JPH06126186A - Catalyst for removing nitrogen oxygen and removing method for the same - Google Patents

Catalyst for removing nitrogen oxygen and removing method for the same

Info

Publication number
JPH06126186A
JPH06126186A JP4300482A JP30048292A JPH06126186A JP H06126186 A JPH06126186 A JP H06126186A JP 4300482 A JP4300482 A JP 4300482A JP 30048292 A JP30048292 A JP 30048292A JP H06126186 A JPH06126186 A JP H06126186A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
silver
nitrogen oxides
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4300482A
Other languages
Japanese (ja)
Inventor
Kiyohide Yoshida
清英 吉田
Tatsuo Miyadera
達雄 宮寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Riken Corp filed Critical Agency of Industrial Science and Technology
Priority to JP4300482A priority Critical patent/JPH06126186A/en
Publication of JPH06126186A publication Critical patent/JPH06126186A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide a catalyst for removing nitrogen oxide which is capable of efficiently removing the same from combustion exhaust gas containing oxygen not less than theoretical reaction amount for nitrogen oxide and unburnt substance such as carbon monoxide and hydrocarbon. CONSTITUTION:A silver catalyst is obtained by making silver of silver oxide inorganic oxide at 0.2-15wt.% expressed in terms of silver element. A catalyst for removing nitrogen oxide is produced by mixing a zeolite catalyst with the silver catalyst. Nitrogen oxide contained in exhaust gas is removed by adding gaseous hydrocarbon into exhaust gas from the outside and bringing the exhaust gas into contact with the mixed catalyst at 200-600 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒素酸化物と過剰の酸素
を含む燃焼排ガスから、窒素酸化物を効果的に除去する
ことのできる触媒及びそれを用いた窒素酸化物除去方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst capable of effectively removing nitrogen oxides from combustion exhaust gas containing nitrogen oxides and excess oxygen, and a method for removing nitrogen oxides using the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】自動車
用エンジン等の内燃機関や、工場等に設置された燃焼機
器、家庭用ファンヒーターなどから排出される各種の燃
焼排ガス中には、過剰の酸素とともに一酸化窒素、二酸
化窒素等の窒素酸化物が含まれている。ここで、「過剰
の酸素を含む」とは、その排ガス中に含まれる一酸化炭
素、水素、炭化水素等の未燃焼成分を燃焼するのに必要
な理論酸素量より多い酸素を含むことを意味する。ま
た、以下における窒素酸化物とは一酸化窒素及び/又は
二酸化窒素を指す。
2. Description of the Related Art Excessive amounts of combustion exhaust gas discharged from internal combustion engines such as automobile engines, combustion equipment installed in factories, household fan heaters, etc. Nitrogen oxides such as nitric oxide and nitrogen dioxide are contained together with oxygen. Here, "containing excess oxygen" means containing more oxygen than the theoretical oxygen amount necessary to burn unburned components such as carbon monoxide, hydrogen, and hydrocarbons contained in the exhaust gas. To do. Moreover, the nitrogen oxide in the following refers to nitric oxide and / or nitrogen dioxide.

【0003】この窒素酸化物は酸性雨の原因の一つとさ
れ、環境上の大きな問題となっている。そのため、各種
燃焼機器が排出する排ガス中の窒素酸化物を除去するさ
まざまな方法が検討されている。
This nitrogen oxide is considered to be one of the causes of acid rain and is a serious environmental problem. Therefore, various methods for removing nitrogen oxides in exhaust gas discharged from various combustion devices have been studied.

【0004】過剰の酸素を含む燃焼排ガスから窒素酸化
物を除去する方法として、特に大規模な固定燃焼装置
(工場等の大型燃焼機等)に対しては、アンモニアを用
いる選択的接触還元法が実用化されている。
As a method for removing nitrogen oxides from combustion exhaust gas containing excess oxygen, a selective catalytic reduction method using ammonia is used, particularly for large-scale fixed combustion devices (large combustors such as factories). It has been put to practical use.

【0005】しかしながら、この方法においては、窒素
酸化物の還元剤として用いるアンモニアが高価であるこ
と、またアンモニアは毒性を有すること、そのために未
反応のアンモニアが排出しないように排ガス中の窒素酸
化物濃度を計測しながらアンモニア注入量を制御しなけ
ればならないこと、一般に装置が大型となること等の問
題点がある。
However, in this method, ammonia used as a reducing agent for nitrogen oxides is expensive, and ammonia is toxic, so that unreacted ammonia is discharged so that nitrogen oxides in exhaust gas are not discharged. There are problems that the amount of ammonia injection must be controlled while measuring the concentration and that the apparatus is generally large.

【0006】また、別な方法として、水素、一酸化炭
素、炭化水素等のガスを還元剤として用い、窒素酸化物
を還元する非選択的接触還元法があるが、この方法で
は、効果的な窒素酸化物の低減除去を実行するためには
排ガス中の酸素との理論反応量以上の還元剤を添加しな
ければならず、還元剤を多量に消費する欠点がある。こ
のため非選択的接触還元法は、実際上は、理論空燃比付
近で燃焼した残存酸素濃度の低い排ガスに対してのみ有
効となり、汎用性に乏しく実際的でない。
[0006] As another method, there is a non-selective catalytic reduction method for reducing nitrogen oxides by using a gas such as hydrogen, carbon monoxide or hydrocarbon as a reducing agent, but this method is effective. In order to reduce and remove nitrogen oxides, it is necessary to add a reducing agent in an amount equal to or larger than a theoretical reaction amount with oxygen in exhaust gas, and there is a drawback that a large amount of reducing agent is consumed. Therefore, the non-selective catalytic reduction method is practically effective only for the exhaust gas having a low residual oxygen concentration that is burned in the vicinity of the theoretical air-fuel ratio, and is not versatile and impractical.

【0007】そこで、ゼオライト又はそれに遷移金属を
担持した触媒を用いて、排ガス中の酸素との理論反応量
以下の還元剤を添加して窒素酸化物を除去する方法が提
案された(たとえば、特開昭63-100919 号、同63-28372
7 号、特開平1-130735号、及び日本化学会第59春季年会
(1990年)2A526、同第60秋季年会 (1990年)3L420、3L42
2 、3L423 、「触媒」vol.33 No.2 、59ページ、1991年
等) 。
Therefore, there has been proposed a method for removing nitrogen oxides by adding a reducing agent in an amount equal to or less than a theoretical reaction amount with oxygen in exhaust gas by using zeolite or a catalyst supporting a transition metal thereon (for example, a special method). Kaisho 63-100919, 63-28372
No. 7, JP-A-1-130735, and 59th Annual Meeting of the Chemical Society of Japan
(1990) 2A526, 60th Autumn Meeting (1990) 3L420, 3L42
2, 3L423, "Catalyst" vol.33 No.2, page 59, 1991 etc.).

【0008】しかしながら、これらの方法では、水分を
含まないような模擬排ガスに対しては高い効率で窒素酸
化物を除去することはできるが、実際の排ガスでは水分
を10%程度含有するので、窒素酸化物の除去率が著し
く低下することがわかった。また、これらの方法では、
窒素酸化物の還元反応の最適温度が400 〜600 ℃程度と
高くなる不都合もある。
However, although these methods can remove nitrogen oxides with high efficiency from a simulated exhaust gas containing no water, the actual exhaust gas contains about 10% of water, so It was found that the oxide removal rate was significantly reduced. Also, with these methods,
There is also the disadvantage that the optimum temperature for the reduction reaction of nitrogen oxides is as high as 400 to 600 ° C.

【0009】したがって、本発明の目的は、固定燃焼装
置および酸素過剰条件で燃焼するガソリンエンジン、デ
ィーゼルエンジン等からの燃焼排ガスのように、窒素酸
化物や、一酸化炭素、水素、炭化水素等の未燃焼分に対
する理論反応量以上の酸素を含有する燃焼排ガスから、
効率良く窒素酸化物を除去することができる窒素酸化物
除去触媒、及び除去方法を提供することである。
Therefore, an object of the present invention is to remove nitrogen oxides, carbon monoxide, hydrogen, hydrocarbons, etc., such as combustion exhaust gas from a fixed combustion device and a gasoline engine, a diesel engine, etc. that burn under an excess oxygen condition. From the combustion exhaust gas that contains more than the theoretical reaction amount of oxygen for unburned components,
It is an object of the present invention to provide a nitrogen oxide removal catalyst and a removal method capable of efficiently removing nitrogen oxides.

【0010】[0010]

【課題を解決するための手段】上記課題に鑑み鋭意研究
の結果、本発明者は、排ガスに含まれる窒素酸化物の量
に見合った量のガス状炭化水素を排ガス中に添加し、ゼ
オライト触媒と多孔質の無機酸化物に特定量の銀成分を
担持してなる触媒とからなる混合触媒に接触させれば、
水分を10%程度含有する排ガスでも、200〜600
℃で、窒素酸化物を効果的に除去することができること
を発見し、本発明を完成した。
As a result of earnest research in view of the above problems, the present inventor has found that the amount of gaseous hydrocarbons commensurate with the amount of nitrogen oxides contained in the exhaust gas is added to the exhaust gas, and the zeolite catalyst is added. By contacting with a mixed catalyst consisting of and a catalyst in which a specific amount of silver component is supported on a porous inorganic oxide,
Even in exhaust gas containing about 10% of water, 200 to 600
The present invention has been completed by discovering that nitrogen oxides can be effectively removed at ℃.

【0011】すなわち、窒素酸化物と、共存する未燃焼
成分に対する理論反応量より多い酸素とを含む燃焼排ガ
スから窒素酸化物を除去する本発明の触媒は、多孔質の
無機酸化物に銀又は銀酸化物を銀元素に換算して0.2
〜15重量%担持してなる銀触媒とゼオライト触媒とか
らなる混合触媒であり、外部から前記排ガス中にガス状
の炭化水素を添加し、200〜600℃において排ガス
を前記混合触媒に接触させ、もって、前記排ガス中の窒
素酸化物を除去することを特徴とする。
That is, the catalyst of the present invention for removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in an amount larger than the theoretical reaction amount for coexisting unburned components is silver or silver as a porous inorganic oxide. 0.2 in terms of oxides
Is a mixed catalyst composed of a silver catalyst and a zeolite catalyst supported by ˜15% by weight, and a gaseous hydrocarbon is externally added to the exhaust gas, and the exhaust gas is contacted with the mixed catalyst at 200 to 600 ° C., Therefore, the nitrogen oxide in the exhaust gas is removed.

【0012】また、窒素酸化物と、共存する未燃焼成分
に対する理論反応量より多い酸素とを含む燃焼排ガスか
ら窒素酸化物を除去する本発明の方法は、多孔質の無機
酸化物に銀又は銀酸化物を銀元素に換算して0.2〜1
5重量%担持してなる銀触媒とゼオライト触媒とからな
る混合触媒を排ガス導管の途中に設置し、外部から前記
排ガス中にガス状の炭化水素を添加し、200〜600
℃で前記排ガスを前記触媒に接触させ、炭化水素を前記
触媒の設置部位の上流側に添加し、前記排ガス中の残留
炭化水素と前記窒素酸化物とを反応させて前記窒素酸化
物を除去することを特徴とする。
The method of the present invention for removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in an amount larger than the theoretical reaction amount for coexisting unburned components is silver or silver as a porous inorganic oxide. 0.2 to 1 in terms of oxides converted to elemental silver
A mixed catalyst composed of a silver catalyst and 5% by weight supported thereon and a zeolite catalyst was installed in the middle of an exhaust gas pipe, and a gaseous hydrocarbon was added to the exhaust gas from the outside to give a mixture of 200 to 600
The exhaust gas is brought into contact with the catalyst at 0 ° C., hydrocarbons are added to the upstream side of the site where the catalyst is installed, and the residual hydrocarbons in the exhaust gas are reacted with the nitrogen oxides to remove the nitrogen oxides. It is characterized by

【0013】以下、本発明を詳細に説明する。本発明で
は、以下に示す触媒を用い、この触媒に排ガスを接触さ
せることにより、触媒の設置部位より上流側で排ガスに
添加された炭化水素を還元剤として排ガス中の窒素酸化
物を還元除去する。
The present invention will be described in detail below. In the present invention, the catalyst shown below is used, and exhaust gas is brought into contact with this catalyst to reduce and remove nitrogen oxides in the exhaust gas by using the hydrocarbon added to the exhaust gas on the upstream side of the catalyst installation site as a reducing agent. .

【0014】本発明の触媒は多孔質の無機酸化物に銀成
分を担持してなる銀触媒とゼオライト触媒とからなる混
合触媒である。まず、多孔質の無機酸化物としては、多
孔質のアルミナ、チタニア、ジルコニア、及びそれらの
複合酸化物等を使用することができるが、好ましくはγ
−アルミナ又はアルミナ系複合酸化物を用いる。γ−ア
ルミナ又はアルミナ系複合酸化物を用いることにより、
添加した炭化水素と排ガス中の窒素酸化物との反応が効
率良く起こり、窒素酸化物の浄化特性が向上する。
The catalyst of the present invention is a mixed catalyst comprising a silver catalyst in which a silver component is supported on a porous inorganic oxide and a zeolite catalyst. First, as the porous inorganic oxide, porous alumina, titania, zirconia, and composite oxides thereof can be used, but preferably γ
-Alumina or an alumina-based composite oxide is used. By using γ-alumina or an alumina-based composite oxide,
The reaction between the added hydrocarbon and the nitrogen oxide in the exhaust gas occurs efficiently, and the nitrogen oxide purification characteristics are improved.

【0015】γ−アルミナ等の無機酸化物は、ペレット
状、粉末状、ハニカム状、フォーム状、板状等の状態で
用いることができる。ゼオライト触媒との混合を考慮す
ると、ペレット状、粉末状など混ぜやすい形状が好まし
い。
The inorganic oxide such as γ-alumina can be used in the form of pellets, powder, honeycomb, foam, plate or the like. In consideration of mixing with the zeolite catalyst, a shape such as a pellet shape or a powder shape that facilitates mixing is preferable.

【0016】多孔質の無機酸化物の比表面積は30m2
/g以上であるのが好ましい。比表面積が30m2 /g
未満であると、無機酸化物への銀成分(銀活性種)の分
散が悪くなり、良好な窒素酸化物の除去が行えない。
The specific surface area of the porous inorganic oxide is 30 m 2
/ G or more is preferable. Specific surface area of 30m 2 / g
If it is less than the above range, the dispersion of the silver component (silver active species) in the inorganic oxide becomes poor, and the nitrogen oxide cannot be removed well.

【0017】上記したγ−アルミナ等の無機酸化物に担
持する銀成分の担持量は、無機酸化物に対して0.2〜
15重量%(銀元素換算値)とする。銀成分が0.2重
量%未満では低温側での窒素酸化物の除去率が低下す
る。特に、排ガスの接触時間が短くなるとこの傾向は顕
著となる。また、15重量%を超す量の銀を担持する
と、窒素酸化物の除去率はかえって低下する。好ましく
は、銀の担持量を無機酸化物に対して、0.5〜10重
量%とする。
The amount of the silver component supported on the above-mentioned inorganic oxide such as γ-alumina is 0.2 to the amount of the inorganic oxide.
15% by weight (silver element conversion value). If the silver component is less than 0.2% by weight, the removal rate of nitrogen oxides on the low temperature side is lowered. In particular, this tendency becomes remarkable when the contact time of the exhaust gas becomes short. Further, when silver is loaded in an amount of more than 15% by weight, the nitrogen oxide removal rate is rather lowered. Preferably, the amount of silver supported is 0.5 to 10% by weight based on the inorganic oxide.

【0018】γ−アルミナ等の無機酸化物に銀成分を担
持する方法としては、公知の浸漬法等を用いることがで
きる。その際、硝酸銀水溶液等の銀成分を有する溶液に
多孔質の無機酸化物を浸漬し、70℃程度で乾燥後、1
00〜550℃で段階的に昇温して焼成するのが好まし
い。
As a method for supporting the silver component on the inorganic oxide such as γ-alumina, a known dipping method or the like can be used. At that time, the porous inorganic oxide is dipped in a solution having a silver component such as an aqueous solution of silver nitrate and dried at about 70 ° C.
It is preferable to raise the temperature stepwise at 00 to 550 ° C. and to bake.

【0019】次に、ゼオライト触媒として、モルデナイ
ト、ゼオライト−A、ゼオライト−L、又はホージャサ
イト等を使用することができる。また、これらの2成分
以上の混合物からなることもできる。ゼオライトは結晶
性アルミノケイ酸塩であり、次の一般組成式で表され
る。 (M1 ,M2 1/2 m (Alm Sin 2(m+n))・xH
2 O,(n≧m) ここで、M1 はLi+ 、Na+ 、K+ 、Pb+ などであ
り、M2 はCa2+、Mg2+、Ba2+、Sr2+などであ
る。ゼオライトのM1 、M2 イオンはそれらの一部また
は全部を他のカチオンで可逆的に交換して用いることが
できる。ゼオライト触媒は水和反応によって炭化水素を
アルコール等の含酸素有機化合物に変換する機能を有す
る。
Next, as the zeolite catalyst, mordenite, zeolite-A, zeolite-L, faujasite, or the like can be used. It can also be composed of a mixture of two or more of these components. Zeolites are crystalline aluminosilicates and are represented by the following general composition formula. (M 1, M 2 1/2) m (Al m Si n O 2 (m + n)) · xH
2 O, (n ≧ m) where M 1 is Li + , Na + , K + , Pb +, etc., and M 2 is Ca 2+ , Mg 2+ , Ba 2+ , Sr 2+, etc. . The M 1 and M 2 ions of zeolite can be used by reversibly exchanging some or all of them with other cations. Zeolite catalysts have the function of converting hydrocarbons to oxygen-containing organic compounds such as alcohols through hydration.

【0020】ゼオライト触媒は、ペレット状、粉末状、
ハニカム状、フォーム状、板状等の状態で用いることが
できる。銀触媒との混合を考慮すると、ペレット状、粉
末状など混ぜやすい形状が好ましい。
The zeolite catalyst is in the form of pellets, powder,
It can be used in a honeycomb shape, a foam shape, a plate shape, or the like. In consideration of mixing with a silver catalyst, pellets, powders, and other shapes that are easy to mix are preferable.

【0021】混合触媒は銀触媒とゼオライト触媒とを混
合してなる。銀触媒のみでは、酸素雰囲気で、アルカ
ン、アルケンあるいはアルキンによる窒素酸化物の低減
反応が、排気温度400℃以下では十分に起こらず、窒
素酸化物の除去率が低下する。しかし、銀系触媒は一般
に含酸素有機物による窒素酸化物の低減反応性が高いた
め、ゼオライト触媒を併用することによって200〜6
00℃の広範囲で効果的な窒素酸化物の低減が可能にな
る。
The mixed catalyst is a mixture of a silver catalyst and a zeolite catalyst. With only the silver catalyst, the reduction reaction of nitrogen oxides by alkane, alkene or alkyne does not sufficiently occur at an exhaust temperature of 400 ° C. or lower in an oxygen atmosphere, and the removal rate of nitrogen oxides decreases. However, since silver-based catalysts generally have high reactivity of reducing nitrogen oxides by oxygen-containing organic substances, it is possible to use a zeolite catalyst in combination with 200-6
It is possible to effectively reduce nitrogen oxides in a wide range of 00 ° C.

【0022】銀触媒とゼオライト触媒とを混合すると
は、両触媒の形状がペレット状又は粉末状の場合、人工
的または機械的に混ぜることを指し、両触媒又はどちら
か一方の触媒の形状がハニカム状、フォーム状、又は板
状の場合、排ガスが混合触媒を通過するときに、どの断
面状の点を通過しても、排ガスが両触媒とマクロ的に接
触する構造を取ることを指す。
Mixing a silver catalyst and a zeolite catalyst means, when the shapes of both catalysts are pellets or powders, mixing them artificially or mechanically. The shape of both catalysts or one of them is honeycomb. When the exhaust gas passes through the mixed catalyst, it has a structure in which the exhaust gas comes into macro contact with both catalysts when the exhaust gas passes through the mixed catalyst.

【0023】ゼオライト触媒の混合比率は混合触媒中1
0〜60重量%である。10重量%未満では、ゼオライ
ト触媒の効果が十分ではなく、60重量%を超えると、
銀触媒の割合が過少になり、窒素酸化物の除去能力が低
下する。
The mixing ratio of the zeolite catalyst is 1 in the mixed catalyst.
It is 0 to 60% by weight. If it is less than 10% by weight, the effect of the zeolite catalyst is not sufficient, and if it exceeds 60% by weight,
The proportion of the silver catalyst becomes too small, and the ability to remove nitrogen oxides decreases.

【0024】次に、本発明の窒素酸化物除去方法につい
て説明する。まず、上述した混合触媒を排ガス導管の途
中に設置する。
Next, the nitrogen oxide removing method of the present invention will be described. First, the above-mentioned mixed catalyst is installed in the middle of the exhaust gas conduit.

【0025】排ガス中には、残留炭化水素としてアセチ
レン、メタン、エタン、プロピレン等が含まれるが、排
ガス中のNOx を還元するのに十分な量の残留炭化水素が
含まれていない場合には、外部から炭化水素を排ガス中
に導入する。炭化水素の導入位置は、触媒を設置した位
置より上流側である。
The exhaust gas contains acetylene, methane, ethane, propylene and the like as residual hydrocarbons, but when the residual hydrocarbons are not contained in an amount sufficient to reduce NOx in the exhaust gas, Hydrocarbons are introduced into the exhaust gas from the outside. The introduction position of the hydrocarbon is upstream of the position where the catalyst is installed.

【0026】外部から導入する炭化水素としては、標準
状態でガス状のアルカン、アルケン、アルキンが用いら
れる。アルカンの中では、特にプロパン、ブタンが好ま
しい。アルケンの中では、特にエチレン、プロピレン、
ブチレンが好ましい。アルキンの中では、特にアセチレ
ン、メチルアセチレンが好ましい。その他に、標準状態
で液体状の炭化水素も用いることができる。標準状態で
液体状の炭化水素としては、具体的には、軽油、セタ
ン、ヘプタン、灯油等が挙げられる。これらの液体状の
炭化水素は、噴霧等の方法で排ガス中に導入することが
できる。
As the hydrocarbon introduced from the outside, a gaseous alkane, alkene or alkyne in a standard state is used. Of the alkanes, propane and butane are particularly preferable. Among alkenes, especially ethylene, propylene,
Butylene is preferred. Among the alkynes, acetylene and methylacetylene are particularly preferable. Besides, hydrocarbons which are liquid in the standard state can also be used. Specific examples of the liquid hydrocarbon in the standard state include light oil, cetane, heptane, and kerosene. These liquid hydrocarbons can be introduced into the exhaust gas by a method such as spraying.

【0027】外部から導入する炭化水素の量は、比:
(添加する液状炭化水素の重量/排ガス中のNOx の重
量)を0.2〜5となるようにするのが好ましい。
The amount of hydrocarbons introduced from the outside has a ratio of:
It is preferable that (weight of added liquid hydrocarbon / weight of NOx in exhaust gas) be 0.2 to 5.

【0028】炭化水素を含む排ガスが上記した触媒と接
触する時間は0.006g・秒/ml以上とする。ここ
で、接触時間は、炭化水素を含有する排ガス1ml(ただ
し標準状態に換算した体積)が1gの触媒と接触する時
間(秒)を表している。たとえば、接触時間が0.1g
・秒/mlである場合、1gの触媒を用いて、1mlの排ガ
スをこの触媒に0.1秒間接触することを意味する。
The contact time of the exhaust gas containing hydrocarbon with the above catalyst is 0.006 g · sec / ml or more. Here, the contact time represents the time (second) in which 1 ml of the exhaust gas containing hydrocarbon (however, the volume converted to the standard state) is in contact with 1 g of the catalyst. For example, contact time is 0.1g
• sec / ml means that 1 g of catalyst is used and 1 ml of exhaust gas is contacted with this catalyst for 0.1 second.

【0029】また、本発明では、炭化水素と窒素酸化物
とが反応する部位である触媒設置部位における排ガスの
温度を200〜600℃に保つ。排ガスの温度が200
℃未満であると炭化水素と窒素酸化物との反応が進行せ
ず、良好な窒素酸化物の除去を行うことができない。一
方、600℃を超す温度とすると炭化水素自身の燃焼が
始まり、炭化水素による窒素酸化物の還元除去が行えな
い。排ガス温度を250〜600℃とするのが好まし
い。
Further, in the present invention, the temperature of the exhaust gas at the catalyst installation site, which is the site where hydrocarbons and nitrogen oxides react, is maintained at 200 to 600 ° C. Exhaust gas temperature is 200
If the temperature is lower than ° C, the reaction between hydrocarbons and nitrogen oxides does not proceed, and it is impossible to remove nitrogen oxides satisfactorily. On the other hand, if the temperature exceeds 600 ° C., the combustion of the hydrocarbon itself starts, and the nitrogen oxide cannot be reduced and removed by the hydrocarbon. The exhaust gas temperature is preferably 250 to 600 ° C.

【0030】[0030]

【実施例】本発明を以下の具体的実施例によりさらに詳
細に説明する。実施例1 市販のペレット状の多孔質γ−アルミナ(直径1.5mm 、
長さ約6mm、比表面積200 m2 /g)10gを硝酸銀水
溶液に浸漬し、70℃で乾燥後、5容量%の水素を含む
窒素気流下で、150℃、200℃、300℃の各温度
でそれぞれ2時間焼成し、その後、酸素を10%含有す
る窒素気流下、400℃、500℃で2時間、550℃
で5時間焼成し、ペレット状γ−アルミナに対して2重
量%(元素換算値)の銀を担持した。これとペレット状
H型モルデナイト10gとを交互に積み重ねて、混合触
媒とした。
The present invention will be described in more detail by the following specific examples. Example 1 Commercially available pelletized porous γ-alumina (diameter 1.5 mm,
A length of about 6 mm and a specific surface area of 200 m 2 / g) of 10 g was dipped in an aqueous solution of silver nitrate, dried at 70 ° C., and then at a temperature of 150 ° C., 200 ° C., and 300 ° C. under a nitrogen stream containing 5% by volume of hydrogen. And calcination at 400 ° C and 500 ° C for 2 hours at 550 ° C in a nitrogen stream containing 10% oxygen.
Calcination was performed for 5 hours, and 2% by weight (element conversion value) of silver was supported on the pelletized γ-alumina. This and 10 g of pelletized H-type mordenite were alternately stacked to form a mixed catalyst.

【0031】次に、得られた混合触媒約20gを反応管
内に設置し、表1に示す組成のガス(一酸化窒素、二酸
化炭素、酸素、プロピレン、及び窒素からなる乾燥成分
の合計100容量%に、さらに水分10容量%を添加し
たもの)を毎分2リットル(標準状態)の流量で流して
(接触時間0.6g・秒/ml)、反応管内の排ガス温度
を250〜550℃の範囲の保ち、プロピレンと窒素酸
化物とを反応させた。
Next, about 20 g of the obtained mixed catalyst was placed in a reaction tube, and a gas having a composition shown in Table 1 (a total of 100% by volume of dry components consisting of nitric oxide, carbon dioxide, oxygen, propylene, and nitrogen). (With 10% by volume of water added) at a flow rate of 2 liters per minute (standard condition) (contact time 0.6 g · sec / ml), and the exhaust gas temperature in the reaction tube is in the range of 250 to 550 ° C. Then, propylene was reacted with nitrogen oxide.

【0032】反応管通過後のガスの窒素酸化物(一酸化
窒素、二酸化窒素の合計量)の濃度を化学発光式窒素酸
化物分析計により測定し、窒素酸化物の窒素への転化率
を求めた。結果を図1に示す。
The concentration of nitrogen oxides (total amount of nitric oxide and nitrogen dioxide) of the gas after passing through the reaction tube was measured by a chemiluminescence type nitrogen oxide analyzer to obtain the conversion rate of nitrogen oxides to nitrogen. It was The results are shown in Fig. 1.

【0033】 表1 成分 濃度 一酸化窒素 500 ppm 二酸化炭素 10 容量% 酸素 10 容量% プロピレン 500 ppm 窒素 残部 水分 上記した成分からなるガス量に対して10容量%Table 1 Component Concentration Nitric oxide 500 ppm Carbon dioxide 10% by volume Oxygen 10% by volume Propylene 500 ppm Nitrogen balance Moisture 10% by volume with respect to the amount of gas composed of the above components

【0034】比較例1 実施例1に記述した混合触媒のうち、γ−アルミナペレ
ットに銀2重量%を担持した銀触媒のみを調製した。こ
の触媒と表1に示すガスを用い、実施例1と同様にして
窒素酸化物の除去試験を行った。試験結果を図1に示
す。
Comparative Example 1 Of the mixed catalysts described in Example 1, only a silver catalyst in which 2% by weight of silver was supported on γ-alumina pellets was prepared. Using this catalyst and the gases shown in Table 1, a nitrogen oxide removal test was conducted in the same manner as in Example 1. The test results are shown in FIG.

【0035】比較例2 実施例1に記述した混合触媒のうち、ゼオライト触媒で
あるペレット状H型モルデナイトのみを用い、他は実施
例1と同様にして窒素酸化物の除去試験を行った。結果
を図1に示す。
Comparative Example 2 Of the mixed catalysts described in Example 1, only the pelletized H-type mordenite, which is a zeolite catalyst, was used, and the nitrogen oxide removal test was conducted in the same manner as in Example 1. The results are shown in Fig. 1.

【0036】以上からわかるように、実施例1において
は、250〜550℃の排ガス温度で窒素酸化物の良好
な除去がみられた。一方、銀又は銀酸化物を担持した触
媒だけを用いると(比較例1)、400℃以下の排ガス
温度では良好な窒素酸化物の除去がみられない。また、
ゼオライト触媒であるモルデナイトのみの場合(比較例
2)には、ほとんど窒素酸化物の除去は得られなかっ
た。
As can be seen from the above, in Example 1, good removal of nitrogen oxides was observed at an exhaust gas temperature of 250 to 550 ° C. On the other hand, when only the catalyst supporting silver or silver oxide is used (Comparative Example 1), good removal of nitrogen oxide is not observed at the exhaust gas temperature of 400 ° C. or lower. Also,
Almost no removal of nitrogen oxides was obtained when only the zeolite catalyst, mordenite, was used (Comparative Example 2).

【0037】[0037]

【発明の効果】以上詳述したように、本発明の触媒を用
いれば、過剰の酸素を含む排ガス中の窒素酸化物を効率
良く除去することができる。また、本発明の方法では、
排ガス中に水分が10%程度含まれている場合でも窒素
酸化物の除去を効率良く行うことができる。さらに、窒
素酸化物の除去温度(排ガス温度)も200〜600℃
と、これまでの除去方法に比して低温から行うことがで
きる。
As described in detail above, by using the catalyst of the present invention, nitrogen oxides in exhaust gas containing excess oxygen can be efficiently removed. Further, in the method of the present invention,
Even if the exhaust gas contains about 10% of water, the nitrogen oxides can be removed efficiently. Furthermore, the nitrogen oxide removal temperature (exhaust gas temperature) is also 200 to 600 ° C.
And, it can be performed at a lower temperature than the conventional removal methods.

【0038】本発明の窒素酸化物除去触媒は、各種燃焼
機、自動車等の排ガスに含まれる窒素酸化物の除去に広
く利用することができる。
The nitrogen oxide removing catalyst of the present invention can be widely used for removing nitrogen oxides contained in exhaust gas from various combustors, automobiles and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1と比較例1、2における排ガス温度と
窒素酸化物の転化率との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between exhaust gas temperature and nitrogen oxide conversion rate in Example 1 and Comparative Examples 1 and 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮寺 達雄 茨城県つくば市小野川16番3 工業技術院 資源環境技術総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuo Miyadera 16-3 Onogawa, Tsukuba, Ibaraki Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物と、共存する未燃焼成分に対
する理論反応量より多い酸素とを含む燃焼排ガスから窒
素酸化物を除去する触媒であって、多孔質の無機酸化物
に銀又は銀酸化物を銀元素に換算して0.2〜15重量
%担持してなる銀触媒とゼオライト触媒とからなる混合
触媒であり、外部から前記排ガス中にガス状の炭化水素
を添加し、200〜600℃において排ガスを前記混合
触媒に接触させ、もって、前記排ガス中の窒素酸化物を
除去することを特徴とする窒素酸化物除去触媒。
1. A catalyst for removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in an amount larger than a theoretical reaction amount for coexisting unburned components, wherein silver or silver oxide is added to a porous inorganic oxide. It is a mixed catalyst composed of a silver catalyst and a zeolite catalyst which are supported by 0.2 to 15% by weight in terms of silver element, and a hydrocarbon gas of 200 to 600 is added from the outside into the exhaust gas. A catalyst for removing nitrogen oxides, which comprises contacting exhaust gas with the mixed catalyst at 0 ° C. to remove nitrogen oxides in the exhaust gas.
【請求項2】 請求項1に記載の窒素酸化物除去触媒に
おいて、前記混合触媒におけるゼオライト触媒の混合比
率は混合触媒中10〜60重量%であることを特徴とす
る窒素酸化物除去触媒。
2. The nitrogen oxide removing catalyst according to claim 1, wherein the mixing ratio of the zeolite catalyst in the mixed catalyst is 10 to 60% by weight in the mixed catalyst.
【請求項3】 請求項1又は2に記載の窒素酸化物除去
触媒において、前記多孔質の無機酸化物がアルミナ又は
アルミナ系複合酸化物であることを特徴とする窒素酸化
物除去触媒。
3. The nitrogen oxide removing catalyst according to claim 1 or 2, wherein the porous inorganic oxide is alumina or an alumina-based composite oxide.
【請求項4】 窒素酸化物と、共存する未燃焼成分に対
する理論反応量より多い酸素とを含む燃焼排ガスから窒
素酸化物を除去する方法において、多孔質の無機酸化物
に銀又は銀酸化物を銀元素に換算して0.2〜15重量
%担持してなる銀触媒とゼオライト触媒とからなる混合
触媒を排ガス導管の途中に設置し、外部から前記排ガス
中にガス状の炭化水素を添加し、200〜600℃で前
記排ガスを前記触媒に接触させ、炭化水素を前記触媒の
設置部位の上流側に添加し、前記排ガス中の残留炭化水
素と前記窒素酸化物とを反応させて前記窒素酸化物を除
去することを特徴とする窒素酸化物除去方法。
4. A method for removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen larger than the theoretical reaction amount for coexisting unburned components, wherein silver or silver oxide is added to the porous inorganic oxide. A mixed catalyst composed of a silver catalyst and 0.2 to 15% by weight calculated as silver element and a zeolite catalyst is installed in the middle of an exhaust gas conduit, and a gaseous hydrocarbon is added to the exhaust gas from the outside. The exhaust gas is brought into contact with the catalyst at 200 to 600 ° C., hydrocarbons are added to the upstream side of the site where the catalyst is installed, and the residual hydrocarbons in the exhaust gas are reacted with the nitrogen oxides to carry out the nitrogen oxidation. A method for removing nitrogen oxides, which comprises removing a substance.
JP4300482A 1992-10-13 1992-10-13 Catalyst for removing nitrogen oxygen and removing method for the same Pending JPH06126186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4300482A JPH06126186A (en) 1992-10-13 1992-10-13 Catalyst for removing nitrogen oxygen and removing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4300482A JPH06126186A (en) 1992-10-13 1992-10-13 Catalyst for removing nitrogen oxygen and removing method for the same

Publications (1)

Publication Number Publication Date
JPH06126186A true JPH06126186A (en) 1994-05-10

Family

ID=17885339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4300482A Pending JPH06126186A (en) 1992-10-13 1992-10-13 Catalyst for removing nitrogen oxygen and removing method for the same

Country Status (1)

Country Link
JP (1) JPH06126186A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780002A (en) * 1994-11-04 1998-07-14 Jiro Hiraishi, Director-General Of Agency Of Industrial Science And Technology Exhaust gas cleaner and method for cleaning exhaust gas
WO2002016014A1 (en) * 2000-08-17 2002-02-28 Accentus Plc Process and apparatus for removing nox from engine exhaust gases

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780002A (en) * 1994-11-04 1998-07-14 Jiro Hiraishi, Director-General Of Agency Of Industrial Science And Technology Exhaust gas cleaner and method for cleaning exhaust gas
US5882607A (en) * 1994-11-04 1999-03-16 Agency Of Industrial Science And Technology Exhaust gas cleaner and method for cleaning exhaust gas
WO2002016014A1 (en) * 2000-08-17 2002-02-28 Accentus Plc Process and apparatus for removing nox from engine exhaust gases

Similar Documents

Publication Publication Date Title
US5824621A (en) Exhaust gas cleaner
US5670444A (en) Exhaust gas cleaner and method for cleaning same
US20210205796A1 (en) Catalyst and manufacturing method thereof
JPH06126186A (en) Catalyst for removing nitrogen oxygen and removing method for the same
JPH06178937A (en) Catalyst for removing nitrogen oxides and method of removing the same
JPH0615175A (en) Purifying material for waste gas and purifying method of waste gas
JP3357904B2 (en) Nitrogen oxide removal catalyst and nitrogen oxide removal method
JPH0957064A (en) Waste gas purifying material and waste gas purifying method
JPH06198131A (en) Material for removing nitrogen oxide and method for removing nitrogen oxide
JPH0576757A (en) Catalyst for removal of nitrogen oxide and method for removing nitrogen oxide
JP3371127B2 (en) Exhaust gas purification method
US20060073964A1 (en) Preparation of catalyst for direct decomposition of nitrogen oxide
JPH0592124A (en) Nitrogen oxide removing method
JPH06238164A (en) Catalyst and method for removing nitrogen oxides
JP2587000B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JPH06142522A (en) Catalyst for removing nitrogen oxide and method of removing nitrogen oxide
JPH06114266A (en) Exhaust gas purifying material and exhaust gas purifying method
JPH06154607A (en) Catalyst for removal of nitrogen oxide and method for removing nitrogen oxide
JPH06327941A (en) Removing method of nitrogen oxide
KR0166465B1 (en) Preparation of catalyst for cleaning exhaust gases
JPH06262078A (en) Exhaust gas purification material and method of exhaust gas purification
JPH06198195A (en) Purifying material for exhaust gas and purifying method thereof
JP3508066B2 (en) Nitrogen oxide removing material and nitrogen oxide removing method
JP3520311B2 (en) Nitrogen oxide removal method
JPH0671139A (en) Method for removing nitrogen oxide