JPH04284825A - Purification of exhaust gas - Google Patents

Purification of exhaust gas

Info

Publication number
JPH04284825A
JPH04284825A JP3049355A JP4935591A JPH04284825A JP H04284825 A JPH04284825 A JP H04284825A JP 3049355 A JP3049355 A JP 3049355A JP 4935591 A JP4935591 A JP 4935591A JP H04284825 A JPH04284825 A JP H04284825A
Authority
JP
Japan
Prior art keywords
exhaust gas
combustion
oxygen
reducing agent
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3049355A
Other languages
Japanese (ja)
Inventor
Satoyuki Inui
智行 乾
Kazuya Komatsu
一也 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP3049355A priority Critical patent/JPH04284825A/en
Publication of JPH04284825A publication Critical patent/JPH04284825A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder

Abstract

PURPOSE:To purify exhaust gas by catalytically decomposing nitrogen oxide in the exhaust gas into N2 and O2 within a relatively low temp. region under an oxygen rich atmosphere by a coexisting reducing agent. CONSTITUTION:An exhaust gas purifying method consists of a reducing agent introducing process introducing hydrocarbon into exhaust gas as a reducing agent and a catalytic decomposition process bringing the exhaust gas into which hydrocarbon is introduced into contact with a catalyst composed of metal- containing zeolite containing at least one kind of an element selected from copper, manganese, cobalt, iron, nickel, chromium and vanadium capable of relatively easily changing in valence as oxide to decompose nitrogen oxide. The aforementioned hydrocarbon is characterized in that the number of carbon atoms is set to 2-7.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、酸素過剰雰囲気の下
において、排気ガス中の窒素酸化物を共存する還元剤に
より、N2 とO2 とに接触分解して浄化するための
排気ガス浄化方法に関する。
[Field of Industrial Application] This invention relates to an exhaust gas purification method for purifying nitrogen oxides in exhaust gas by catalytically decomposing them into N2 and O2 using a coexisting reducing agent in an oxygen-rich atmosphere. .

【0002】0002

【従来の技術】従来より、自動車用エンジンからの排気
ガス中の有害成分である窒素酸化物を除去する技術とし
ては、PtーRh系等の三元触媒を用いる浄化方法、ア
ンモニア・尿素等による選択的還元法を適用する浄化方
法、銅イオン交換ゼオライト触媒を用いる浄化方法等、
種々知られている。
[Prior Art] Conventionally, the technologies for removing nitrogen oxides, which are harmful components in exhaust gas from automobile engines, include purification methods using three-way catalysts such as Pt-Rh, and purification methods using ammonia, urea, etc. Purification methods that apply selective reduction methods, purification methods that use copper ion exchange zeolite catalysts, etc.
Various types are known.

【0003】しかしながら、PtーRh系等の三元触媒
を用いる浄化方法においては、理論空燃比よりリッチ側
では、窒素酸化物を除去する事は出来るものの、リーン
側(即ち、酸素過剰雰囲気)では、除去が不能となる致
命的な問題点がある。また、アンモニア・尿素等による
選択的還元法を適用する浄化方法においては、窒素酸化
物の浄化率は高いが、装置が大型となり、また、アンモ
ニアの2次排出公害が発生するという新たな公害発生の
問題点がある。更に、銅イオン交換ゼオライト触媒を用
いる浄化方法等においては、上述したPtーRh系等の
三元触媒を用いる浄化方法とは異なり、リーン側でも窒
素酸化物を除去する事が可能であるが、その浄化効率が
低く、また、比較的低温度で浄化性能が劣化する問題点
が指摘されている。
However, in a purification method using a three-way catalyst such as a Pt-Rh system, nitrogen oxides can be removed on the rich side of the stoichiometric air-fuel ratio, but on the lean side (that is, in an oxygen-rich atmosphere), nitrogen oxides can be removed. , there is a fatal problem that cannot be removed. In addition, purification methods that apply selective reduction using ammonia, urea, etc. have a high purification rate of nitrogen oxides, but the equipment becomes large and new pollution occurs due to the secondary emission of ammonia. There is a problem with this. Furthermore, in purification methods using copper ion exchange zeolite catalysts, nitrogen oxides can be removed even on the lean side, unlike the purification methods using three-way catalysts such as the Pt-Rh system mentioned above. It has been pointed out that the purification efficiency is low and that the purification performance deteriorates at relatively low temperatures.

【0004】このような従来の排気ガス浄化方法におい
て、近年、デイーゼルエンジンの排気ガスや、希薄燃料
ガソリンエンジンからの排気ガスの様に、酸素が高濃度
で共存する場合であっても、窒素酸化物を安定して分解
除去することが出来る排ガス浄化方法及び触媒として、
特開昭63−100919号公報に示される技術が知ら
れている。この従来公報には、銅を含有する触媒を用意
し、酸化雰囲気中、炭化水素の存在下で上記触媒に窒素
酸化物を含有する排ガスを接触させる事により、排ガス
中の窒素酸化物を除去する事を特徴とする排ガス浄化方
法と、排ガス中の窒素酸化物を酸化雰囲気中で除去する
ための触媒であって、銅をアルミナ、シリカ、ゼオライ
ト等の多孔質担体に担持してなることを特徴とする排ガ
ス浄化触媒とが開示されている。この結果、この従来公
報に開示された技術内容を実施する事により、酸化雰囲
気において、効率よく窒素酸化物を除去する方法及び触
媒が提供される事となる。
[0004] In recent years, in such conventional exhaust gas purification methods, even when oxygen coexists at a high concentration, such as in exhaust gas from a diesel engine or exhaust gas from a lean fuel gasoline engine, nitrogen oxidation As an exhaust gas purification method and catalyst that can stably decompose and remove substances,
A technique disclosed in Japanese Unexamined Patent Publication No. 100919/1983 is known. This conventional publication discloses that nitrogen oxides in the exhaust gas are removed by preparing a catalyst containing copper and bringing the exhaust gas containing nitrogen oxides into contact with the catalyst in the presence of hydrocarbons in an oxidizing atmosphere. and a catalyst for removing nitrogen oxides in exhaust gas in an oxidizing atmosphere, characterized in that copper is supported on a porous carrier such as alumina, silica, zeolite, etc. An exhaust gas purification catalyst is disclosed. As a result, by implementing the technical content disclosed in this prior art publication, a method and catalyst for efficiently removing nitrogen oxides in an oxidizing atmosphere will be provided.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな従来技術を用いた場合においても、窒素酸化物の分
解を、触媒の高温活性を利用して分解しようとしている
ため、エンジン始動直後の様に、排気ガス温度が十分に
上昇していない低温領域状態においては、触媒が十分に
高温にならずにこの高温活性を利用出来ないものであり
、従つて、浄化性能は極端に悪いものとなる。この結果
、上述した従来公報に開示された技術を利用した場合で
あっても、触媒温度が所定の高温領域まで上昇するまで
の間は、窒素酸化物はほとんど分解されない状態で大気
に放出される事となる問題が残っている。
[Problems to be Solved by the Invention] However, even when such conventional technology is used, nitrogen oxides are decomposed by utilizing the high-temperature activity of the catalyst. In a low-temperature region where the exhaust gas temperature has not risen sufficiently, the catalyst cannot reach a sufficiently high temperature and cannot utilize its high-temperature activity, resulting in extremely poor purification performance. As a result, even when using the technology disclosed in the above-mentioned conventional publications, nitrogen oxides are released into the atmosphere without being decomposed until the catalyst temperature rises to a predetermined high temperature range. There remains a major issue.

【0006】また、上述した様に触媒の高温活性を利用
しているため、触媒自身の高温劣化が激しく、耐久性の
点でも問題が残っている。この発明は上述した課題に鑑
みなされたもので、この発明の目的は、比較的低温側か
ら窒素酸化物の良好な浄化性能を得る事の出来る排気ガ
ス浄化方法を提供することである。
Furthermore, as mentioned above, since the high-temperature activity of the catalyst is utilized, the catalyst itself is subject to severe high-temperature deterioration, and there remains a problem in terms of durability. This invention was made in view of the above-mentioned problems, and an object of the invention is to provide an exhaust gas purification method that can obtain good nitrogen oxide purification performance from a relatively low temperature side.

【0007】[0007]

【課題を解決するための手段】上述した目的を達成する
ため、この発明に係わる排気ガス浄化方法は、排気ガス
中に還元剤としての炭化水素を導入する還元剤導入工程
と、炭化水素が導入された排気ガスを、酸化物としての
原子価が比較的容易に変化し得る銅、マンガン、コバル
ト、鉄、ニッケル、クロム、パナジュームの少なくとも
1種類を含んだ金属含有ゼオライトからなる触媒に接触
させ、窒素酸化物を分解させる接触分解工程とを具備し
、前記炭化水素は、炭素数を2乃至7に設定されている
事を特徴としている。
[Means for Solving the Problems] In order to achieve the above object, the exhaust gas purification method according to the present invention includes a reducing agent introduction step of introducing hydrocarbons as a reducing agent into the exhaust gas, and a step of introducing hydrocarbons as a reducing agent into the exhaust gas. The exhaust gas is brought into contact with a catalyst made of a metal-containing zeolite containing at least one of copper, manganese, cobalt, iron, nickel, chromium, and panadium whose valence as an oxide can be changed relatively easily, The method includes a catalytic cracking step for decomposing nitrogen oxides, and the hydrocarbon is characterized in that the number of carbon atoms is set to 2 to 7.

【0008】[0008]

【作用】以下に、この発明に係わる排気ガス浄化方法の
作用を詳細に説明する。先ず、本願発明で規定する酸化
雰囲気とは、排気ガスに含まれる一酸化炭素、水素、及
び炭化水素や、本願発明において導入される炭化水素等
の還元性物質を完全に酸化して、安定したH2 OとC
O2 とに変換するのに必要な酸素量よりも過剰な状態
で酸素が含まれている状態を意味する。即ち、デイーゼ
ルエンジンからの排気ガスの雰囲気や、空燃比の大きな
(即ち、リーンな)希薄混合気を燃焼させたガソリンエ
ンジンからの排気ガスの雰囲気を指す。
[Operation] The operation of the exhaust gas purification method according to the present invention will be explained in detail below. First, the oxidizing atmosphere defined in the present invention is a stable atmosphere that completely oxidizes reducing substances such as carbon monoxide, hydrogen, and hydrocarbons contained in exhaust gas and hydrocarbons introduced in the present invention. H2 O and C
This refers to a state in which oxygen is contained in excess of the amount of oxygen required to convert it into O2. That is, it refers to the atmosphere of exhaust gas from a diesel engine or the atmosphere of exhaust gas from a gasoline engine that burns a lean mixture with a large air-fuel ratio (that is, lean).

【0009】そして、この発明に係わる排気ガス浄化方
法は、上述した酸化雰囲気の排気ガス中に還元剤として
の炭化水素を導入した上で、金属含有ゼオライトからな
る触媒に接触させて、排気ガス中の窒素酸化物を分解さ
せる上で、炭化水素の炭素数を2乃至7の範囲に限定す
る事により、比較的低温領域から窒素酸化物の良好な浄
化性能を発揮させる事を見出した事に基づいている。
The exhaust gas purification method according to the present invention involves introducing a hydrocarbon as a reducing agent into the exhaust gas in the above-mentioned oxidizing atmosphere, and then bringing it into contact with a catalyst made of metal-containing zeolite. Based on the discovery that in decomposing nitrogen oxides, by limiting the number of carbon atoms in hydrocarbons to a range of 2 to 7, good purification performance of nitrogen oxides can be achieved from a relatively low temperature range. ing.

【0010】即ち、酸化雰囲気中及び窒素酸化物の分解
により生じた酸素が、金属含有ゼオライトの活性点に吸
着されると、酸素が脱着しにくく、窒素酸化物が吸着サ
イトを失うため、窒素酸化物の浄化が制限され、連続的
に窒素酸化物の高い浄化性能を保つ事が不可能となる。 ここで、特定の炭化水素を浄化しようとする排気ガス中
に共存させると、窒素酸化物の浄化効率が飛躍的に向上
し、特に、比較的低温領域から浄化性能を発揮する事が
出来る事になる。特に、炭素数が2のエタンから炭素数
が7のヘプタンまでの炭化水素を用いる事により、浄化
性能が比較的低温領域まで伸びるのは、以下の理由によ
ると考えられる。
That is, when oxygen generated in an oxidizing atmosphere and by the decomposition of nitrogen oxides is adsorbed to the active sites of metal-containing zeolite, it is difficult for oxygen to be desorbed and nitrogen oxides lose adsorption sites, resulting in nitrogen oxidation. Purification of substances is limited, and it becomes impossible to maintain high nitrogen oxide purification performance continuously. Here, if specific hydrocarbons are allowed to coexist in the exhaust gas to be purified, the purification efficiency of nitrogen oxides will be dramatically improved, and in particular, purification performance can be demonstrated from a relatively low temperature range. Become. In particular, the use of hydrocarbons ranging from ethane with 2 carbon atoms to heptane with 7 carbon atoms is thought to extend the purification performance to a relatively low temperature range for the following reasons.

【0011】それは、各炭化水素の燃焼への転化率は、
どの場合も、窒素酸化物の転化率よりも高いが、燃焼の
温度域は、窒素酸化物の転化域とほぼ対応しており、炭
化水素の燃焼がゼオライトに含有された金属表面の酸素
を欠乏させて、その過度の酸化を防ぎ、窒素酸化物の分
解反応の進行を助けたと考えられるからである。ここで
、この発明に用いられる触媒は、金属含有ゼオライトで
あって、金属イオン交換ゼオライトではない。また、ゼ
オライトに含有される金属は、銅、マンガン、コバルト
、鉄、ニッケル、クロム、パナジューム等の遷移金属の
少なくとも1種類であり、その組み合わせは何ら限定さ
れない。
That is, the conversion rate of each hydrocarbon to combustion is
In all cases, the conversion rate is higher than that of nitrogen oxides, but the temperature range of combustion roughly corresponds to the conversion range of nitrogen oxides, and the combustion of hydrocarbons depletes the oxygen on the surface of the metal contained in the zeolite. This is because it is believed that this prevents excessive oxidation and helps the progress of the decomposition reaction of nitrogen oxides. Here, the catalyst used in this invention is a metal-containing zeolite, and is not a metal ion-exchanged zeolite. Further, the metal contained in the zeolite is at least one type of transition metal such as copper, manganese, cobalt, iron, nickel, chromium, and panadium, and the combination thereof is not limited at all.

【0012】以上の様に、課題を解決するための手段を
構成する事により、排気ガス中の窒素酸化物は、酸化雰
囲気中でありながら、比較的低温度領域から良好な浄化
性能を発揮し、例えば、エンジン始動直後の暖気が十分
に済んでいない状態にあっても、早くから窒素酸化物を
浄化し始め、窒素酸化物が大気中に放出される事を極力
抑制することが出来る事となる。また、この排気ガス浄
化方法では、比較的低温度領域から良好な浄化性能を発
揮するので、例えば、触媒をエンジンから遠く離れた排
気管中に配設し、エンジン及び排気ガスから受ける熱を
極力小さくして、触媒自身の温度を比較的低温領域に維
持する事により、触媒の寿命を長引かせることが出来る
事になる。
As described above, by configuring the means for solving the problem, nitrogen oxides in exhaust gas can exhibit good purification performance from a relatively low temperature range even in an oxidizing atmosphere. For example, even if the engine has not been sufficiently warmed up immediately after starting, it will begin to purify nitrogen oxides from an early stage, making it possible to suppress nitrogen oxides from being released into the atmosphere as much as possible. . In addition, since this exhaust gas purification method exhibits good purification performance from a relatively low temperature range, for example, the catalyst may be placed in the exhaust pipe far away from the engine to minimize the heat received from the engine and exhaust gas. By reducing the size and maintaining the temperature of the catalyst itself in a relatively low temperature range, the life of the catalyst can be extended.

【0013】[0013]

【発明の効果】以上詳述したように、この発明に係わる
排気ガス浄化方法は、排気ガス中に還元剤としての炭化
水素を導入する還元剤導入工程と、炭化水素が導入され
た排気ガスを、酸化物としての原子価が比較的容易に変
化し得る銅、マンガン、コバルト、鉄、ニッケル、クロ
ム、パナジュームの少なくとも1種類を含んだ金属含有
ゼオライトからなる触媒に接触させ、窒素酸化物を分解
させる接触分解工程とを具備し、前記炭化水素は、炭素
数を2乃至7に設定されている事を特徴としている。
Effects of the Invention As detailed above, the exhaust gas purification method according to the present invention includes a reducing agent introduction step of introducing hydrocarbons as a reducing agent into exhaust gas, and a reducing agent introduction step of introducing hydrocarbons as a reducing agent into exhaust gas, and Nitrogen oxides are decomposed by contacting with a catalyst made of metal-containing zeolite containing at least one of copper, manganese, cobalt, iron, nickel, chromium, and panadium, whose valence as an oxide can be changed relatively easily. The hydrocarbon is characterized in that the number of carbon atoms is set to 2 to 7.

【0014】従つて、この発明によれば、比較的低温側
から窒素酸化物の良好な浄化性能を得る事の出来る排気
ガス浄化方法が提供される事になる。また、三元触媒を
用いて排気ガスを浄化する方法に比較して、酸化雰囲気
においても、高効率で窒素酸化物を浄化することが出来
、デイーゼルエンジンやガソリンエンジンの排気ガスを
無公害化する事が可能になり、そして、アンモニア等に
よる選択的還元法に比較して、装置が極めて小型で安価
であると共に、過剰アンモニアの排出といった2次公害
の問題がなくなり、更に、銅イオン交換ゼオライトと比
較して、熱的安定性に優れ、排気ガス温度が高くなるよ
うな条件での使用に対しても、長時間安定した浄化性能
を維持することが出来る事になる。
Therefore, according to the present invention, there is provided an exhaust gas purification method that can obtain good nitrogen oxide purification performance from a relatively low temperature side. In addition, compared to the method of purifying exhaust gas using a three-way catalyst, it can purify nitrogen oxides with high efficiency even in an oxidizing atmosphere, making the exhaust gas of diesel engines and gasoline engines pollution-free. In addition, compared to selective reduction methods using ammonia, etc., the equipment is extremely small and inexpensive, and there is no problem of secondary pollution such as the discharge of excess ammonia. In comparison, it has excellent thermal stability and can maintain stable purification performance for a long time even when used under conditions where the exhaust gas temperature is high.

【0015】[0015]

【実施例】以下に、この発明に係わる排気ガス浄化方法
の一実施例の構成を、図1及び図4を参照して、詳細に
説明する。先ず、以下の様にして、この実施例において
用いられる触媒を構成する銅含有A型ゼオライトを調整
した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of an embodiment of the exhaust gas purification method according to the present invention will be explained in detail below with reference to FIGS. 1 and 4. First, copper-containing type A zeolite constituting the catalyst used in this example was prepared in the following manner.

【0016】即ち、所定量の硝酸銅、アルミン酸ナトリ
ウム、水ガラス、水酸化ナトリウムを氷浴中で混合し、
撹拌して得たAl/Si=1.0,Cu/Si=0.5
の組成のゲルを、85℃の恒温状態で6時間水熱合成し
て、銅含有A型ゼオライトを調整した。この銅含有A型
ゼオライトを水洗し、乾燥後、打錠成形し、15〜24
meshに破砕して、0.5gをHe気流中で基準化処
理後、反応に用いた。水素還元処理を行う場合は、10
0%H2 気流中で、室温から400℃/1.5hで昇
温し、0.5h保った。
That is, predetermined amounts of copper nitrate, sodium aluminate, water glass, and sodium hydroxide are mixed in an ice bath,
Al/Si=1.0, Cu/Si=0.5 obtained by stirring
A copper-containing type A zeolite was prepared by hydrothermally synthesizing a gel having the following composition at a constant temperature of 85° C. for 6 hours. This copper-containing type A zeolite was washed with water, dried, and then formed into tablets.
It was crushed into a mesh, and 0.5 g was subjected to standardization treatment in a He gas stream and then used for the reaction. When performing hydrogen reduction treatment, 10
In a 0% H2 gas flow, the temperature was raised from room temperature to 400°C/1.5 h and maintained for 0.5 h.

【0017】[実施例1]反応には、常圧流通反応装置
を用い、2.5℃/min で定速昇降温し、GHSV
=2500h−1で、窒素酸化物としての一酸化窒素(
NO)、炭素数が1のメタン列炭化水素であるメタン(
CH4 )、及び、Heの混合ガスを流通し、上述した
様に調整した銅含有A型ゼオライトに接触させた。
[Example 1] For the reaction, a normal pressure flow reactor was used, the temperature was raised and lowered at a constant rate of 2.5°C/min, and the GHSV
= 2500h-1, nitrogen monoxide as nitrogen oxide (
NO), methane (
A mixed gas of CH4) and He was passed through and brought into contact with the copper-containing type A zeolite prepared as described above.

【0018】この銅含有A型ゼオライトに接触後のガス
は、ガスクロマトグラフィ及び赤外線式ガス分析計によ
り分析し、一酸化窒素から分解されて生成された窒素(
N2)の生成量を測定し、この測定された窒素生成量か
ら一酸化窒素の転化率を算出した。この結果を図1に○
印で示した。ここで、メタン濃度は4.8%であり、酸
素濃度は3.1%であり、ヘリウムに対する一酸化窒素
濃度(NO/He)は2.0%、酸素(O2 )の燃焼
量論比は、0.4に夫々設定されている。
The gas that came into contact with this copper-containing type A zeolite was analyzed using gas chromatography and an infrared gas analyzer, and the nitrogen (
The amount of N2) produced was measured, and the conversion rate of nitrogen monoxide was calculated from the measured amount of nitrogen produced. This result is shown in Figure 1.
Indicated with a mark. Here, the methane concentration is 4.8%, the oxygen concentration is 3.1%, the nitrogen monoxide concentration (NO/He) to helium is 2.0%, and the combustion stoichiometric ratio of oxygen (O2) is , 0.4, respectively.

【0019】一方、酸素(O2 )の燃焼量論比を0.
4に設定した場合のメタンの燃焼の温度依存性を測定し
、その結果を図2に○印で示した。ここで、メタン濃度
は2.1%であり、ヘリウムに対する酸素濃度(O2 
/He)は1.7%に夫々設定されている。この結果、
図1に示す様に、O2 共存化での一酸化窒素分解にお
いて、メタンを導入する事により、従来の触媒温度を比
較的低温度領域まで伸ばす事を示唆する結果を得られな
かった。即ち、本願発明の炭化水素として、メタンは不
適切である事が判明した。
On the other hand, the combustion stoichiometric ratio of oxygen (O2) is set to 0.
The temperature dependence of methane combustion was measured when the temperature was set to 4, and the results are shown in FIG. 2 by circles. Here, the methane concentration is 2.1%, and the oxygen concentration (O2
/He) is set at 1.7%. As a result,
As shown in FIG. 1, no results were obtained suggesting that the conventional catalyst temperature could be extended to a relatively low temperature range by introducing methane in nitrogen monoxide decomposition in the coexistence of O2. That is, methane was found to be inappropriate as the hydrocarbon of the present invention.

【0020】[実施例2]実施例1の場合と同様な条件
で、混合ガス中に導入する炭化水素を、炭素数が2のエ
タンに変更して、流通させた。そして、同様な方法で、
一酸化窒素の転化率を算出した。
[Example 2] Under the same conditions as in Example 1, the hydrocarbon introduced into the mixed gas was changed to ethane having 2 carbon atoms, and the mixed gas was circulated. And in a similar way,
The conversion rate of nitrogen monoxide was calculated.

【0021】この結果を図1に◇印で示した。ここで、
エタン濃度は2.4%であり、酸素濃度は2.8%であ
り、ヘリウムに対する一酸化窒素濃度(NO/He)は
2.3%、酸素(O2 )の燃焼量論比は、0.4に夫
々設定されている。一方、酸素(O2 )の燃焼量論比
を0.4に設定した場合のエタンの燃焼の温度依存性を
測定し、その結果を図2に◇印で示した。ここで、エタ
ン濃度は2.0%であり、ヘリウムに対する酸素濃度(
O2 /He)は2.9%に夫々設定されている。
[0021] The results are shown in Fig. 1 with a mark ◇. here,
The ethane concentration is 2.4%, the oxygen concentration is 2.8%, the nitric oxide concentration relative to helium (NO/He) is 2.3%, and the combustion stoichiometric ratio of oxygen (O2) is 0. 4 respectively. On the other hand, the temperature dependence of ethane combustion was measured when the combustion stoichiometric ratio of oxygen (O2) was set to 0.4, and the results are shown in FIG. 2 with a mark ◇. Here, the ethane concentration is 2.0%, and the oxygen concentration with respect to helium (
O2/He) was set at 2.9%.

【0022】この結果、図1に◇印で示すようにエタン
導入時の一酸化窒素の転化率の温度依存性は現れ、約4
00℃から浄化性能が発揮される事が判明した。そして
、この場合の酸素(O2 )の燃焼量論比は0.4であ
り、そのときのエタン燃焼の温度依存性が図2に示され
ている。これら図1及び図2から、エタンの燃焼への転
化率は一酸化窒素転化率より高いが、燃焼の温度域は、
一酸化窒素転化域とほぼ対応している事が理解され、従
つて、エタンの燃焼がゼオライトに含有された銅表面の
酸素を欠乏させて、その過度の酸化を防ぎ、一酸化窒素
の分解反応の進行を助けたため、エタンの燃焼下限領域
である比較的低温度領域まで、一酸化窒素の浄化性能が
発揮され得る事となる事と考えられる。
As a result, as shown by the mark ◇ in FIG. 1, temperature dependence of the conversion rate of nitrogen monoxide when ethane is introduced appears, and the temperature dependence is approximately 4
It was found that purification performance was exhibited from 00°C. The combustion stoichiometric ratio of oxygen (O2) in this case is 0.4, and the temperature dependence of ethane combustion in this case is shown in FIG. From these figures 1 and 2, the conversion rate of ethane to combustion is higher than the conversion rate of nitrogen monoxide, but the temperature range of combustion is
It is understood that the area roughly corresponds to the nitrogen monoxide conversion region, and therefore, the combustion of ethane depletes the oxygen on the surface of the copper contained in zeolite, prevents its excessive oxidation, and causes the decomposition reaction of nitrogen monoxide. It is thought that the nitrogen monoxide purification performance can be exhibited even down to the relatively low temperature range, which is the lower limit of combustion of ethane.

【0023】この実施例2においては、エタンに対する
共存酸素(O2 )の燃焼量論比の影響を調べ、その結
果を図3に示す。尚、この図3において、各印は以下の
表1に示される様に設定されている。
In this Example 2, the influence of the combustion stoichiometric ratio of coexisting oxygen (O2) to ethane was investigated, and the results are shown in FIG. Note that in FIG. 3, each mark is set as shown in Table 1 below.

【0024】[0024]

【表1】   この図3から明らかな様に、酸素(O2 )が共存
しない場合には、一酸化炭素の転化率は500℃付近で
急激に上昇した。この温度域は、図2に示されたエタン
最大転化温度にほぼ一致する。更に、酸素(O2 )共
存比を上げても、一酸化窒素の転化率は余り下がらなか
った。 このことから、一酸化窒素の分解活性温度と共存エタン
の燃焼温度の整合性が重要である事が確認された。
[Table 1] As is clear from FIG. 3, in the absence of oxygen (O2), the conversion rate of carbon monoxide sharply increased around 500°C. This temperature range approximately corresponds to the maximum ethane conversion temperature shown in FIG. Furthermore, even when the oxygen (O2) coexistence ratio was increased, the conversion rate of nitrogen monoxide did not decrease much. From this, it was confirmed that consistency between the decomposition activation temperature of nitrogen monoxide and the combustion temperature of coexisting ethane is important.

【0025】[実施例3]実施例1の場合と同様な条件
で、混合ガス中に導入する炭化水素を、炭素数が3のプ
ロパンに変更して、流通させた。そして、同様な方法で
、一酸化窒素の転化率を算出した。
[Example 3] Under the same conditions as in Example 1, the hydrocarbon introduced into the mixed gas was changed to propane having 3 carbon atoms, and the mixed gas was circulated. Then, the conversion rate of nitrogen monoxide was calculated in the same manner.

【0026】この結果を図2に●印で示した。ここで、
プロパン濃度は1.8%であり、酸素濃度は2.9%で
あり、ヘリウムに対する一酸化窒素濃度(NO/He)
は2.1%、酸素(O2 )の燃焼量論比は、0.4に
夫々設定されている。一方、酸素(O2 )の燃焼量論
比を0.4に設定した場合のプロパンの燃焼の温度依存
性を測定し、その結果を図2に●印で示した。ここで、
プロパン濃度は2.1%であり、ヘリウムに対する酸素
濃度(O2/He)は4.0%に夫々設定されている。
[0026] This result is shown in FIG. 2 with a black mark. here,
The propane concentration is 1.8%, the oxygen concentration is 2.9%, and the nitric oxide concentration relative to helium (NO/He)
is set to 2.1%, and the combustion stoichiometric ratio of oxygen (O2) is set to 0.4. On the other hand, the temperature dependence of propane combustion was measured when the combustion stoichiometric ratio of oxygen (O2) was set to 0.4, and the results are shown in FIG. 2 with black circles. here,
The propane concentration is 2.1%, and the oxygen concentration relative to helium (O2/He) is set to 4.0%.

【0027】この結果、図1に●印で示すようにプロパ
ン導入時の一酸化窒素の転化率の温度依存性は現れ、約
400℃から浄化性能が発揮される事が判明した。そし
て、この場合の酸素(O2 )の燃焼量論比は0.4で
あり、そのときのプロパン燃焼の温度依存性が図2に示
されている。これら図1及び図2から、プロパンの燃焼
への転化率は一酸化窒素転化率より高いが、燃焼の温度
域は、一酸化窒素転化域とほぼ対応している事が理解さ
れ、従つて、プロパンの燃焼がゼオライトに含有された
銅表面の酸素を欠乏させて、その過度の酸化を防ぎ、一
酸化窒素の分解反応の進行を助けたため、プロパンの燃
焼下限領域である比較的低温度領域まで、一酸化窒素の
浄化性能が発揮され得る事となる事と考えられる。
[0027] As a result, it was found that the conversion rate of nitrogen monoxide at the time of propane introduction was temperature dependent, as shown by the black mark in Fig. 1, and that the purification performance was exhibited from about 400°C. The combustion stoichiometric ratio of oxygen (O2) in this case is 0.4, and the temperature dependence of propane combustion in this case is shown in FIG. From these Figures 1 and 2, it is understood that the conversion rate of propane to combustion is higher than the nitrogen monoxide conversion rate, but the combustion temperature range almost corresponds to the nitrogen monoxide conversion area, and therefore, The combustion of propane depletes the oxygen on the surface of the copper contained in zeolite, prevents its excessive oxidation, and helps the progress of the decomposition reaction of nitrogen monoxide, so that the temperature reaches a relatively low temperature range, which is the lower combustion limit of propane. It is thought that the purification performance of nitric oxide can be exhibited.

【0028】この実施例3においては、プロパンに対す
る共存酸素(O2)の燃焼量論比の影響を調べ、その結
果を図4に示す。尚、この図4において、各印は以下の
表2に示される様に設定されている。
In this Example 3, the influence of the combustion stoichiometric ratio of coexisting oxygen (O2) to propane was investigated, and the results are shown in FIG. In this FIG. 4, each mark is set as shown in Table 2 below.

【0029】[0029]

【表2】   この図4から明らかな様に、酸素(O2 )が共存
しない場合には、一酸化炭素の転化の温度依存性はエタ
ン導入の場合よりも緩やかになった。これは、プロパン
の燃焼がエタンの燃焼に比べて容易であるため、一酸化
窒素の分解よりも低温で燃焼してしまい、一酸化窒素の
分解時の触媒表面を還元的に維持させる事に対する関与
が少なかったためと考えられる。
[Table 2] As is clear from FIG. 4, in the absence of oxygen (O2), the temperature dependence of the conversion of carbon monoxide was gentler than in the case of introducing ethane. This is because the combustion of propane is easier than the combustion of ethane, so it burns at a lower temperature than the decomposition of nitric oxide, which contributes to maintaining the catalyst surface in a reductive state during the decomposition of nitric oxide. This is probably because there were few.

【0030】[実施例4]実施例1の場合と同様な条件
で、混合ガス中に導入する炭化水素を、炭素数が7の正
パラフィンであるヘプタンに変更して、流通させた。そ
して、同様な方法で、一酸化窒素の転化率を算出した。
[Example 4] Under the same conditions as in Example 1, the hydrocarbon introduced into the mixed gas was changed to heptane, which is a normal paraffin having 7 carbon atoms, and the mixed gas was circulated. Then, the conversion rate of nitrogen monoxide was calculated in the same manner.

【0031】この結果を図2に◆印で示した。ここで、
ヘプタン濃度は0.85%であり、酸素濃度は3.0%
であり、ヘリウムに対する一酸化窒素濃度(NO/He
)は1.6%、酸素(O2 )の燃焼量論比は、0.4
に夫々設定されている。一方、酸素(O2 )の燃焼量
論比を0.4に設定した場合のヘプタンの燃焼の温度依
存性を測定し、その結果を図2に◇印で示した。ここで
、ヘプタン濃度は1.2%であり、ヘリウムに対する酸
素濃度(O2 /He)は5.2%に夫々設定されてい
る。
[0031] The results are shown in FIG. 2 by ◆. here,
Heptane concentration is 0.85% and oxygen concentration is 3.0%
, and the concentration of nitric oxide relative to helium (NO/He
) is 1.6%, and the combustion stoichiometric ratio of oxygen (O2) is 0.4
are set respectively. On the other hand, the temperature dependence of heptane combustion was measured when the combustion stoichiometric ratio of oxygen (O2) was set to 0.4, and the results are shown in FIG. 2 with a mark ◇. Here, the heptane concentration is 1.2%, and the oxygen concentration relative to helium (O2/He) is set to 5.2%.

【0032】この結果、図1に◆印で示すようにヘプタ
ン導入時の一酸化窒素の転化率の温度依存性は現れ、約
300℃から浄化性能が発揮される事が判明した。そし
て、この場合の酸素(O2 )の燃焼量論比は0.4で
あり、そのときのヘプタン燃焼の温度依存性が図2に示
されている。これら図1及び図2から、ヘプタンの燃焼
への転化率は一酸化窒素転化率より高いが、燃焼の温度
域は、一酸化窒素転化域とほぼ対応している事が理解さ
れ、従つて、ヘプタンの燃焼がゼオライトに含有された
銅表面の酸素を欠乏させて、その過度の酸化を防ぎ、一
酸化窒素の分解反応の進行を助けたため、ヘプタンの燃
焼下限領域である比較的低温度領域まで、一酸化窒素の
浄化性能が発揮され得る事となる事と考えられる。
[0032] As a result, it was found that the conversion rate of nitrogen monoxide when heptane was introduced showed temperature dependence, as shown by the ◆ mark in Fig. 1, and that the purification performance was exhibited from about 300°C. The combustion stoichiometric ratio of oxygen (O2) in this case is 0.4, and the temperature dependence of heptane combustion in this case is shown in FIG. From these Figures 1 and 2, it is understood that the conversion rate of heptane to combustion is higher than the nitrogen monoxide conversion rate, but the combustion temperature range almost corresponds to the nitrogen monoxide conversion area, and therefore, Combustion of heptane depletes oxygen on the surface of the copper contained in zeolite, prevents its excessive oxidation, and helps the progress of the decomposition reaction of nitrogen monoxide, so that the temperature reaches a relatively low temperature range, which is the lower limit of combustion of heptane. It is thought that the purification performance of nitric oxide can be exhibited.

【0033】特に、ヘプタンの導入の場合には、このヘ
プタンはプロパンよりも燃焼しやすいが、一酸化窒素の
転化がより低温側で進行し、共存酸素燃焼論比を0.8
間で上げても、一酸化窒素の転化率の低下は少なかった
。このことは、ヘプタンの完全燃焼には、同時に多量の
表面酸素を要するが達成されず、一部中間酸化物を生じ
、これらが更に逐次的に完全燃焼するまで、表面により
密接に滞留する事により、還元表面が保持される温度範
囲が拡大したからであると考えられる。
In particular, when heptane is introduced, although heptane is more combustible than propane, the conversion of nitrogen monoxide proceeds at a lower temperature, reducing the stoichiometric ratio of coexisting oxygen combustion to 0.8.
Even when the temperature was increased, there was little decrease in the conversion rate of nitrogen monoxide. This is because the complete combustion of heptane, which requires a large amount of surface oxygen at the same time, is not achieved, and some intermediate oxides are formed, which in turn accumulate closer to the surface until complete combustion occurs. This is thought to be due to the expansion of the temperature range in which the reduced surface is maintained.

【0034】以上詳述した第1乃至第4の実施例から明
らかな様に、排気ガス中に還元剤としての炭素数を2乃
至7に設定され炭化水素を導入し、このように炭化水素
が導入された排気ガスを、酸化物としての原子価が比較
的容易に変化し得る銅、マンガン、コバルト、鉄、ニッ
ケル、クロム、パナジュームの少なくとも1種類を含ん
だ金属含有ゼオライトからなる触媒に接触させることに
より、デイーゼルエンジン、希薄燃焼ガソリンエンジン
との、酸素が過剰に存在する排気ガス中の窒素酸化物を
比較的低い温度範囲で分解させる事が出来る事になる。
As is clear from the first to fourth embodiments detailed above, hydrocarbons are introduced into the exhaust gas as a reducing agent with the number of carbon atoms set to 2 to 7, and the hydrocarbons are The introduced exhaust gas is brought into contact with a catalyst made of metal-containing zeolite containing at least one of copper, manganese, cobalt, iron, nickel, chromium, and panadium whose valence as an oxide can be changed relatively easily. This makes it possible to decompose nitrogen oxides in the exhaust gases of diesel engines and lean-burn gasoline engines, which contain an excess of oxygen, in a relatively low temperature range.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明に係る排気ガス浄化方法を適用した場
合の、O2 共存化での一酸化窒素分解における共存炭
化水素の影響を示す線図である。
FIG. 1 is a diagram showing the influence of coexisting hydrocarbons on nitrogen monoxide decomposition in the coexistence of O2 when the exhaust gas purification method according to the present invention is applied.

【図2】O2 共存比を燃料量論比の0.4とした場合
の炭化水素燃料の温度依存性を示す線図である。
FIG. 2 is a diagram showing the temperature dependence of hydrocarbon fuel when the O2 coexistence ratio is 0.4 of the fuel stoichiometric ratio.

【図3】エタンの導入状態での、一酸化窒素分解におけ
る酸素共存比の影響を示す線図である。
FIG. 3 is a diagram showing the influence of the oxygen coexistence ratio on nitrogen monoxide decomposition when ethane is introduced.

【図4】プロパンの導入状態での、一酸化窒素分解にお
ける水素還元と酸素共存比の影響を示す線図である。
FIG. 4 is a diagram showing the influence of hydrogen reduction and oxygen coexistence ratio on nitrogen monoxide decomposition when propane is introduced.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  排気ガス中に還元剤としての炭化水素
を導入する還元剤導入工程と、炭化水素が導入された排
気ガスを、酸化物としての原子価が比較的容易に変化し
得る銅、マンガン、コバルト、鉄、ニッケル、クロム、
パナジュームの少なくとも1種類を含んだ金属含有ゼオ
ライトからなる触媒に接触させ、窒素酸化物を分解させ
る接触分解工程とを具備し、前記炭化水素は、炭素数を
2乃至7に設定されている事を特徴とする排気ガス浄化
方法。
1. A reducing agent introduction step of introducing a hydrocarbon as a reducing agent into the exhaust gas, and the exhaust gas into which the hydrocarbon has been introduced is made of copper, whose valence as an oxide can be changed relatively easily. manganese, cobalt, iron, nickel, chromium,
a catalytic cracking step in which the nitrogen oxides are decomposed by bringing them into contact with a catalyst made of metal-containing zeolite containing at least one type of panadium; Characteristic exhaust gas purification method.
JP3049355A 1991-03-14 1991-03-14 Purification of exhaust gas Pending JPH04284825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3049355A JPH04284825A (en) 1991-03-14 1991-03-14 Purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3049355A JPH04284825A (en) 1991-03-14 1991-03-14 Purification of exhaust gas

Publications (1)

Publication Number Publication Date
JPH04284825A true JPH04284825A (en) 1992-10-09

Family

ID=12828711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3049355A Pending JPH04284825A (en) 1991-03-14 1991-03-14 Purification of exhaust gas

Country Status (1)

Country Link
JP (1) JPH04284825A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026002A1 (en) 2006-08-30 2008-03-06 Johnson Matthey Public Limited Company Low temperature hydrocarbon scr

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026002A1 (en) 2006-08-30 2008-03-06 Johnson Matthey Public Limited Company Low temperature hydrocarbon scr
US8715602B2 (en) 2006-08-30 2014-05-06 Johnson Matthey Public Limited Company Low temperature hydrocarbon SCR
KR101452528B1 (en) * 2006-08-30 2014-10-22 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Low temperature hydrocarbon scr

Similar Documents

Publication Publication Date Title
KR0136893B1 (en) Selective catalytic reduction of nitrogen oxide
EP0953374A1 (en) Method for purifying effluent gases
WO2008066274A1 (en) Potassium oxide-incorporated alumina catalysts with enganced storage capacities of nitrogen oxide and a producing method therefor
JP4764609B2 (en) Nitrogen oxide removal catalyst
JP3283350B2 (en) Nitric oxide reduction catalyst and nitric oxide treatment equipment
JPH04284825A (en) Purification of exhaust gas
JPH04284826A (en) Method for purifying exhaust gas and apparatus therefor
JP4290391B2 (en) Method and apparatus for catalytic removal of nitrogen oxides
JPH04244218A (en) Method for purifying exhaust gas
JP3298133B2 (en) Method for producing zeolite containing cobalt and palladium and method for purifying exhaust gas
JP2004068717A (en) Method for removing nitrogen oxide in contacting manner and its device
JPH0663359A (en) Nitrogen oxides purifying method and waste gas treating device
JPH01247710A (en) Purifying device for automobile exhaust
JPH09220440A (en) Exhaust gas purifying method
KR0166465B1 (en) Preparation of catalyst for cleaning exhaust gases
JP2004009034A (en) Method of catalytically removing nitrogen oxide and catalyst therefor
JP3263105B2 (en) Nitrogen oxide treatment method and treatment apparatus
JPH08117558A (en) Formation of nitrogen dioxide
JP3257686B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3357904B2 (en) Nitrogen oxide removal catalyst and nitrogen oxide removal method
JPH05154349A (en) Method and catalyst for removing nitrogen oxide in combustion exhaust gas
Komatsu et al. Outstanding HC-SCR of lean NOx over Pt/mesoporous-silica catalysts
JP2004223376A (en) Nitrogen oxide removing catalyst
JP3508066B2 (en) Nitrogen oxide removing material and nitrogen oxide removing method
JPH06126186A (en) Catalyst for removing nitrogen oxygen and removing method for the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011005