JP2827546B2 - Exhaust gas purification device - Google Patents
Exhaust gas purification deviceInfo
- Publication number
- JP2827546B2 JP2827546B2 JP3049658A JP4965891A JP2827546B2 JP 2827546 B2 JP2827546 B2 JP 2827546B2 JP 3049658 A JP3049658 A JP 3049658A JP 4965891 A JP4965891 A JP 4965891A JP 2827546 B2 JP2827546 B2 JP 2827546B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- adsorbent
- temperature
- zeolite
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0835—Hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0871—Regulation of absorbents or adsorbents, e.g. purging
- F01N3/0878—Bypassing absorbents or adsorbents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/18—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an adsorber or absorber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2250/00—Combinations of different methods of purification
- F01N2250/12—Combinations of different methods of purification absorption or adsorption, and catalytic conversion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2410/00—By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
- F01N2410/12—By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device in case of absorption, adsorption or desorption of exhaust gas constituents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Treating Waste Gases (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Exhaust Gas After Treatment (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、冷機状態におけるエン
ジン始動時のように、排ガス温度が低温度時および低温
度時より300°C以上の高温に達するまでの移行時に
排ガス中のHCを効率良く吸着して排ガスを浄化するこ
とができる排ガス浄化装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently reducing HC in exhaust gas when the temperature of the exhaust gas is low and when the exhaust gas reaches a high temperature of 300 ° C. or more from the low temperature, such as when starting the engine in a cold state. The present invention relates to an exhaust gas purifying apparatus capable of adsorbing well and purifying exhaust gas.
【0002】[0002]
【従来の技術】従来より自動車の排ガスを浄化するため
の排ガス浄化装置としてペレット型触媒あるいはモノリ
ス型触媒等が使用されている。ここで排ガス浄化装置に
より排ガスを浄化する場合、排ガス中の有害成分HC、
CO、NOxのうち、HCを触媒浄化する性能は、排ガ
ス温度の高低の影響を特に強くうける。2. Description of the Related Art Conventionally, a pellet-type catalyst or a monolith-type catalyst has been used as an exhaust gas purifying device for purifying exhaust gas from automobiles. Here, when purifying the exhaust gas by the exhaust gas purifying device, the harmful component HC in the exhaust gas,
Of the CO and NOx, the performance of purifying HC is particularly strongly affected by the temperature of the exhaust gas.
【0003】すなわち、従来の排ガス浄化用触媒の浄化
性能は、例えば、排ガス温度が300℃以上で触媒機能
が充分に発揮される。このため、エンジン始動時等の排
ガス温度が低温度時および低温度時より300°C以上
の高温に達するまでの移行時に低温排ガス中のHC(以
下、コールドHCと称す)成分は、触媒で十分浄化され
ず大気中に排出されることがある。That is, the purification performance of the conventional exhaust gas purifying catalyst is such that the catalytic function is sufficiently exhibited when the exhaust gas temperature is 300 ° C. or higher, for example. For this reason, when the temperature of the exhaust gas is low and when the temperature of the exhaust gas shifts to a high temperature of 300 ° C. or more from the low temperature, the HC (hereinafter referred to as cold HC) component in the low-temperature exhaust gas is sufficiently reduced by the catalyst. May be released to the atmosphere without purification.
【0004】また、一般に、冷機状態における始動時の
エンジンには、通常の運転時より濃度の高い混合気が供
給され、排ガス中に含まれるHC量は、暖機運転時の場
合よりも多くなっている。このため、始動時等には、特
にコールドHCを効率よく浄化することが望まれてお
り、前記触媒の他、その上流側にコールドHCを吸着す
るためのHCトラッパ−を設けるなどの対策を講じた排
ガス浄化装置が提案されている。例えば、特開平2−7
5327号公報に開示されているようにY型ゼオライト
又はモルデナイト等のゼオライトをHC吸着材として備
えたHCトラッパ−を排ガス系統の排ガス浄化用触媒の
上流側に配置した排ガス浄化装置が提案されている。[0004] In general, an air-fuel mixture having a higher concentration than in normal operation is supplied to the engine at the start in a cold state, and the amount of HC contained in the exhaust gas is larger than in the warm-up operation. ing. For this reason, it is desired to efficiently purify cold HC particularly at the time of start-up, etc., and measures such as providing an HC trapper for adsorbing cold HC upstream of the catalyst are taken in addition to the catalyst. An exhaust gas purification device has been proposed. For example, Japanese Patent Laid-Open No. 2-7
As disclosed in Japanese Patent No. 5327, there has been proposed an exhaust gas purifying apparatus in which an HC trapper having a zeolite such as Y-type zeolite or mordenite as an HC adsorbent is arranged upstream of an exhaust gas purifying catalyst in an exhaust gas system. .
【0005】[0005]
【発明が解決しようとする課題】しかし前記特開平2−
75327号公報に開示された排ガス浄化装置に用いら
れた各種ゼオライトのHC吸着性能は、同公報第4図に
示すように排ガス温度が200°Cで最も高く、300
°Cに昇温するに伴なって低下している。このため、前
記排ガス浄化装置では、排ガス浄化用触媒の触媒機能が
充分に発揮される排ガス温度300°C以上の高温に達
するまでの間の移行時に、排ガス中のHCの吸着率が悪
く排ガスを浄化することができない。However, Japanese Patent Application Laid-Open No. Hei.
The HC adsorption performance of various zeolites used in the exhaust gas purifying apparatus disclosed in Japanese Patent No. 75327 is highest at an exhaust gas temperature of 200 ° C. as shown in FIG.
The temperature decreased as the temperature rose to ° C. For this reason, in the exhaust gas purifying apparatus, during the transition until the exhaust gas temperature reaches a high temperature of 300 ° C. or higher at which the catalytic function of the exhaust gas purifying catalyst is sufficiently exhibited, the adsorption rate of HC in the exhaust gas is poor and the exhaust gas is exhausted. It cannot be purified.
【0006】なお、前記従来の排ガス浄化装置のHCト
ラッパーにコールドHCの吸着材として用いられている
ゼオライトにおけるHCの化学的吸着力は、その酸強度
により影響される。すなわち、シリカ/アルミナ比の低
いゼオライトの場合には、固体酸量は多いが化学吸着点
としてHCを吸着保持できるほどの吸着力をもたない弱
酸点でほとんど占められているため、排ガス中の水分を
多量に吸着する性質があり、コールドHCの吸着量は少
ないものとなる。またこれとは逆にシリカ/アルミナ比
の高いゼオライトの場合には、酸強度は強いが吸着点
(酸点量)が少ないため吸着量が少ない。そこでコール
ドHCの吸着材として用いるゼオライトとしては、前記
シリカ/アルミナ比の高低が中間のものが用いられてい
た。[0006] The chemical adsorption power of HC on zeolite used as an adsorbent for cold HC in the HC trapper of the conventional exhaust gas purifying apparatus is affected by its acid strength. That is, in the case of zeolite having a low silica / alumina ratio, the solid acid content is large, but almost all of the weak acid sites do not have an adsorbing power capable of adsorbing and holding HC as a chemical adsorption point. It has the property of adsorbing a large amount of water, and the amount of cold HC adsorbed is small. Conversely, in the case of zeolite having a high silica / alumina ratio, the acid strength is high, but the adsorption point (the amount of acid sites) is small, so that the adsorption amount is small. Therefore, as a zeolite used as an adsorbent for cold HC, a zeolite having an intermediate silica / alumina ratio has been used.
【0007】従ってHC吸着材をもつ排ガス浄化装置と
しては、排ガス温度の低い場合、および高温度時への移
行時の両方に、排ガス中に含まれるコールドHCをより
効率的に吸着できるようにすることが課題とされてい
る。本発明は、上記課題を解決した排ガス浄化装置を提
供することを目的とする。Therefore, an exhaust gas purifying apparatus having an HC adsorbent is capable of adsorbing cold HC contained in exhaust gas more efficiently both when the exhaust gas temperature is low and when the exhaust gas is shifted to a high temperature. Is a challenge. An object of the present invention is to provide an exhaust gas purifying apparatus that solves the above problems.
【0008】[0008]
【課題を解決するための手段】本発明は、排ガス浄化用
触媒を備えた排ガス系統の該排ガス浄化用触媒の上流側
に配置されたHC吸着材をもつ排ガス浄化装置におい
て、該HC吸着材は、H2 S雰囲気中で熱処理されたゼ
オライトであることを特徴とする。SUMMARY OF THE INVENTION The present invention relates to an exhaust gas purifying apparatus having an HC adsorbent disposed upstream of the exhaust gas purifying catalyst in an exhaust gas system having an exhaust gas purifying catalyst. , A zeolite that has been heat treated in an H 2 S atmosphere.
【0009】ゼオライトは、従来使用されているY型ゼ
オライトや、モルデナイト、ZSM−5等を用いること
ができる。ゼオライトを構成するシリカ/アルミナ比
は、高いものから低いものまで広い範囲のものが使用で
きる。ゼオライトの熱処理の条件としては温度:300
〜500°C、時間:2〜5H、H2 S流量:空間速度
数+h-1であることが好ましい。 前記条件で熱処理さ
れた後のゼオライトは、固体酸強度が強められてHCの
化学的吸着力が強くなる。As the zeolite, a conventionally used Y-type zeolite, mordenite, ZSM-5 or the like can be used. The silica / alumina ratio constituting the zeolite can be in a wide range from high to low. The condition for the heat treatment of the zeolite is temperature: 300
500500 ° C., time: 2-5 H, H 2 S flow rate: space velocity number + h −1 . The zeolite that has been heat-treated under the above-mentioned conditions has an increased solid acid strength and a stronger HC chemical adsorption power.
【0010】前記ゼオライトの具体的な使用形態として
は、ペレット状のゼオライトや、ペレット状の芯材の表
面にゼオライトをコートしたものや、コージェライト製
担体基材およびメタル製担体基材の表面にゼオライトを
コートしたもの等を用いることが出来る。またHC吸着
材の下流側に備えられる排ガス浄化用触媒としては三元
触媒を用いることが出来る。三元触媒としては、ペレッ
ト状芯材の表面や、コージェライト製担体基材およびメ
タル製担体基材の表面等に形成された触媒担持層に、触
媒成分としてPt、Rh、Pd等の触媒貴金属を担持さ
れたものを用いることが好ましい。[0010] Specific forms of use of the above-mentioned zeolite include pellet-shaped zeolite, pellet-shaped core material coated with zeolite, and cordierite carrier substrate and metal carrier substrate. Those coated with zeolite can be used. A three-way catalyst can be used as an exhaust gas purifying catalyst provided downstream of the HC adsorbent. The three-way catalyst includes a catalyst noble metal such as Pt, Rh, and Pd as a catalyst component in a catalyst supporting layer formed on a surface of a pellet-shaped core material, a surface of a cordierite carrier substrate and a surface of a metal carrier substrate, or the like. Is preferably used.
【0011】[0011]
【作用および効果】本発明の排ガス浄化装置によれば、
H2 S雰囲気中で熱処理されたゼオライトがHC吸着材
として用いられる。このHC吸着材としてのゼオライト
は、前記熱処理されることにより酸強度が高められ、H
C吸着力や保持量を増し、いわゆる吸着機能を向上させ
たものとなる。すなわち、熱処理によって酸強度が強め
られた前記ゼオライトは、HC吸着能が排ガス温度の昇
温(HC分子の運動エネルギーの増大)に伴って前記熱
処理の行われていない場合のように弱くならず、かつい
ままで吸着されていたHCが脱離する上限温度も高くな
るため、排ガス浄化用触媒機能が充分に発揮される高温
度時に移行するまでの間、それまで吸着していたHCを
脱離(放出)することがない。このため、排ガス浄化用
触媒を備えた排ガス系統の該排ガス浄化用触媒の上流側
に、HC吸着材を配置して使用すると、エンジンの始動
時に際して低温の排ガス中に含まれるHCや、排ガス浄
化用触媒の触媒機能が充分に発揮される排ガス温度30
0℃以上の高温に達するまでの間の移行時の排ガス中に
含まれるHCを効率良く吸着することができHC脱離が
防止される。According to the exhaust gas purifying apparatus of the present invention,
H 2 S atmosphere zeolite heat treated in is used as the HC adsorbent. The zeolite as the HC adsorbent has an increased acid strength by the heat treatment,
The C adsorption force and the holding amount are increased, and the so-called adsorption function is improved. That is, in the zeolite whose acid strength has been increased by the heat treatment, the HC adsorption ability does not become weak as in the case where the heat treatment is not performed with the increase in the exhaust gas temperature (increase in the kinetic energy of HC molecules), Since the maximum temperature at which the adsorbed HC is desorbed is also increased, the previously adsorbed HC is desorbed until the temperature shifts to a high temperature at which the exhaust gas purifying catalyst function is sufficiently exhibited ( Release). For this reason, when an HC adsorbent is disposed and used upstream of the exhaust gas purifying catalyst in an exhaust gas system equipped with the exhaust gas purifying catalyst, HC contained in low-temperature exhaust gas at the time of starting the engine and exhaust gas purifying Exhaust gas temperature 30 at which the catalytic function of the catalyst for use is fully exhibited
HC contained in the exhaust gas during the transition until the temperature reaches 0 ° C. or higher can be efficiently adsorbed, and HC desorption can be prevented.
【0012】そして排ガス温度が高温に移行した後は、
HC吸着材より脱離したHCを、HC吸着材の下流側に
配置され触媒機能が高温により充分に高められた排ガス
浄化用触媒によって酸化しH2 OやCO2 に転化し、か
つ排ガスを浄化することができる。従って本発明の排ガ
ス浄化装置によれば、従来浄化効率が悪かった低温排ガ
スおよび高温に移行するまでの間の排ガスにおいて、そ
れ等に含まれるHCを、前記HC吸着材により効率良く
吸着することにより、浄化させることができる。After the exhaust gas temperature has shifted to a high temperature,
The HC desorbed from the HC adsorbent is oxidized by an exhaust gas purifying catalyst arranged downstream of the HC adsorbent and whose catalytic function is sufficiently enhanced by high temperature to be converted into H 2 O or CO 2 , and the exhaust gas is purified. can do. Therefore, according to the exhaust gas purifying apparatus of the present invention, the HC contained therein is efficiently adsorbed by the HC adsorbent in the low-temperature exhaust gas and the exhaust gas before the transition to the high temperature, in which the purification efficiency is low in the past. , Can be purified.
【0013】[0013]
【実施例】(実施例1)以下、本発明の排ガス浄化装置
の実施例1を、図1〜図2に基づいて説明する。実施例
の排ガス浄化装置は、エンジンEより排出される排ガス
を浄化した後、大気中に排出する排ガス系統E1に配設
される。すなわち排ガス系統EIは、エンジンEに接続
された排ガス通路E10の上流側より下流側に一定間隔
を保持して配設された第1触媒コンバータ1と、第2触
媒コンバータ2と、第2触媒コンバータ2の上流側に配
置されたHCトラッパー3とよりなる。(Embodiment 1) An exhaust gas purifying apparatus according to Embodiment 1 of the present invention will be described below with reference to FIGS. The exhaust gas purifying apparatus of the embodiment is disposed in an exhaust gas system E1 that purifies exhaust gas discharged from the engine E and then discharges the exhaust gas to the atmosphere. That is, the exhaust gas system EI includes a first catalytic converter 1, a second catalytic converter 2, and a second catalytic converter 2, which are disposed at a predetermined interval from the upstream side to the downstream side of the exhaust gas passage E10 connected to the engine E. And an HC trapper 3 disposed upstream of the HC trapper 3.
【0014】そして排ガス通路E10には、HCトラッ
パー3の上流側と下流側を接続するバイパス通路E11
が設けられている。そして前記上流側の接続位置および
前記下流側の接続位置には、それぞれ第1切換バルブ4
1および第2切換バルブ42が配置されている。また第
1切換バルブ41と第1触媒コンバータ1との間の排ガ
ス通路E10内には、前記第1、第2切換バルブ41、
42の切換時期を排ガス温度の高低により検出し切換作
動するための温度センサー43が配置されている。 第
1触媒コンバータ1は、円筒状中央部100とその両側
に形成され鍔状取付部101をもつ円錐筒状端部102
とよりなる容器10と、この容器10内に収容され保持
具11およびワイヤーネット12により固定された三元
触媒13とよりなる。この三元触媒13は、市販のコ−
ジェライト製モノリス担体(容量:0.7l、セル数:
400セル/in2 )に、触媒成分としてPt(1.5
g/l−cat)およびRh(0.3g/l−cat)
を担持させたものである。The exhaust gas passage E10 has a bypass passage E11 connecting the upstream side and the downstream side of the HC trapper 3.
Is provided. A first switching valve 4 is provided at each of the upstream connection position and the downstream connection position.
The first and second switching valves 42 are arranged. In the exhaust gas passage E10 between the first switching valve 41 and the first catalytic converter 1, the first and second switching valves 41,
A temperature sensor 43 for detecting the switching timing of 42 based on the level of the exhaust gas temperature and performing the switching operation is disposed. The first catalytic converter 1 has a conical cylindrical end portion 102 having a cylindrical central portion 100 and flange-shaped mounting portions 101 formed on both sides thereof.
And a three-way catalyst 13 housed in the container 10 and fixed by the holder 11 and the wire net 12. This three-way catalyst 13 is a commercially available core
Gelite monolith carrier (capacity: 0.7 l, number of cells:
400 cells / in 2 ) and Pt (1.5
g / l-cat) and Rh (0.3 g / l-cat)
Is carried.
【0015】第2触媒コンバータ2は、円筒状中央部2
00とその両側に形成され、鍔状取付部201をもつ円
錐筒状端部202とよりなる容器20と、この容器20
内に収容され保持具21およびワイヤーネット22によ
り固定された三元触媒23とよりなる。この三元触媒2
3は、市販のコ−ジェライト製モノリス担体(容量:
1.3l、セル数:400セル/in2 )に、触媒成分
としてPt(1.5g/l−cat)およびRh(0.
3g/l−cat)を担持させたものである。The second catalytic converter 2 has a cylindrical central part 2.
00 and a conical cylindrical end 202 formed on both sides thereof and having a flange-shaped mounting portion 201;
And a three-way catalyst 23 housed therein and fixed by a holder 21 and a wire net 22. This three-way catalyst 2
3 is a commercially available cordierite monolithic carrier (capacity:
1.3 l, the number of cells: 400 cells / in 2 ), and Pt (1.5 g / l-cat) and Rh (0.
3 g / l-cat).
【0016】HCトラッパー3は、円筒状中央部300
とその両側に形成され鍔状取付部301をもつ円錐筒状
端部302とよりなる容器30と、この容器30内に収
容され保持具31およびワイヤーネット32により固定
されたHC吸着体33よりなる。このHC吸着体33
は、コ−ジェライト製モノリス担体に担持させたゼオラ
イトを、H2 S雰囲気中で熱処理することでHC吸着機
能を高めたHC吸着材となしたものである。The HC trapper 3 has a cylindrical central portion 300.
And a conical tubular end 302 formed on both sides thereof and having a conical mounting portion 301, and an HC adsorbent 33 accommodated in the container 30 and fixed by a holder 31 and a wire net 32. . This HC adsorbent 33
Discloses a heat treatment of zeolite supported on a cordierite monolithic carrier in an H 2 S atmosphere to form an HC adsorbent having an enhanced HC adsorption function.
【0017】HC吸着体33は次に示すようにして形成
される。すなわち、市販のNa−H/Y型ゼオライト
(シリカ/アルミナモル比:30、Na2 O:0.2w
t%含有)100部、シリカゾル(20wt%)35
部、水50〜70部を加えて混合攪拌され、ウオッシュ
コート用スラリ−が調整される。そして前記スラリ−中
に、市販のコ−ジェライト製モノリス担体(容量1.0
l、400セル/in2 )を吸水処理した後、浸漬し、
一定時間後引き上げて余分なスラリ−を吹き払い、10
0℃で乾燥後、350℃で仮焼成を行なった。そして仮
焼成後、その表面にさらに前記ウオッシュコ−トを繰り
返すことにより、合計100g/l−catのNa−H
/Y型ゼオライトがコ−トされたウオッシュコート品
を、500℃で3時間焼成して最終熱処理前の中間HC
吸着体を得た。The HC adsorbent 33 is formed as follows. That is, a commercially available Na—H / Y type zeolite (silica / alumina molar ratio: 30, Na 2 O: 0.2 w
100%, silica sol (20 wt%) 35
Parts and 50 to 70 parts of water are added and mixed and stirred to prepare a washcoat slurry. Then, in the slurry, a commercially available cordierite monolithic carrier (capacity: 1.0
l, 400 cells / in 2 ), after immersion,
After a certain period of time, lift up and blow off excess slurry, 10
After drying at 0 ° C., calcination was performed at 350 ° C. After the calcination, the wash coat is further repeated on the surface to obtain a total of 100 g / l-cat of Na-H.
/ Y-type zeolite-coated washcoat product is calcined at 500 ° C for 3 hours to produce intermediate HC before final heat treatment.
An adsorbent was obtained.
【0018】次いで、前記中間HC吸着体を温度350
℃、3時間、H2 S流通下(1.0 l/min)で熱処理
することによって固体酸強度が高められたゼオライトよ
りなるHC吸着材をコ−ト層としてもつHC吸着体33
が得られた。上記のように製造されたHC吸着体33
は、容器30に収納されるとともに、保持具31および
ワイヤ−ネット32で固定され、HCトラッパ−3が形
成される。Next, the intermediate HC adsorbent is heated at a temperature of 350
HC adsorbent 33 having, as a coat layer, an HC adsorbent made of zeolite whose solid acid strength has been increased by heat treatment under H 2 S flow (1.0 l / min) at 3 ° C. for 3 hours.
was gotten. HC adsorbent 33 manufactured as described above
Are stored in the container 30 and fixed by the holder 31 and the wire-net 32 to form the HC trapper-3.
【0019】このHCトラッパー3は、前記したよう
に、第2触媒コンバータ2の上流側の排ガス通路E10
に配設される。次に上記のように構成された本実施例の
排ガス浄化装置は、前記温度センサ−43により検出さ
れた排ガス温度Tに応じて図2に示すように第1切換バ
ルブ41をAおよびB位置、第2切換バルブ42をCお
よびD位置に切り換えて、排ガス流れをS1方向および
S2方向のいずれかに制御して、HC吸着体33のHC
吸着作用や、吸着していたHCの脱離(放出)作用およ
びHC吸着能力の再生、熱劣化防止、H2 Sの高温によ
る脱離防止等を行なう。そして、 i)T≦200℃の時には、第1切換バルブ41がA位
置、第2切換バルブ42がC位置となるように制御され
る。するとエンジンEより排出された排ガスは、第1触
媒コンバ−タ1を通過後、排ガス通路E10よりHCト
ラッパ−3に導入して、HC吸着体33により排ガス中
のコ−ルドHCが約53%吸着される。そしてコールド
HCの含有量が少なくなった排ガスは、HCトラッパー
3より矢印S1のように第2触媒コンバ−タ2に導入
し、三元触媒23により浄化される。As described above, the HC trapper 3 is connected to the exhaust gas passage E10 on the upstream side of the second catalytic converter 2.
It is arranged in. Next, the exhaust gas purifying apparatus of the present embodiment configured as described above moves the first switching valve 41 to the A and B positions as shown in FIG. 2 according to the exhaust gas temperature T detected by the temperature sensor -43. By switching the second switching valve 42 between the C and D positions, the exhaust gas flow is controlled in either the S1 direction or the S2 direction, and the HC
It performs an adsorbing action, a desorbing (releasing) action of adsorbed HC, a regeneration of the HC adsorbing ability, a thermal deterioration prevention, a desorption prevention at a high temperature of H 2 S, and the like. Then, i) when T ≦ 200 ° C., the first switching valve 41 is controlled to be in the A position, and the second switching valve 42 is controlled to be in the C position. Then, the exhaust gas discharged from the engine E passes through the first catalytic converter 1, and then is introduced into the HC trapper-3 through the exhaust gas passage E10, and the HC adsorbent 33 reduces the cold HC in the exhaust gas by about 53%. Adsorbed. The exhaust gas having a reduced content of cold HC is introduced from the HC trapper 3 to the second catalytic converter 2 as shown by an arrow S1, and is purified by the three-way catalyst 23.
【0020】ii)200℃<T≦300℃の時には、
第1切換バルブ41がB位置、第2切換バルブ42がD
位置となるように制御される。 するとエンジンEより
排出された排ガスは、第1触媒コンバ−タ1を通過後、
バイパス通路E11より矢印方向S2のように第2触媒
コンバ−タ2に導入する。すなわち、この制御時には、
HCトラッパー3に対し仮りに、温度が200℃よりも
高い排ガスが導入されたとすると、HC吸着体33に吸
着されていたHCが脱離し始める。しかし、下流側の第
2触媒コンバ−タ2の三元触媒23はまだ十分に活性化
されていないため、脱離したHCを完全に浄化すること
ができない。そこで、200℃から300℃までの温度
範囲では、HCトラッパ−3に排ガスが流れないように
している。これにより、HC吸着体33に吸着している
HC脱離を防ぎ、また、バイパスE11に排ガスが流れ
るため熱量損失がほとんどないので、下流側の第2触媒
コンバ−タ2の三元触媒23は、より速く昇温するため
活性化も速くなる効果がある。Ii) When 200 ° C. <T ≦ 300 ° C.,
The first switching valve 41 is in the B position, and the second switching valve 42 is in the D position.
It is controlled to be at the position. Then, the exhaust gas discharged from the engine E passes through the first catalytic converter 1,
It is introduced into the second catalyst converter 2 from the bypass passage E11 as indicated by the arrow S2. That is, during this control,
Assuming that exhaust gas having a temperature higher than 200 ° C. is introduced into the HC trapper 3, the HC adsorbed by the HC adsorbent 33 starts to desorb. However, since the three-way catalyst 23 of the second catalytic converter 2 on the downstream side has not yet been sufficiently activated, the desorbed HC cannot be completely purified. Therefore, in the temperature range from 200 ° C. to 300 ° C., the exhaust gas is prevented from flowing into the HC trapper-3. As a result, the desorption of HC adsorbed on the HC adsorbent 33 is prevented, and since the exhaust gas flows through the bypass E11, there is almost no loss of heat, so that the three-way catalyst 23 of the second catalytic converter 2 on the downstream side is Since the temperature rises more quickly, the activation becomes faster.
【0021】iii)300℃<T≦400℃の時に
は、第1切換バルブ41がA位置、第2切換バルブ42
がC位置となるように制御される。するとエンジンEよ
り排出された排ガスは、高温により三元触媒13が十分
活性化した第1触媒コンバ−タ1を通過時に浄化され、
HC成分をほとんど含まない状態で、排ガス通路E10
よりHCトラッパー3に導入して、いままでHC吸着体
33に吸着されていたHCを400℃以内の高温により
脱離させ、このHCを含有した状態で矢印S1のように
第2触媒コンバ−タ2に導入し、三元触媒23により浄
化される。Iii) When 300 ° C. <T ≦ 400 ° C., the first switching valve 41 is in the A position, and the second switching valve 42
Is controlled to be the C position. Then, the exhaust gas discharged from the engine E is purified when passing through the first catalytic converter 1 in which the three-way catalyst 13 is sufficiently activated by the high temperature,
With almost no HC component, the exhaust gas passage E10
The HC is introduced into the HC trapper 3 and the HC that has been adsorbed by the HC adsorbent 33 is desorbed at a high temperature within 400 ° C., and the HC is contained in the second catalyst converter as indicated by an arrow S1. 2 and purified by the three-way catalyst 23.
【0022】この場合、HCトラッパー3のHC吸着体
33より、いままで吸着していたHCが除去されるの
で、HC吸着体33のHC吸着性能の再生が行なわれる
とともにHC吸着体33のコーキングによる劣化が防止
される。。かつ下流側の第2触媒コンバ−タ2において
も、高温により三元触媒23が十分に活性化し、HC吸
着体33の再生に伴なうHCを含有した排ガスの浄化が
行なわれる。In this case, since the HC adsorbed so far is removed from the HC adsorbent 33 of the HC trapper 3, the HC adsorbing performance of the HC adsorbent 33 is regenerated and the HC adsorbent 33 is coked. Deterioration is prevented. . Also in the second catalytic converter 2 on the downstream side, the three-way catalyst 23 is sufficiently activated by the high temperature, and the exhaust gas containing HC accompanying the regeneration of the HC adsorbent 33 is purified.
【0023】iv)400℃<Tの時には、第1切換バ
ルブ41がB位置、第2切換バルブ42がD位置となる
ように制御される。するとエンジンEより排出された排
ガスは、第1触媒コンバ−タ1を通過後、バイパス通路
E11より矢印方向S2のように第2触媒コンバ−タ2
に導入する。すなわち、この制御時には、HCトラッパ
ー3に対し仮りに、温度が400℃以上の高い排ガスが
導入されたとすると、前記製造時の熱処理によりHC吸
着体33のゼオライトに吸着していたH2 S(硫化水
素)が脱離し始めるため、これを防止することおよび、
HC吸着体33の水熱による劣化を防止するために、H
Cトラッパ−3に400℃を超えた高温の排ガスが流れ
ないようにバイパスさせる。 (比較例)前記実施例のHC吸着体の効果を確認するた
め比較例1のHC吸着体および比較例2のHC吸着体が
形成された。 (比較例1)比較例1のHC吸着体は、実施例のHC吸
着体のようにH2 S雰囲気中での熱処理を行なわないこ
と以外は、実施例と同様である。 (比較例2)比較例2のHC吸着体は、ゼオライトとし
てNa−H/Y型ゼオライト(シリカ/アルミナモル
比:100)を用いたこと、および実施例のHC吸着体
のようにH2 S雰囲気中での熱処理を行なわないこと以
外は、実施例と同様である。Iv) When 400 ° C. <T, the first switching valve 41 is controlled to the B position and the second switching valve 42 is controlled to the D position. Then, the exhaust gas discharged from the engine E passes through the first catalyst converter 1 and then passes through the bypass passage E11 as indicated by the arrow S2 in the second catalyst converter 2.
To be introduced. That is, in this control, if high exhaust gas having a temperature of 400 ° C. or more is introduced into the HC trapper 3, H 2 S (sulfided) adsorbed on the zeolite of the HC adsorbent 33 by the heat treatment at the time of the production is assumed. Hydrogen) begins to desorb, preventing this, and
To prevent the HC adsorbent 33 from deteriorating due to hydrothermal energy, H
The C trapper-3 is bypassed so that high-temperature exhaust gas exceeding 400 ° C. does not flow. (Comparative Example) In order to confirm the effect of the HC adsorbent of the above example, the HC adsorbent of Comparative Example 1 and the HC adsorbent of Comparative Example 2 were formed. (Comparative Example 1) The HC adsorbent of Comparative Example 1 is the same as the example except that the heat treatment in the H 2 S atmosphere is not performed unlike the HC adsorbent of the example. (Comparative Example 2) The HC adsorbent of Comparative Example 2 used Na-H / Y-type zeolite (silica / alumina molar ratio: 100) as the zeolite, and used an H 2 S atmosphere like the HC adsorbent of Example. It is the same as the example except that the heat treatment in the inside is not performed.
【0024】(性能比較試験)実施例のHC吸着体、比
較例1のHC吸着体及び比較例2の吸着体を図1に示さ
れる排ガス浄化装置のHCトラッパー3に組入れ、浄化
性能を実車評価した。評価は、コ−ルドスタ−ト評価
(始動→アイドル→加速→60km/h定常走行)によ
り行った。(Performance Comparison Test) The HC adsorbent of the example, the HC adsorbent of Comparative Example 1, and the adsorbent of Comparative Example 2 were incorporated in the HC trapper 3 of the exhaust gas purifying apparatus shown in FIG. did. The evaluation was performed by cold start evaluation (starting → idle → acceleration → steady running at 60 km / h).
【0025】この評価結果を、表1に示す。 表1から明らかなように、実施例の場合には、比較例
1、2よりも優れたコ−ルドHC低減率が得られる。こ
れは、排ガス温度が200℃に達するまでの間に、HC
を確実に吸着し、また吸着したHCの脱離を発生させな
いためと考えられる。Table 1 shows the evaluation results. As is clear from Table 1, in the case of the example, a cold HC reduction rate superior to that of the comparative examples 1 and 2 is obtained. This is because the exhaust gas temperature reaches 200 ° C before the HC
It is considered that the adsorbed HC is securely adsorbed and the adsorbed HC is not desorbed.
【0026】このように、H2 S雰囲気中で熱処理され
たゼオライトがHC吸着材として用いられたHC吸着体
は、HCの吸着能力が向上する。また、HC吸着体のH
C吸着能が向上した理由は、ゼオライトなどの固体酸点
強度が強くなりHCの吸着力が強くなったためと推定さ
れる。また、アルコ−ル燃料自動車の排ガス浄化装置に
おいても、H2 S雰囲気中で熱処理されたゼオライト
を、HC吸着材としたHC吸着体を用いて性能評価試験
を行なうと、ホルムアルデヒド吸着能を含めたHC吸着
能が向上することが判明した。As described above, the HC adsorbent using the zeolite heat-treated in the H 2 S atmosphere as the HC adsorbent has an improved HC adsorbing ability. In addition, H of the HC adsorbent
It is presumed that the reason why the C adsorbing ability was improved was that the strength of solid acid sites such as zeolite was increased and the adsorbing power of HC was increased. Also, in an exhaust gas purifying apparatus for an alcohol fueled vehicle, when a performance evaluation test is performed on a zeolite that has been heat-treated in an H 2 S atmosphere using an HC adsorbent serving as an HC adsorbent, it is found that the zeolite has a formaldehyde adsorption capacity. It was found that the HC adsorption ability was improved.
【図1】実施例の排ガス浄化装置の使用例を示す部分断
面図である。FIG. 1 is a partial sectional view showing an example of use of an exhaust gas purifying apparatus according to an embodiment.
【図2】実施例の排ガス浄化装置における第1切換バル
ブと第2切換バルブの制御状態を示す説明図である。FIG. 2 is an explanatory diagram showing control states of a first switching valve and a second switching valve in the exhaust gas purifying apparatus of the embodiment.
1…第1触媒コンバ−タ 2…第2触媒コンバ−タ 3…HCトラッパー 33…H2 S雰囲気中で熱処理されたゼオライトがHC
吸着材として用いられたHC吸着体1 ... first catalyst converter - motor 2 ... second catalytic converter - motor 3 ... HC trapper 33 ... zeolites heat-treated in H 2 S atmosphere HC
HC adsorbent used as adsorbent
フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 20/28 B01D 53/34 B 20/34 120D F01N 3/24 Continued on the front page (51) Int.Cl. 6 Identification code FI B01J 20/28 B01D 53/34 B 20/34 120D F01N 3/24
Claims (1)
排ガス浄化用触媒の上流側に配置されたHC吸着材をも
つ排ガス浄化装置において、該HC吸着材はH2 S雰囲
気中で熱処理されたゼオライトであることを特徴とする
排ガス浄化装置。In an exhaust gas purifying apparatus having an HC adsorbent disposed upstream of the exhaust gas purifying catalyst in an exhaust gas system having an exhaust gas purifying catalyst, the HC adsorbent is heat-treated in an H 2 S atmosphere. An exhaust gas purifying device, which is a zeolite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3049658A JP2827546B2 (en) | 1991-03-14 | 1991-03-14 | Exhaust gas purification device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3049658A JP2827546B2 (en) | 1991-03-14 | 1991-03-14 | Exhaust gas purification device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04284827A JPH04284827A (en) | 1992-10-09 |
JP2827546B2 true JP2827546B2 (en) | 1998-11-25 |
Family
ID=12837286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3049658A Expired - Fee Related JP2827546B2 (en) | 1991-03-14 | 1991-03-14 | Exhaust gas purification device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2827546B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5292975B2 (en) * | 2008-07-31 | 2013-09-18 | マツダ株式会社 | Exhaust gas purification catalyst device |
-
1991
- 1991-03-14 JP JP3049658A patent/JP2827546B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04284827A (en) | 1992-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0593898B1 (en) | Exhaust gas conversion method and apparatus using thermally stable zeolites | |
US5727385A (en) | Lean-burn nox catalyst/nox trap system | |
CN100482325C (en) | Catalyst arrangement and method of purifying the exhaust gas of internal combustion engines operated under lean conditions | |
KR20180125168A (en) | Electric elements in exhaust for NOx storage catalysts and SCR systems | |
JP3479980B2 (en) | Exhaust gas purification method and exhaust gas purification catalyst | |
JP3816113B2 (en) | Exhaust gas purification device for reducing hydrocarbon emissions during cold start of an internal combustion engine | |
JP2000230414A (en) | Converting method of diesel engine exhaust gas utilizing nitrogen oxides absorber | |
US20030039597A1 (en) | Close coupled catalyst with a SOx trap and methods of making and using the same | |
JPH08224449A (en) | Combined catalyst and hydrocarbon trap for preventing air pollution from occurring | |
JP4390000B2 (en) | NOx adsorption device | |
US5587137A (en) | Exhaust gas conversion method using thermally stable zeolites | |
JP3157556B2 (en) | Exhaust gas purification catalyst device | |
JP3282344B2 (en) | Exhaust gas purification device | |
JP2001289035A (en) | Exhaust emission control method and system | |
JPH10263364A (en) | Exhaust gas purifying system | |
JP2827546B2 (en) | Exhaust gas purification device | |
JP3695394B2 (en) | Exhaust gas purification device and manufacturing method | |
JP5094199B2 (en) | Exhaust gas purification device | |
JP2849585B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JPH09225265A (en) | Exhaust gas purifying device | |
JP3414808B2 (en) | Hydrocarbon adsorbent in exhaust gas | |
JP3757440B2 (en) | Engine exhaust gas purification device | |
JP3300027B2 (en) | Exhaust gas purification catalyst | |
EP4215485A1 (en) | Hydrocarbon adsorption device | |
JPH0710010Y2 (en) | Exhaust gas purification device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |