatus wherein an HC adsorbing material 33 is arranged on the upstream side of the exhaust gas purifying catalyst of an exhaust gas system E1, the HC adsorbing material 33 is composed of zeolite heat-treated in an H2S atmosphere.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、冷機状態におけるエン
ジン始動時のように、排ガス温度が低温度時および低温
度時より300°C以上の高温に達するまでの移行時に
排ガス中のHCを効率良く吸着して排ガスを浄化するこ
とができる排ガス浄化装置に関する。
[Industrial Application Field] The present invention efficiently removes HC in the exhaust gas when the exhaust gas temperature is low and when it reaches a high temperature of 300°C or more from the low temperature, such as when starting an engine in a cold state. The present invention relates to an exhaust gas purification device that can purify exhaust gas by adsorbing it well.

【0002】0002

【従来の技術】従来より自動車の排ガスを浄化するため
の排ガス浄化装置としてペレット型触媒あるいはモノリ
ス型触媒等が使用されている。ここで排ガス浄化装置に
より排ガスを浄化する場合、排ガス中の有害成分HC、
CO、NOxのうち、HCを触媒浄化する性能は、排ガ
ス温度の高低の影響を特に強くうける。
2. Description of the Related Art Conventionally, pellet type catalysts or monolith type catalysts have been used as exhaust gas purification devices for purifying exhaust gas from automobiles. When purifying exhaust gas with an exhaust gas purification device, harmful components HC in the exhaust gas,
Among CO and NOx, the performance of catalytic purification of HC is particularly strongly affected by the exhaust gas temperature.

【0003】すなわち、従来の排ガス浄化用触媒の浄化
性能は、例えば、排ガス温度が300℃以上で触媒機能
が充分に発揮される。このため、エンジン始動時等の排
ガス温度が低温度時および低温度時より300°C以上
の高温に達するまでの移行時に低温排ガス中のHC(以
下、コールドHCと称す)成分は、触媒で十分浄化され
ず大気中に排出されることがある。
[0003] That is, the purification performance of conventional exhaust gas purifying catalysts is such that, for example, the catalytic function is fully exhibited when the exhaust gas temperature is 300°C or higher. Therefore, the catalyst is sufficient to remove the HC (hereinafter referred to as cold HC) component in the low-temperature exhaust gas when the exhaust gas temperature is low, such as when starting the engine, and during the transition from the low temperature until it reaches a high temperature of 300°C or more. It may be discharged into the atmosphere without being purified.

【0004】また、一般に、冷機状態における始動時の
エンジンには、通常の運転時より濃度の高い混合気が供
給され、排ガス中に含まれるHC量は、暖機運転時の場
合よりも多くなっている。このため、始動時等には、特
にコールドHCを効率よく浄化することが望まれており
、前記触媒の他、その上流側にコールドHCを吸着する
ためのHCトラッパ−を設けるなどの対策を講じた排ガ
ス浄化装置が提案されている。例えば、特開平2−75
327号公報に開示されているようにY型ゼオライト又
はモルデナイト等のゼオライトをHC吸着材として備え
たHCトラッパ−を排ガス系統の排ガス浄化用触媒の上
流側に配置した排ガス浄化装置が提案されている。
[0004] In addition, generally, when an engine is started in a cold state, a mixture with a higher concentration than during normal operation is supplied to the engine, and the amount of HC contained in the exhaust gas is greater than when it is warmed up. ing. For this reason, it is desired to purify cold HC particularly efficiently during startup, etc., and measures such as installing an HC trapper upstream of the catalyst to adsorb cold HC are taken in addition to the catalyst described above. An exhaust gas purification device has been proposed. For example, JP-A-2-75
As disclosed in Publication No. 327, an exhaust gas purification device has been proposed in which an HC trapper equipped with zeolite such as Y-type zeolite or mordenite as an HC adsorbent is placed upstream of an exhaust gas purification catalyst in an exhaust gas system. .

【0005】[0005]

【発明が解決しようとする課題】しかし前記特開平2−
75327号公報に開示された排ガス浄化装置に用いら
れた各種ゼオライトのHC吸着性能は、同公報第4図に
示すように排ガス温度が200°Cで最も高く、300
°Cに昇温するに伴なって低下している。このため、前
記排ガス浄化装置では、排ガス浄化用触媒の触媒機能が
充分に発揮される排ガス温度300°C以上の高温に達
するまでの間の移行時に、排ガス中のHCの吸着率が悪
く排ガスを浄化することができない。
[Problem to be solved by the invention] However, the above-mentioned Japanese Patent Application Laid-Open No.
As shown in Figure 4 of the same publication, the HC adsorption performance of various zeolites used in the exhaust gas purification device disclosed in Publication No. 75327 is highest at an exhaust gas temperature of 200°C;
It decreases as the temperature rises to °C. For this reason, in the exhaust gas purification device, the adsorption rate of HC in the exhaust gas is poor during the transition period until the exhaust gas temperature reaches a high temperature of 300°C or higher, at which the catalytic function of the exhaust gas purification catalyst is fully demonstrated. cannot be purified.

【0006】なお、前記従来の排ガス浄化装置のHCト
ラッパーにコールドHCの吸着材として用いられている
ゼオライトにおけるHCの化学的吸着力は、その酸強度
により影響される。すなわち、シリカ/アルミナ比の低
いゼオライトの場合には、固体酸量は多いが化学吸着点
としてHCを吸着保持できるほどの吸着力をもたない弱
酸点でほとんど占められているため、排ガス中の水分を
多量に吸着する性質があり、コールドHCの吸着量は少
ないものとなる。またこれとは逆にシリカ/アルミナ比
の高いゼオライトの場合には、酸強度は強いが吸着点(
酸点量)が少ないため吸着量が少ない。そこでコールド
HCの吸着材として用いるゼオライトとしては、前記シ
リカ/アルミナ比の高低が中間のものが用いられていた
[0006] The chemical adsorption power of HC in zeolite, which is used as an adsorbent for cold HC in the HC trapper of the conventional exhaust gas purification device, is affected by its acid strength. In other words, in the case of zeolite with a low silica/alumina ratio, although the amount of solid acid is large, it is mostly occupied by weak acid sites that do not have enough adsorption power to adsorb and hold HC as chemical adsorption sites, so the amount of solid acid in the exhaust gas is It has the property of adsorbing a large amount of water, and the adsorption amount of cold HC is small. Conversely, in the case of zeolite with a high silica/alumina ratio, the acid strength is strong but the adsorption point (
Since the amount of acid sites is small, the amount of adsorption is small. Therefore, as a zeolite used as an adsorbent for cold HC, one having an intermediate silica/alumina ratio has been used.

【0007】従ってHC吸着材をもつ排ガス浄化装置と
しては、排ガス温度の低い場合、および高温度時への移
行時の両方に、排ガス中に含まれるコールドHCをより
効率的に吸着できるようにすることが課題とされている
。本発明は、上記課題を解決した排ガス浄化装置を提供
することを目的とする。
[0007] Therefore, an exhaust gas purification device having an HC adsorbent should be able to adsorb cold HC contained in the exhaust gas more efficiently both when the exhaust gas temperature is low and when transitioning to a high temperature. This is considered an issue. An object of the present invention is to provide an exhaust gas purification device that solves the above problems.

【0008】[0008]

【課題を解決するための手段】本発明は、排ガス浄化用
触媒を備えた排ガス系統の該排ガス浄化用触媒の上流側
に配置されたHC吸着材をもつ排ガス浄化装置において
、該HC吸着材は、H2 S雰囲気中で熱処理されたゼ
オライトであることを特徴とする。
[Means for Solving the Problems] The present invention provides an exhaust gas purification device having an HC adsorbent disposed upstream of an exhaust gas purification catalyst in an exhaust gas system equipped with an exhaust gas purification catalyst. , H2S atmosphere.

【0009】ゼオライトは、従来使用されているY型ゼ
オライトや、モルデナイト、ZSM−5等を用いること
ができる。ゼオライトを構成するシリカ/アルミナ比は
、高いものから低いものまで広い範囲のものが使用でき
る。ゼオライトの熱処理の条件としては温度:300〜
500°C、時間:2〜5H、H2 S流量:空間速度
数+h−1であることが好ましい。  前記条件で熱処
理された後のゼオライトは、固体酸強度が強められてH
Cの化学的吸着力が強くなる。
As the zeolite, conventionally used Y-type zeolite, mordenite, ZSM-5, etc. can be used. The silica/alumina ratio constituting the zeolite can range widely from high to low. The conditions for heat treatment of zeolite are temperature: 300~
Preferably, 500°C, time: 2 to 5 H, H2S flow rate: space velocity number + h-1. After being heat-treated under the above conditions, the solid acid strength of the zeolite is increased and H
The chemical adsorption power of C becomes stronger.

【0010】前記ゼオライトの具体的な使用形態として
は、ペレット状のゼオライトや、ペレット状の芯材の表
面にゼオライトをコートしたものや、コージェライト製
担体基材およびメタル製担体基材の表面にゼオライトを
コートしたもの等を用いることが出来る。またHC吸着
材の下流側に備えられる排ガス浄化用触媒としては三元
触媒を用いることが出来る。三元触媒としては、ペレッ
ト状芯材の表面や、コージェライト製担体基材およびメ
タル製担体基材の表面等に形成された触媒担持層に、触
媒成分としてPt、Rh、Pd等の触媒貴金属を担持さ
れたものを用いることが好ましい。
[0010] Specific usage forms of the zeolite include pellet-shaped zeolite, zeolite coated on the surface of a pellet-shaped core material, and zeolite coated on the surface of a cordierite carrier base material and a metal carrier base material. A material coated with zeolite can be used. Furthermore, a three-way catalyst can be used as the exhaust gas purifying catalyst provided downstream of the HC adsorbent. As a three-way catalyst, a catalytic precious metal such as Pt, Rh, or Pd is added as a catalytic component to a catalyst support layer formed on the surface of a pellet-like core material, a cordierite carrier base material, a metal carrier base material, etc. It is preferable to use one that supports

【0011】[0011]

【作用および効果】本発明の排ガス浄化装置によれば、
H2 S雰囲気中で熱処理されたゼオライトがHC吸着
材として用いられる。このHC吸着材としてのゼオライ
トは、前記熱処理されることにより酸強度が高められ、
HC吸着力や保持量を増し、いわゆる吸着機能を向上さ
せたものとなる。すなわち、熱処理によって酸強度が強
められた前記ゼオライトは、HC吸着能が排ガス温度の
昇温(HC分子の運動エネルギーの増大)に伴って前記
熱処理の行われていない場合のように弱くならず、かつ
いままで吸着されていたHCが脱離する上限温度も高く
なるため、排ガス浄化用触媒機能が充分に発揮される高
温度時に移行するまでの間、それまで吸着していたHC
を脱離(放出)することがない。このため、排ガス浄化
用触媒を備えた排ガス系統の該排ガス浄化用触媒の上流
側に、HC吸着材を配置して使用すると、エンジンの始
動時に際して低温の排ガス中に含まれるHCや、排ガス
浄化用触媒の触媒機能が充分に発揮される排ガス温度3
00℃以上の高温に達するまでの間の移行時の排ガス中
に含まれるHCを効率良く吸着することができHC脱離
が防止される。
[Operation and Effect] According to the exhaust gas purification device of the present invention,
Zeolite heat treated in H2S atmosphere is used as HC adsorbent. The acid strength of this zeolite as an HC adsorbent is increased by the heat treatment,
It increases the HC adsorption power and retention amount, and improves the so-called adsorption function. In other words, the zeolite whose acid strength has been strengthened by heat treatment does not weaken its HC adsorption capacity as the exhaust gas temperature increases (the kinetic energy of HC molecules increases), unlike in the case where the heat treatment is not performed. At the same time, the upper limit temperature at which the previously adsorbed HC is desorbed also increases, so the previously adsorbed HC desorbs until the temperature reaches a high temperature when the catalyst function for exhaust gas purification is fully demonstrated.
will not be desorbed (released). Therefore, if an HC adsorbent is placed and used upstream of the exhaust gas purification catalyst in an exhaust gas system equipped with an exhaust gas purification catalyst, the HC contained in the low-temperature exhaust gas when the engine is started, and the exhaust gas can be purified. Exhaust gas temperature 3 at which the catalytic function of the catalyst is fully demonstrated
HC contained in the exhaust gas during transition until reaching a high temperature of 00° C. or higher can be efficiently adsorbed, and HC desorption can be prevented.

【0012】そして排ガス温度が高温に移行した後は、
HC吸着材より脱離したHCを、HC吸着材の下流側に
配置され触媒機能が高温により充分に高められた排ガス
浄化用触媒によって酸化しH2 OやCO2 に転化し
、かつ排ガスを浄化することができる。従って本発明の
排ガス浄化装置によれば、従来浄化効率が悪かった低温
排ガスおよび高温に移行するまでの間の排ガスにおいて
、それ等に含まれるHCを、前記HC吸着材により効率
良く吸着することにより、浄化させることができる。
[0012] After the exhaust gas temperature moves to a high temperature,
HC desorbed from the HC adsorbent is oxidized by an exhaust gas purifying catalyst placed downstream of the HC adsorbent and whose catalytic function is sufficiently enhanced by high temperature, converting it into H2O and CO2, and purifying the exhaust gas. Can be done. Therefore, according to the exhaust gas purification device of the present invention, the HC contained in the low-temperature exhaust gas, which has conventionally had poor purification efficiency, and the exhaust gas before the transition to high temperature is efficiently adsorbed by the HC adsorbent. , can be purified.

【0013】[0013]

【実施例】(実施例1)以下、本発明の排ガス浄化装置
の実施例1を、図1〜図2に基づいて説明する。実施例
の排ガス浄化装置は、エンジンEより排出される排ガス
を浄化した後、大気中に排出する排ガス系統E1に配設
される。すなわち排ガス系統EIは、エンジンEに接続
された排ガス通路E10の上流側より下流側に一定間隔
を保持して配設された第1触媒コンバータ1と、第2触
媒コンバータ2と、第2触媒コンバータ2の上流側に配
置されたHCトラッパー3とよりなる。
Embodiments (Embodiment 1) Embodiment 1 of the exhaust gas purification apparatus of the present invention will be described below with reference to FIGS. 1 and 2. The exhaust gas purification device of the embodiment is installed in an exhaust gas system E1 that purifies exhaust gas discharged from an engine E and then discharges the exhaust gas into the atmosphere. That is, the exhaust gas system EI includes a first catalytic converter 1, a second catalytic converter 2, and a second catalytic converter, which are arranged at a constant interval from the upstream side to the downstream side of an exhaust gas passage E10 connected to the engine E. The HC trapper 3 is arranged upstream of the HC trapper 2.

【0014】そして排ガス通路E10には、HCトラッ
パー3の上流側と下流側を接続するバイパス通路E11
が設けられている。そして前記上流側の接続位置および
前記下流側の接続位置には、それぞれ第1切換バルブ4
1および第2切換バルブ42が配置されている。また第
1切換バルブ41と第1触媒コンバータ1との間の排ガ
ス通路E10内には、前記第1、第2切換バルブ41、
42の切換時期を排ガス温度の高低により検出し切換作
動するための温度センサー43が配置されている。  
第1触媒コンバータ1は、円筒状中央部100とその両
側に形成され鍔状取付部101をもつ円錐筒状端部10
2とよりなる容器10と、この容器10内に収容され保
持具11およびワイヤーネット12により固定された三
元触媒13とよりなる。この三元触媒13は、市販のコ
−ジェライト製モノリス担体(容量:0.7l、セル数
:400セル/in2 )に、触媒成分としてPt(1
.5g/l−cat)およびRh(0.3g/l−ca
t)を担持させたものである。
The exhaust gas passage E10 includes a bypass passage E11 that connects the upstream and downstream sides of the HC trapper 3.
is provided. A first switching valve 4 is provided at the upstream connection position and the downstream connection position, respectively.
First and second switching valves 42 are arranged. Further, in the exhaust gas passage E10 between the first switching valve 41 and the first catalytic converter 1, the first and second switching valves 41,
A temperature sensor 43 is disposed for detecting the timing of switching 42 based on the level of exhaust gas temperature and operating the switching.
The first catalytic converter 1 includes a cylindrical central portion 100 and a conical cylindrical end portion 10 having a flange-like attachment portion 101 formed on both sides thereof.
A three-way catalyst 13 is housed in the container 10 and fixed by a holder 11 and a wire net 12. This three-way catalyst 13 is made of a commercially available cordierite monolith carrier (capacity: 0.7 liters, number of cells: 400 cells/in2) and Pt (1
.. 5g/l-cat) and Rh (0.3g/l-cat)
t).

【0015】第2触媒コンバータ2は、円筒状中央部2
00とその両側に形成され、鍔状取付部201をもつ円
錐筒状端部202とよりなる容器20と、この容器20
内に収容され保持具21およびワイヤーネット22によ
り固定された三元触媒23とよりなる。この三元触媒2
3は、市販のコ−ジェライト製モノリス担体(容量:1
.3l、セル数:400セル/in2 )に、触媒成分
としてPt(1.5g/l−cat)およびRh(0.
3g/l−cat)を担持させたものである。
The second catalytic converter 2 has a cylindrical central portion 2
00 and a conical cylindrical end portion 202 formed on both sides thereof and having a flange-like attachment portion 201, and this container 20.
A three-way catalyst 23 is housed inside and fixed by a holder 21 and a wire net 22. This three-way catalyst 2
3 is a commercially available cordierite monolith carrier (capacity: 1
.. 3l, number of cells: 400 cells/in2), Pt (1.5g/l-cat) and Rh (0.3g/l-cat) and Rh (0.3g/l-cat) as catalyst components.
3g/l-cat).

【0016】HCトラッパー3は、円筒状中央部300
とその両側に形成され鍔状取付部301をもつ円錐筒状
端部302とよりなる容器30と、この容器30内に収
容され保持具31およびワイヤーネット32により固定
されたHC吸着体33よりなる。このHC吸着体33は
、コ−ジェライト製モノリス担体に担持させたゼオライ
トを、H2 S雰囲気中で熱処理することでHC吸着機
能を高めたHC吸着材となしたものである。
The HC trapper 3 has a cylindrical central portion 300.
and a conical cylindrical end portion 302 formed on both sides thereof and having a flange-like attachment portion 301, and an HC adsorbent 33 housed within the container 30 and fixed by a holder 31 and a wire net 32. . This HC adsorbent 33 is an HC adsorbent having enhanced HC adsorption function by heat-treating zeolite supported on a cordierite monolith carrier in an H2S atmosphere.

【0017】HC吸着体33は次に示すようにして形成
される。すなわち、市販のNa−H/Y型ゼオライト(
シリカ/アルミナモル比:30、Na2 O:0.2w
t%含有)100部、シリカゾル(20wt%)35部
、水50〜70部を加えて混合攪拌され、ウオッシュコ
ート用スラリ−が調整される。そして前記スラリ−中に
、市販のコ−ジェライト製モノリス担体(容量1.0l
、400セル/in2 )を吸水処理した後、浸漬し、
一定時間後引き上げて余分なスラリ−を吹き払い、10
0℃で乾燥後、350℃で仮焼成を行なった。そして仮
焼成後、その表面にさらに前記ウオッシュコ−トを繰り
返すことにより、合計100g/l−catのNa−H
/Y型ゼオライトがコ−トされたウオッシュコート品を
、500℃で3時間焼成して最終熱処理前の中間HC吸
着体を得た。
The HC adsorbent 33 is formed as follows. That is, commercially available Na-H/Y type zeolite (
Silica/alumina molar ratio: 30, Na2O: 0.2w
100 parts of silica sol (20 wt%), 35 parts of silica sol (20 wt%), and 50 to 70 parts of water are mixed and stirred to prepare a wash coating slurry. A commercially available cordierite monolith carrier (capacity: 1.0 liters) was added to the slurry.
, 400 cells/in2) after water absorption treatment, immersion,
After a certain period of time, pull it up and blow off the excess slurry, and
After drying at 0°C, temporary firing was performed at 350°C. After the pre-calcination, the above-mentioned wash coat is further repeated on the surface, resulting in a total of 100g/l-cat of Na-H.
The wash-coated product coated with /Y-type zeolite was calcined at 500°C for 3 hours to obtain an intermediate HC adsorbent before final heat treatment.

【0018】次いで、前記中間HC吸着体を温度350
℃、3時間、H2 S流通下(1.0 l/min)で
熱処理することによって固体酸強度が高められたゼオラ
イトよりなるHC吸着材をコ−ト層としてもつHC吸着
体33が得られた。上記のように製造されたHC吸着体
33は、容器30に収納されるとともに、保持具31お
よびワイヤ−ネット32で固定され、HCトラッパ−3
が形成される。
Next, the intermediate HC adsorbent was heated to a temperature of 350°C.
By heat treatment at ℃ for 3 hours under H2S flow (1.0 l/min), an HC adsorbent 33 having a coat layer of an HC adsorbent made of zeolite with increased solid acid strength was obtained. . The HC adsorbent 33 manufactured as described above is housed in a container 30 and fixed with a holder 31 and a wire net 32, and the HC trapper 3
is formed.

【0019】このHCトラッパー3は、前記したように
、第2触媒コンバータ2の上流側の排ガス通路E10に
配設される。次に上記のように構成された本実施例の排
ガス浄化装置は、前記温度センサ−43により検出され
た排ガス温度Tに応じて図2に示すように第1切換バル
ブ41をAおよびB位置、第2切換バルブ42をCおよ
びD位置に切り換えて、排ガス流れをS1方向およびS
2方向のいずれかに制御して、HC吸着体33のHC吸
着作用や、吸着していたHCの脱離(放出)作用および
HC吸着能力の再生、熱劣化防止、H2 Sの高温によ
る脱離防止等を行なう。そして、 i)T≦200℃の時には、第1切換バルブ41がA位
置、第2切換バルブ42がC位置となるように制御され
る。するとエンジンEより排出された排ガスは、第1触
媒コンバ−タ1を通過後、排ガス通路E10よりHCト
ラッパ−3に導入して、HC吸着体33により排ガス中
のコ−ルドHCが約53%吸着される。そしてコールド
HCの含有量が少なくなった排ガスは、HCトラッパー
3より矢印S1のように第2触媒コンバ−タ2に導入し
、三元触媒23により浄化される。
As described above, this HC trapper 3 is arranged in the exhaust gas passage E10 upstream of the second catalytic converter 2. Next, in the exhaust gas purification apparatus of this embodiment configured as described above, the first switching valve 41 is moved to the A and B positions as shown in FIG. 2 according to the exhaust gas temperature T detected by the temperature sensor 43. The second switching valve 42 is switched to the C and D positions to direct the exhaust gas flow in the S1 direction and the S
By controlling in either of two directions, the HC adsorption action of the HC adsorbent 33, the desorption (release) action of the adsorbed HC, the regeneration of the HC adsorption capacity, the prevention of thermal deterioration, and the desorption of H2S due to high temperatures. Take preventive measures. Then, i) when T≦200° C., the first switching valve 41 is controlled to be in the A position and the second switching valve 42 is in the C position. After passing through the first catalytic converter 1, the exhaust gas discharged from the engine E is introduced into the HC trapper 3 through the exhaust gas passage E10, and the cold HC in the exhaust gas is reduced by about 53% by the HC adsorbent 33. It is adsorbed. Then, the exhaust gas whose cold HC content has decreased is introduced from the HC trapper 3 into the second catalytic converter 2 as indicated by arrow S1, and is purified by the three-way catalyst 23.

【0020】ii)200℃<T≦300℃の時には、
第1切換バルブ41がB位置、第2切換バルブ42がD
位置となるように制御される。  するとエンジンEよ
り排出された排ガスは、第1触媒コンバ−タ1を通過後
、バイパス通路E11より矢印方向S2のように第2触
媒コンバ−タ2に導入する。すなわち、この制御時には
、HCトラッパー3に対し仮りに、温度が200℃より
も高い排ガスが導入されたとすると、HC吸着体33に
吸着されていたHCが脱離し始める。しかし、下流側の
第2触媒コンバ−タ2の三元触媒23はまだ十分に活性
化されていないため、脱離したHCを完全に浄化するこ
とができない。そこで、200℃から300℃までの温
度範囲では、HCトラッパ−3に排ガスが流れないよう
にしている。これにより、HC吸着体33に吸着してい
るHC脱離を防ぎ、また、バイパスE11に排ガスが流
れるため熱量損失がほとんどないので、下流側の第2触
媒コンバ−タ2の三元触媒23は、より速く昇温するた
め活性化も速くなる効果がある。
ii) When 200°C<T≦300°C,
The first switching valve 41 is in the B position, and the second switching valve 42 is in the D position.
The position is controlled. Then, after passing through the first catalytic converter 1, the exhaust gas discharged from the engine E is introduced into the second catalytic converter 2 from the bypass passage E11 in the direction of the arrow S2. That is, during this control, if exhaust gas having a temperature higher than 200° C. is introduced into the HC trapper 3, the HC adsorbed on the HC adsorbent 33 starts to be desorbed. However, since the three-way catalyst 23 of the second catalytic converter 2 on the downstream side is not yet sufficiently activated, the desorbed HC cannot be completely purified. Therefore, exhaust gas is prevented from flowing into the HC trapper 3 in the temperature range of 200°C to 300°C. This prevents the HC adsorbed on the HC adsorbent 33 from being desorbed, and since the exhaust gas flows through the bypass E11, there is almost no loss of heat, so the three-way catalyst 23 of the second catalytic converter 2 on the downstream side , which has the effect of faster activation because the temperature rises faster.

【0021】iii)300℃<T≦400℃の時には
、第1切換バルブ41がA位置、第2切換バルブ42が
C位置となるように制御される。するとエンジンEより
排出された排ガスは、高温により三元触媒13が十分活
性化した第1触媒コンバ−タ1を通過時に浄化され、H
C成分をほとんど含まない状態で、排ガス通路E10よ
りHCトラッパー3に導入して、いままでHC吸着体3
3に吸着されていたHCを400℃以内の高温により脱
離させ、このHCを含有した状態で矢印S1のように第
2触媒コンバ−タ2に導入し、三元触媒23により浄化
される。
iii) When 300°C<T≦400°C, the first switching valve 41 is controlled to be in the A position and the second switching valve 42 is in the C position. Then, the exhaust gas discharged from the engine E is purified as it passes through the first catalytic converter 1 in which the three-way catalyst 13 has been sufficiently activated due to the high temperature, and the exhaust gas is purified by the H
The C component is introduced into the HC trapper 3 from the exhaust gas passage E10 in a state containing almost no C component, and until now the HC adsorbent 3
3 is desorbed by high temperature within 400° C., and the HC-containing state is introduced into the second catalytic converter 2 as shown by the arrow S1, and purified by the three-way catalyst 23.

【0022】この場合、HCトラッパー3のHC吸着体
33より、いままで吸着していたHCが除去されるので
、HC吸着体33のHC吸着性能の再生が行なわれると
ともにHC吸着体33のコーキングによる劣化が防止さ
れる。。かつ下流側の第2触媒コンバ−タ2においても
、高温により三元触媒23が十分に活性化し、HC吸着
体33の再生に伴なうHCを含有した排ガスの浄化が行
なわれる。
In this case, since the HC that has been adsorbed so far is removed from the HC adsorbent 33 of the HC trapper 3, the HC adsorption performance of the HC adsorbent 33 is regenerated, and the coking of the HC adsorbent 33 Deterioration is prevented. . Also in the second catalytic converter 2 on the downstream side, the three-way catalyst 23 is sufficiently activated by the high temperature, and the exhaust gas containing HC is purified as the HC adsorbent 33 is regenerated.

【0023】iv)400℃<Tの時には、第1切換バ
ルブ41がB位置、第2切換バルブ42がD位置となる
ように制御される。するとエンジンEより排出された排
ガスは、第1触媒コンバ−タ1を通過後、バイパス通路
E11より矢印方向S2のように第2触媒コンバ−タ2
に導入する。すなわち、この制御時には、HCトラッパ
ー3に対し仮りに、温度が400℃以上の高い排ガスが
導入されたとすると、前記製造時の熱処理によりHC吸
着体33のゼオライトに吸着していたH2 S(硫化水
素)が脱離し始めるため、これを防止することおよび、
HC吸着体33の水熱による劣化を防止するために、H
Cトラッパ−3に400℃を超えた高温の排ガスが流れ
ないようにバイパスさせる。 (比較例)前記実施例のHC吸着体の効果を確認するた
め比較例1のHC吸着体および比較例2のHC吸着体が
形成された。 (比較例1)比較例1のHC吸着体は、実施例のHC吸
着体のようにH2 S雰囲気中での熱処理を行なわない
こと以外は、実施例と同様である。 (比較例2)比較例2のHC吸着体は、ゼオライトとし
てNa−H/Y型ゼオライト(シリカ/アルミナモル比
:100)を用いたこと、および実施例のHC吸着体の
ようにH2 S雰囲気中での熱処理を行なわないこと以
外は、実施例と同様である。
iv) When 400° C.<T, the first switching valve 41 is controlled to be in the B position and the second switching valve 42 is in the D position. Then, after passing through the first catalytic converter 1, the exhaust gas discharged from the engine E is transferred from the bypass passage E11 to the second catalytic converter 2 in the direction of the arrow S2.
to be introduced. That is, during this control, if high exhaust gas with a temperature of 400°C or higher is introduced into the HC trapper 3, H2S (hydrogen sulfide) adsorbed on the zeolite of the HC adsorbent 33 due to the heat treatment during the manufacturing process will be removed. ) begins to desorb, and to prevent this, and
In order to prevent deterioration of the HC adsorbent 33 due to hydrothermal
A bypass is made to prevent high temperature exhaust gas exceeding 400°C from flowing into the C trapper-3. (Comparative Example) In order to confirm the effect of the HC adsorbent of the above example, an HC adsorbent of Comparative Example 1 and an HC adsorbent of Comparative Example 2 were formed. (Comparative Example 1) The HC adsorbent of Comparative Example 1 is the same as the example except that it is not heat-treated in an H2S atmosphere like the HC adsorbent of the example. (Comparative Example 2) In the HC adsorbent of Comparative Example 2, Na-H/Y type zeolite (silica/alumina molar ratio: 100) was used as the zeolite, and like the HC adsorbent of the example, it was used in an H2S atmosphere. The process is the same as the example except that the heat treatment is not performed.

【0024】(性能比較試験)実施例のHC吸着体、比
較例1のHC吸着体及び比較例2の吸着体を図1に示さ
れる排ガス浄化装置のHCトラッパー3に組入れ、浄化
性能を実車評価した。評価は、コ−ルドスタ−ト評価(
始動→アイドル→加速→60km/h定常走行)により
行った。
(Performance Comparison Test) The HC adsorbent of Example, the HC adsorbent of Comparative Example 1, and the adsorbent of Comparative Example 2 were incorporated into the HC trapper 3 of the exhaust gas purification device shown in FIG. 1, and the purification performance was evaluated in an actual vehicle. did. The evaluation is a cold start evaluation (
Start → Idle → Acceleration → Steady running at 60km/h).

【0025】この評価結果を、表1に示す。   表1から明らかなように、実施例の場合には、比較
例1、2よりも優れたコ−ルドHC低減率が得られる。 これは、排ガス温度が200℃に達するまでの間に、H
Cを確実に吸着し、また吸着したHCの脱離を発生させ
ないためと考えられる。
The results of this evaluation are shown in Table 1. As is clear from Table 1, in the case of the example, a cold HC reduction rate superior to that of Comparative Examples 1 and 2 can be obtained. This means that H
This is thought to be because C is reliably adsorbed and adsorbed HC is not desorbed.

【0026】このように、H2 S雰囲気中で熱処理さ
れたゼオライトがHC吸着材として用いられたHC吸着
体は、HCの吸着能力が向上する。また、HC吸着体の
HC吸着能が向上した理由は、ゼオライトなどの固体酸
点強度が強くなりHCの吸着力が強くなったためと推定
される。また、アルコ−ル燃料自動車の排ガス浄化装置
においても、H2 S雰囲気中で熱処理されたゼオライ
トを、HC吸着材としたHC吸着体を用いて性能評価試
験を行なうと、ホルムアルデヒド吸着能を含めたHC吸
着能が向上することが判明した。
[0026] As described above, the HC adsorbent in which zeolite heat-treated in an H2S atmosphere is used as the HC adsorbent has an improved HC adsorption ability. Furthermore, the reason why the HC adsorption ability of the HC adsorbent has improved is presumed to be that the solid acid site strength of zeolite etc. has become stronger and the HC adsorption power has become stronger. In addition, in the exhaust gas purification system for alcohol-fueled vehicles, when a performance evaluation test was conducted using an HC adsorbent using zeolite heat-treated in an H2S atmosphere as an HC adsorbent, it was found that HC, including formaldehyde adsorption ability, It was found that the adsorption capacity was improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例の排ガス浄化装置の使用例を示す部分断
面図である。
FIG. 1 is a partial sectional view showing an example of use of an exhaust gas purification device according to an embodiment.

【図2】実施例の排ガス浄化装置における第1切換バル
ブと第2切換バルブの制御状態を示す説明図である。
FIG. 2 is an explanatory diagram showing control states of a first switching valve and a second switching valve in the exhaust gas purification device of the embodiment.

【符号の説明】[Explanation of symbols]

1…第1触媒コンバ−タ 2…第2触媒コンバ−タ 3…HCトラッパー 33…H2 S雰囲気中で熱処理されたゼオライトがH
C吸着材として用いられたHC吸着体
1...First catalytic converter 2...Second catalytic converter 3...HC trapper 33...H2 Zeolite heat-treated in an S atmosphere is
HC adsorbent used as C adsorbent

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】排ガス浄化用触媒を備えた排ガス系統の該
排ガス浄化用触媒の上流側に配置されたHC吸着材をも
つ排ガス浄化装置において、該HC吸着材はH2 S雰
囲気中で熱処理されたゼオライトであることを特徴とす
る排ガス浄化装置。
Claim 1: In an exhaust gas purification device having an HC adsorbent disposed upstream of the exhaust gas purification catalyst in an exhaust gas system equipped with an exhaust gas purification catalyst, the HC adsorbent is heat treated in an H2S atmosphere. An exhaust gas purification device characterized by being made of zeolite.
JP3049658A 1991-03-14 1991-03-14 Exhaust gas purification device Expired - Fee Related JP2827546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3049658A JP2827546B2 (en) 1991-03-14 1991-03-14 Exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3049658A JP2827546B2 (en) 1991-03-14 1991-03-14 Exhaust gas purification device

Publications (2)

Publication Number Publication Date
JPH04284827A true JPH04284827A (en) 1992-10-09
JP2827546B2 JP2827546B2 (en) 1998-11-25

Family

ID=12837286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3049658A Expired - Fee Related JP2827546B2 (en) 1991-03-14 1991-03-14 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP2827546B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031820A (en) * 2008-07-31 2010-02-12 Mazda Motor Corp Exhaust emission control method and exhaust emission control catalyst device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031820A (en) * 2008-07-31 2010-02-12 Mazda Motor Corp Exhaust emission control method and exhaust emission control catalyst device

Also Published As

Publication number Publication date
JP2827546B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
EP0593898B1 (en) Exhaust gas conversion method and apparatus using thermally stable zeolites
RU2436621C2 (en) Thermally regenerated adsorbent of nitrogen oxides
US20030175192A1 (en) SOx trap for enhancing NOx trap performance and methods of making and using the same
US20020103078A1 (en) SOx trap for enhancing NOx trap performance and methods of making and using the same
CA2397226C (en) Process, catalyst system, and apparatus for treating sulfur compound containing effluent
US6585945B2 (en) SOx tolerant NOx trap catalysts and methods of making and using the same
EP1968731A1 (en) Exhaust gas purifying device
US20030039597A1 (en) Close coupled catalyst with a SOx trap and methods of making and using the same
JP4390000B2 (en) NOx adsorption device
US5587137A (en) Exhaust gas conversion method using thermally stable zeolites
JP3157556B2 (en) Exhaust gas purification catalyst device
JP2006329018A (en) Sulfur content absorption material and exhaust emission control system
JP5094199B2 (en) Exhaust gas purification device
JPH04284827A (en) Exhaust gas purifying apparatus
JPH09225265A (en) Exhaust gas purifying device
JP2002239346A (en) Method and apparatus for cleaning exhaust gas
JP2000135419A (en) Exhaust gas purifying system
JP2000297627A (en) Catalyst for exhaust emission purification and system for the same
JP4470829B2 (en) Sulfur remover and exhaust purification system for internal combustion engine
JPH0985078A (en) Exhaust gas purifying apparatus of engine
JPH0824655A (en) Catalyst for purifying exhaust gas
KR100610424B1 (en) Multi function and multi layer catalyst for purifying automotive exhaust gas and method for manufacturing the same
JP2007085353A (en) Exhaust emission control device
JP2007222833A (en) Sulfur-absorbing material and exhaust-gas cleaning apparatus using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees