JPH04284803A - Glass fiber filter sheet for use in air filter of high performance - Google Patents
Glass fiber filter sheet for use in air filter of high performanceInfo
- Publication number
- JPH04284803A JPH04284803A JP4714691A JP4714691A JPH04284803A JP H04284803 A JPH04284803 A JP H04284803A JP 4714691 A JP4714691 A JP 4714691A JP 4714691 A JP4714691 A JP 4714691A JP H04284803 A JPH04284803 A JP H04284803A
- Authority
- JP
- Japan
- Prior art keywords
- glass fiber
- filter paper
- pressure loss
- filter
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003365 glass fiber Substances 0.000 title claims abstract description 73
- 239000011148 porous material Substances 0.000 claims description 33
- 239000000835 fiber Substances 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 4
- 101100491857 Columba livia ASL gene Proteins 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 10
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 9
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 4
- 230000003749 cleanliness Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000004887 air purification Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Filtering Materials (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、半導体製造工場のクリ
ーンルーム等に用いられる空気清浄用の高性能エアフィ
ルタ用ガラス繊維濾紙に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass fiber filter paper for use in high-performance air filters for air purification used in clean rooms of semiconductor manufacturing plants and the like.
【0002】0002
【従来の技術】従来、クリーンルーム、クリーンベンチ
、無菌室など高度な清浄環境を要求される分野、あるい
は原子炉などから放射される放射性超微粉塵などを除去
する必要のある分野に、高性能エアフィルタ用ガラス濾
紙が用いられている。高性能エアフィルタ用ガラス濾紙
としては、粒径0.3μm DOP(ジオクチルフタレ
ート)粒子を99.97% 以上捕集するHEPA(高
性能エアフィルタ)濾紙と、粒径0.1μm のDOP
粒子を対象としHEPA以上の捕集効率を持つULPA
(超高性能エアフィルタ)用濾紙がある。これら濾紙に
ついて要求されるクリーンルーム等の清浄度に応じて、
各種捕集効率の濾紙が濾材メーカーにより準備されてい
る。
捕集効率を上げるためには、繊維径のより小さい極細ガ
ラス繊維の配合率を上げることで対処できるが、それに
伴い圧力損失も上昇し、HEPAよりULPA、またU
LPAの中でも捕集効率の要求度の高くなるほど圧力損
失もまた上昇しているのが現状である。ちなみに現在実
用化されている高性能エアフィルタ用ガラス繊維の圧力
損失は、面風速5.33cm/秒の条件で24〜63m
mH2 Oの範囲にある。圧力損失60mmH2 O以
上のULPA用濾紙は、16メガビットLSIを製造す
る際に必要なクリーンルームの空気清浄度に充分対応で
きると言われているが、圧力損失が高いことによる運転
負荷が大きいため、省エネの目的で圧力損失の低減が望
まれている。またHEPA用濾紙においては、MIL規
格で規定される捕集効率99.97% を満足させ、か
つ圧力損失が24mmH2 O以下のものはまだ実用化
されていない。[Prior Art] High performance air has been used in fields that require a highly clean environment such as clean rooms, clean benches, and sterile rooms, or in fields where it is necessary to remove radioactive ultrafine dust emitted from nuclear reactors, etc. Glass filter paper for filters is used. Glass filter papers for high-performance air filters include HEPA (high-performance air filter) filter paper that captures 99.97% or more of DOP (dioctyl phthalate) particles with a particle size of 0.3 μm, and DOP with a particle size of 0.1 μm.
ULPA targets particles and has higher collection efficiency than HEPA.
There is filter paper for (ultra high performance air filter). Depending on the cleanliness of the clean room etc. required for these filter papers,
Filter papers with various collection efficiencies are prepared by filter media manufacturers. In order to increase the collection efficiency, it is possible to increase the blending ratio of ultrafine glass fibers with smaller fiber diameters, but this also increases the pressure loss, making it more difficult to use ULPA than HEPA, or U
The current situation is that the higher the demand for collection efficiency among LPAs, the higher the pressure loss. By the way, the pressure loss of glass fiber for high-performance air filters currently in practical use is 24 to 63 m at a surface wind speed of 5.33 cm/sec.
mH2O range. It is said that ULPA filter paper with a pressure loss of 60 mm H2 O or more can adequately meet the air cleanliness required in clean rooms when manufacturing 16 megabit LSIs, but the high pressure loss results in a large operating load, making it difficult to save energy. For this purpose, it is desired to reduce pressure loss. Regarding HEPA filter paper, one that satisfies the collection efficiency of 99.97% specified by the MIL standard and has a pressure loss of 24 mmH2O or less has not yet been put into practical use.
【0003】0003
【発明が解決しようとする課題】本発明の課題は、従来
のHEPA、ULPA用ガラス繊維濾紙の捕集効率を維
持しながら、圧力損失が従来品に比べ4〜8mmH2
O低い高性能エアフィルタ用濾紙を提供することにある
。[Problems to be Solved by the Invention] An object of the present invention is to maintain the collection efficiency of conventional glass fiber filter paper for HEPA and ULPA while reducing pressure loss by 4 to 8 mmH2 compared to conventional products.
An object of the present invention is to provide a filter paper for a high-performance air filter with low O.
【0004】0004
【課題を解決するための手段】本発明者等は、圧力損失
および捕集効率のフィルタ特性と濾紙物性の関係につい
て鋭意検討した結果、最大孔径で示される濾材内部の細
孔径サイズにより、上記フィルタ特性が大いに影響を受
けるという点に着目し、本発明に至った。[Means for Solving the Problems] As a result of intensive study on the relationship between the filter characteristics of pressure loss and collection efficiency and the physical properties of filter paper, the present inventors have found that the above-mentioned filter The present invention was developed based on the fact that the characteristics are greatly affected.
【0005】本発明の濾紙についてさらに詳しく説明す
る。The filter paper of the present invention will be explained in more detail.
【0006】本発明でいう高性能エアフィルタ用ガラス
繊維濾紙とは、0.3μm DOP粒子の捕集効率が面
風速5.33cm/秒の条件下で99.97%以上の性
能を示すガラス繊維濾紙を意味し、通常HEPA及びU
LPAと呼ばれるエアフィルタ用ガラス繊維濾紙を意味
するものである。[0006] The glass fiber filter paper for a high-performance air filter as used in the present invention is a glass fiber that exhibits a collection efficiency of 0.3 μm DOP particles of 99.97% or more under the condition of a surface wind speed of 5.33 cm/sec. means filter paper, usually HEPA and U
This refers to glass fiber filter paper for air filters called LPA.
【0007】ガラス繊維濾紙の最大孔径は、主に液体フ
ィルター、バッテリーセパレーター関係の最大孔径の測
定に使用される細孔サイズ/サイズ分布測定装置を用い
、溶媒としてポロフィル(商品名; Coulter
Electronics社) を用いて測定される。[0007] The maximum pore diameter of glass fiber filter paper was determined using a pore size/size distribution measuring device, which is mainly used for measuring the maximum pore diameter of liquid filters and battery separators.
Electronics).
【0008】本発明では上記方法で測定される最大孔径
Pm が、Pc =−0.135×ΔP+15で計算さ
れる最大孔径に対し、Pm ≦Pc であることが必要
であり、Pm がPc と比較し、低い程性能が向上す
る。In the present invention, it is necessary that the maximum pore diameter Pm measured by the above method satisfies Pm ≦Pc with respect to the maximum pore diameter calculated by Pc = -0.135×ΔP+15, and Pm is compared with Pc. The lower the value, the better the performance.
【0009】前記Pc =−0.135×ΔP+15と
いう式は、市販の高性能エアフィルタ用ガラス繊維濾紙
および圧力損失を極細ガラス繊維の配合量を変え作成し
た濾紙について分析した結果、見出した式である。すな
わちガラス繊維濾紙の圧力損失と最大孔径は逆比例の関
係にあり、圧力損失が高くなる程、最大孔径は小さくな
り、また同一圧力損失では最大孔径が小さい程、捕集効
率が向上することを見出した。図1に示すように、従来
品の分析結果では、実測される最大孔径Pm は圧力損
失から計算されるPc に対し、Pm >Pc の関係
にあった。The formula Pc = -0.135 x ΔP + 15 was found as a result of analyzing commercially available glass fiber filter papers for high-performance air filters and filter papers made by changing the amount of ultrafine glass fibers for pressure loss. be. In other words, the pressure drop and maximum pore diameter of glass fiber filter paper are inversely proportional; the higher the pressure drop, the smaller the maximum pore diameter, and at the same pressure drop, the smaller the maximum pore diameter, the better the collection efficiency. I found it. As shown in FIG. 1, in the analysis results of the conventional product, the actually measured maximum pore diameter Pm had a relationship of Pm > Pc with respect to Pc calculated from the pressure loss.
【0010】図2は、抄造条件を変えて実際の抄紙機で
抄造したエアフィルタ用濾紙について最大孔径と圧力損
失、捕集効率の関係を見たものである。本発明の最大孔
径Pm <Pc であるガラス繊維濾紙はその差が大き
い程、同一圧力損失における捕集効率が上昇することが
判った。また、Pm <Pc であるガラス繊維濾紙は
圧力損失26mmH2 Oにおいて0.3μm DOP
粒子の捕集効率がHEPAクラスに必要な99.97%
以上を満たしているのに対し、Pm >Pc の濾紙
は99.97% 以下となっている。0.1μm のD
OP粒子を用い、ULPA用濾紙で行っても同様のこと
が観察できる。FIG. 2 shows the relationship between maximum pore diameter, pressure loss, and collection efficiency for air filter paper produced using an actual paper machine under different papermaking conditions. It has been found that in the glass fiber filter paper of the present invention having a maximum pore diameter Pm <Pc, the larger the difference, the higher the collection efficiency at the same pressure loss. In addition, glass fiber filter paper with Pm < Pc has a DOP of 0.3 μm at a pressure loss of 26 mmH2O.
Particle collection efficiency is 99.97%, which is required for HEPA class.
On the other hand, the filter paper with Pm>Pc is 99.97% or less. D of 0.1μm
The same thing can be observed when using OP particles and using ULPA filter paper.
【0011】ガラス繊維濾紙の最大孔径Pm をPc
より小さくする方法としては各種の方法が考えられ、特
に1つの方法に限定されるものでないが、本発明のガラ
ス繊維濾紙で特定する最大孔径レベルに到達するには原
料配合、とりわけ極細ガラス繊維とチョップドストラン
ド繊維の配合率を一定範囲内におさめることが極めて有
効であることを本発明者は見出した。すなわち、ガラス
繊維の組成において繊維径10μm 以下のチョップド
ストランド繊維の含有率が10〜50重量% 、極細ガ
ラス繊維の含有率が90〜50重量% である高性能エ
アフィルタ用濾紙は本発明の有利な実施形態である。通
常、濾紙を構成する極細ガラス繊維の繊維径を細くする
ことにより、最大孔径Pm を低めること、またそれに
よって捕集効率を上げることが可能である。しかるに繊
維径をたんに細くすることは濾紙の圧力損失の増大をま
ねいてしまい、本発明のPm ≦Pc を満足させる濾
紙を得る方法としては不適当である。本発明では、強度
保持の目的で通常数% 配合されているチョップドガラ
ス繊維の割合を規定値以上に高め、これにより圧力損失
の増大を防ぐことができかつ最大孔径を小さくし、Pm
≦Pc の濾紙を得ることができる。チョップドガラ
ス繊維の割合が高くなる程、繊維径の細い極細ガラス繊
維を配合することができるので、最大孔径は小さくなり
、フィルタ性能は向上する。Pm >Pc にするため
には、チョップドストランドガラス繊維の配合率は10
% 以上にすることが必要である。さらに好ましくは1
5% 以上である。The maximum pore diameter Pm of the glass fiber filter paper is Pc
Various methods can be considered to make the pores smaller, and it is not limited to one method in particular, but in order to reach the maximum pore size level specified in the glass fiber filter paper of the present invention, the raw material composition, especially the ultrafine glass fibers and The present inventor has found that it is extremely effective to keep the blending ratio of chopped strand fibers within a certain range. That is, a filter paper for a high performance air filter in which the content of chopped strand fibers with a fiber diameter of 10 μm or less in the glass fiber composition is 10 to 50% by weight and the content of ultrafine glass fibers is 90 to 50% by weight is advantageous in the present invention. This is an embodiment. Normally, by reducing the fiber diameter of the ultrafine glass fibers constituting the filter paper, it is possible to lower the maximum pore diameter Pm and thereby increase the collection efficiency. However, simply reducing the fiber diameter increases the pressure loss of the filter paper, which is inappropriate as a method for obtaining a filter paper that satisfies Pm≦Pc according to the present invention. In the present invention, the ratio of chopped glass fiber, which is usually mixed in at a few percent for the purpose of maintaining strength, is increased to a specified value or more, thereby preventing an increase in pressure loss and reducing the maximum pore diameter.
A filter paper with ≦Pc can be obtained. As the proportion of chopped glass fibers increases, ultrafine glass fibers with a smaller fiber diameter can be blended, so the maximum pore diameter becomes smaller and the filter performance improves. In order to make Pm > Pc, the blending ratio of chopped strand glass fiber is 10
% or more. More preferably 1
5% or more.
【0012】本発明の高性能エアフィルタ用ガラス繊維
濾紙は、極細ガラス繊維およびチョップドガラス繊維の
他にバインダーを含有している。このバインダーは有機
系バインダーであり、その量は10% 以下、好ましく
は7% 以下であり、必要強度が維持される範囲内で少
ない程好ましい。バインダーの量が増加するにつれた、
圧力損失は上昇し、捕集効率を低下させる。The glass fiber filter paper for high performance air filters of the present invention contains a binder in addition to ultrafine glass fibers and chopped glass fibers. This binder is an organic binder, and its amount is 10% or less, preferably 7% or less, and as long as the required strength is maintained, it is preferably as small as possible. As the amount of binder increases,
Pressure drop increases and reduces collection efficiency.
【0013】[0013]
【作用】エアフィルタの最大孔径を小さくすることによ
る捕集効率の上昇の作用機構についてはこれまで理論づ
けされてはいないが、次の様に推定される。[Operation] The mechanism of increase in collection efficiency by reducing the maximum pore diameter of the air filter has not been theorized so far, but it is estimated as follows.
【0014】極細ガラス繊維を使用した高性能エアフィ
ルタ用ガラス繊維濾紙の捕集機構は、濾紙を構成するガ
ラス繊維の充填のばらつきに関係していると言われてい
る。従って、充填のばらつきが大きければ、これに伴っ
て濾紙内で形成される細孔のばらつきが大きくなり、最
大孔径が大きくなり捕集効率は低下する。最大孔径が小
さくなるように細孔のばらつきを減少させる方向にコン
トロールすれば、繊維の充填は均一になりフィルタ性能
は向上すると考えられる。チョップドストランドの配合
割合の増加は、より繊維径の細い極細ガラス繊維の使用
割合増加による細孔全体のサイズの減少と同時に、充填
の均一性に影響していると考える。従来エアフィルタの
最大孔径については注目されていないかったが、これを
制御することにより捕集効果が有効に発揮され、その結
果フィルタ性能の向上につながると考える。It is said that the collection mechanism of glass fiber filter paper for high-performance air filters using ultrafine glass fibers is related to variations in the filling of glass fibers constituting the filter paper. Therefore, if the filling variations are large, the pores formed within the filter paper will vary widely, the maximum pore diameter will increase, and the collection efficiency will decrease. It is thought that if the pore size is controlled to reduce the variation in pores so that the maximum pore diameter becomes smaller, the fiber filling becomes uniform and the filter performance improves. It is thought that the increase in the blending ratio of chopped strands affects the uniformity of filling as well as the decrease in the overall pore size due to the increase in the usage ratio of ultrafine glass fibers with a smaller fiber diameter. Conventionally, the maximum pore diameter of air filters has not received much attention, but we believe that by controlling this, the collection effect can be effectively exerted, which will lead to improved filter performance.
【0015】[0015]
【実施例】実施例1
平均繊維径1μm以下の極細ガラス繊維90重量% 、
平均繊維径6μmのチョップドガラス繊維10重量%
をパルパーでpH3.5の酸性水を用い、濃度0.5%
で10分間離解した。次いでインレット濃度0.05重
量% で抄紙機にて抄紙した。アクリル系ラテックス(
HA−16、製造元:日本アクリル)を湿紙に付与し、
その後ドライヤーで乾燥し、後記表1に記載の通りPm
<Pc である目付69g/m2 のHEPA用ガラ
ス繊維濾紙を得た。[Examples] Example 1 90% by weight of ultrafine glass fibers with an average fiber diameter of 1 μm or less,
10% by weight of chopped glass fiber with an average fiber diameter of 6 μm
Using acidic water with pH 3.5 in a pulper, the concentration is 0.5%.
The mixture was disintegrated for 10 minutes. Then, paper was made using a paper machine with an inlet concentration of 0.05% by weight. Acrylic latex (
HA-16 (manufacturer: Nippon Acrylic) was applied to the wet paper,
After that, dry it with a dryer, and as shown in Table 1 below, Pm
A glass fiber filter paper for HEPA with a basis weight of 69 g/m2 and <Pc was obtained.
【0016】実施例2
実施例1においてチョップドガラス繊維の配合率を30
重量% とし、圧力損失が同レベルになるように平均繊
維径1μm 以下の極細ガラス繊維70重量% 中の平
均繊維径0.65μm のガラス繊維成分を増加させて
調節した以外は実施例1と同様にして後記表1に記載の
通りPm <Pc である目付71g /m2 のHE
PA用ガラス繊維濾紙を得た。Example 2 In Example 1, the blending ratio of chopped glass fiber was changed to 30
% by weight, and the same as Example 1 except that the glass fiber component with an average fiber diameter of 0.65 μm in 70% by weight of ultrafine glass fibers with an average fiber diameter of 1 μm or less was adjusted so that the pressure loss was at the same level. As shown in Table 1 below, HE with a basis weight of 71 g/m2 where Pm < Pc
A glass fiber filter paper for PA was obtained.
【0017】実施例3
実施例1においてチョップドガラス繊維の配合率を45
重量% とし、圧力損失が同レベルになるように平均繊
維径1μm 以下の極細ガラス繊維55重量% 中の平
均繊維径0.65μm のガラス繊維成分を増加させて
調節した以外は実施例1と同様にして後記表1に記載の
通りPm <Pc である目付70g /m2 のHE
PA用ガラス繊維濾紙を得た。Example 3 In Example 1, the blending ratio of chopped glass fiber was changed to 45%.
% by weight, and the same as in Example 1 except that the glass fiber component with an average fiber diameter of 0.65 μm in 55% by weight of ultrafine glass fibers with an average fiber diameter of 1 μm or less was adjusted so that the pressure loss was at the same level. As shown in Table 1 below, HE with a basis weight of 70 g/m2 where Pm < Pc
A glass fiber filter paper for PA was obtained.
【0018】実施例4
実施例1において平均繊維径1μm 以下の極細ガラス
繊維90重量% 中の平均繊維径0.32μm の極細
ガラス繊維を5重量% 配合した以外は実施例1と同様
にして後記表1に記載の通りPm <Pcである目付7
3g /m2 のULPA用ガラス繊維濾紙を得た。Example 4 The same procedure as in Example 1 was repeated except that 5% by weight of ultrafine glass fibers with an average fiber diameter of 0.32 μm were blended in 90% by weight of ultrafine glass fibers with an average fiber diameter of 1 μm or less. As shown in Table 1, the basis weight is 7 where Pm < Pc
A glass fiber filter paper for ULPA of 3 g/m2 was obtained.
【0019】実施例5
実施例1においてチョップドガラス繊維の配合率を30
重量% とし、平均繊維径1μm 以下の極細ガラス繊
維70重量% 中の平均繊維径0.32μm のガラス
繊維成分を実施例4と圧力損失が同レベルになるように
増加させて調節した以外は実施例1と同様にして後記表
1に記載の通りPm<Pc である目付74g /m2
のULPA用ガラス繊維濾紙を得た。Example 5 In Example 1, the blending ratio of chopped glass fiber was changed to 30
% by weight, except that the glass fiber component with an average fiber diameter of 0.32 μm in the ultrafine glass fibers with an average fiber diameter of 1 μm or less was increased and adjusted to the same level as in Example 4. In the same manner as Example 1, the fabric weight is 74 g/m2 where Pm<Pc as described in Table 1 below.
A glass fiber filter paper for ULPA was obtained.
【0020】比較例
比較例1、2および3は実施例1〜3に、比較例4は実
施例4、5に対応するものである。Comparative Examples Comparative Examples 1, 2 and 3 correspond to Examples 1 to 3, and Comparative Example 4 corresponds to Examples 4 and 5.
【0021】比較例1
実施例1において、1μm 以下の極細ガラス繊維を1
00重量% とし、圧力損失が同レベルになるよう平均
繊維径0.65μm のガラス繊維成分を減少させて調
節した以外は実施例1と同様にして後記表1に記載の通
りPm >Pc である目付68g /m2 のHEP
A用ガラス繊維濾紙を得た。Comparative Example 1 In Example 1, ultrafine glass fibers of 1 μm or less were
Pm > Pc as shown in Table 1 below in the same manner as in Example 1 except that the glass fiber component with an average fiber diameter of 0.65 μm was adjusted so that the pressure loss was at the same level. HEP with a basis weight of 68g/m2
A glass fiber filter paper for A was obtained.
【0022】比較例2
実施例1においてチョップドガラス繊維の配合率を3重
量% とし、平均繊維径1μm 以下の極細ガラス繊維
97重量% とし、圧力損失が同レベルになるよう調節
した以外は実施例1と同様にして後記表1に記載の通り
Pm >Pc である目付70g /m2 のHEPA
用ガラス繊維濾紙を得た。Comparative Example 2 Same as Example 1 except that the blending ratio of chopped glass fiber was 3% by weight, and 97% by weight of ultrafine glass fiber with an average fiber diameter of 1 μm or less, and the pressure loss was adjusted to the same level. HEPA with a basis weight of 70 g/m2 where Pm > Pc as described in Table 1 below.
A glass fiber filter paper was obtained.
【0023】比較例3
実施例1において、配合率をチョップドガラス繊維を6
0重量% とし、極細ガラス繊維を40重量% とし、
圧力損失が同レベルになるよう調節した以外は実施例1
と同様にして後記表1に記載の通りPm >Pc であ
る目付68g /m2 のHEPA用ガラス繊維濾紙を
得た。Comparative Example 3 In Example 1, the blending ratio of chopped glass fiber was changed to 6
0% by weight, and 40% by weight of ultrafine glass fiber.
Example 1 except that the pressure loss was adjusted to the same level.
In the same manner as described in Table 1 below, a glass fiber filter paper for HEPA with a basis weight of 68 g/m2 where Pm > Pc was obtained.
【0024】比較例4
実施例4において、チョップドガラス繊維を3重量%
とし、極細ガラス繊維を97重量% とし、圧力損失が
同レベルになるよう調節した以外は実施例4と同様にし
て後記表1に記載の通りPm >Pc である目付72
g /m2 のULPA用ガラス繊維濾紙を得た。Comparative Example 4 In Example 4, chopped glass fiber was added in an amount of 3% by weight.
The fabrication weight was 72 as described in Table 1 below, except that the ultrafine glass fiber was 97% by weight and the pressure loss was adjusted to the same level.
A glass fiber filter paper for ULPA of g/m2 was obtained.
【0025】実施例1〜5、比較例1〜4の濾紙の分析
を下記の方法で行ない、結果を表1に示した。
(1) 最大孔径 Pmax
Coulter Electronics 製コールタ
ーポロメータを使用し、異なる場所で3点測定し、それ
らの平均を持って最大孔径とした。The filter papers of Examples 1 to 5 and Comparative Examples 1 to 4 were analyzed by the following method, and the results are shown in Table 1. (1) Maximum pore diameter Pmax Using a Coulter porometer manufactured by Coulter Electronics, measurements were taken at three different locations, and the average was taken as the maximum pore diameter.
【0026】(2) 圧力損失
自製の装置を用い有効面積100cm2 の濾紙に面風
速5.33cm/秒(=S)で通風し、その時の圧力損
失を微差圧計で測定した。(2) Pressure loss Using a self-made device, air was blown through a filter paper with an effective area of 100 cm 2 at a surface velocity of 5.33 cm/sec (=S), and the pressure loss at that time was measured using a differential pressure gauge.
【0027】(3) DOP捕集効率ラスキンノズル
で発生させた多分散DOP粒子を含む空気を、有効面積
100cm2 の濾紙に面風速で5.33cm/秒で通
風した時のDOP捕集効率をリオン社製レーザーパーテ
ィクルカウンターを使用し測定した。尚、HEPA用ガ
ラス繊維濾紙については0.3μm 、ULPA用ガラ
ス繊維濾紙については0.1μm のDOP粒子につい
て測定した。(3) DOP collection efficiency DOP collection efficiency when air containing polydisperse DOP particles generated by a Raskin nozzle is passed through a filter paper with an effective area of 100 cm2 at a surface wind speed of 5.33 cm/sec. The measurement was carried out using a laser particle counter manufactured by Kawasaki. The measurement was performed on DOP particles of 0.3 μm for the glass fiber filter paper for HEPA and 0.1 μm for the glass fiber filter paper for ULPA.
【0028】(4) 可燃物
925±25℃、10分間電気炉にて加熱し、加熱前後
の重量差を加熱前重量で割り、百分率として求めた。(4) Combustible material was heated in an electric furnace at 925±25° C. for 10 minutes, and the difference in weight before and after heating was divided by the weight before heating to obtain a percentage.
【0029】(5) 引張強度
濾紙の縦方向および横方向より採取した25mm幅の試
験片について、スパン長100mm、引張速度12.5
mm/分で定速引張試験機を用い測定した。(5) Tensile Strength For 25 mm wide test pieces taken from the longitudinal and transverse directions of the filter paper, the span length was 100 mm and the tensile speed was 12.5.
It was measured using a constant speed tensile tester at mm/min.
【0030】(6) α値
濾紙のフィルタ性能の指標となるα値は、(2) と(
3) の測定値に基づき、次式より求めた。( α値の
値が高い程、同一圧力損失で高捕集効率を示す。)(6) α value The α value, which is an index of the filter performance of filter paper, is expressed by (2) and (
3) Based on the measured value, it was calculated from the following formula. (The higher the α value, the higher the collection efficiency at the same pressure loss.)
【0
031】0
031]
【表1】[Table 1]
【0032】[0032]
【効果】本発明は従来クリーンルーム用として用いられ
てきたHEPAおよびULPA用ガラス繊維濾紙につい
て、最大孔径を圧力損失との関係で規定値以下に制御す
ることでより低圧損、高捕集効率の新規なガラス繊維濾
紙を提供するものであり以下の効果が期待できる。
(1) 捕集効率を従来品と同一レベルにした場合、圧
力損失の低減が可能であり、クリーンルームに用いた場
合、クリーンルームの空気清浄度を落とすことなく、省
エネルギー、ファンの騒音低減に寄与する。
(2) 圧力損失を同一レベルにした場合、捕集効率は
上昇し、同一エネルギー消費量でクリーンルームの空気
清浄度を上げることができる。
(3) 従来品にくらべ、ほぼ同様のコストで製造でき
る。
(4) 強度が向上するため、濾紙の目付重量を下げる
ことができ、フィルタ加工品中の濾紙の使用量を節減で
きる。[Effects] The present invention provides a new method for glass fiber filter paper for HEPA and ULPA, which has been conventionally used for clean rooms, by controlling the maximum pore diameter to below a specified value in relation to pressure loss. The following effects can be expected. (1) When the collection efficiency is made to the same level as conventional products, it is possible to reduce pressure loss, and when used in a clean room, it contributes to energy savings and fan noise reduction without reducing the air cleanliness of the clean room. . (2) When the pressure loss is kept at the same level, the collection efficiency increases, and the air cleanliness of the clean room can be improved with the same amount of energy consumption. (3) Compared to conventional products, it can be manufactured at almost the same cost. (4) Since the strength is improved, the basis weight of the filter paper can be lowered, and the amount of filter paper used in processed filter products can be reduced.
【0033】以上に述べたように本発明の実用的価値は
極めて高く、半導体産業のみならず、クリーンルームを
使用する食品産業、医療産業等、他産業にも十分貢献す
るものである。As described above, the practical value of the present invention is extremely high, and it will fully contribute not only to the semiconductor industry but also to other industries that use clean rooms, such as the food industry and the medical industry.
【図1】図1は圧力損失の異なるガラス繊維濾紙につい
て圧力損失と最大孔径の関係を示したグラフである。FIG. 1 is a graph showing the relationship between pressure loss and maximum pore diameter for glass fiber filter papers with different pressure losses.
【図2】図2は最大孔径条件の異なるガラス繊維濾紙に
ついて圧力損失と捕集効率との関係を示すグラフである
。FIG. 2 is a graph showing the relationship between pressure loss and collection efficiency for glass fiber filter papers with different maximum pore diameter conditions.
Claims (2)
で計算される最大孔径Pc に対し、Pm ≦Pc の
関係にあることを特徴とする高性能エアフィルタ用ガラ
ス繊維濾紙。 Pc = −0.135×ΔP+15
(a)Pc :最
大孔径(単位:μm ) ΔP:面風速5.33cm/Sにおける圧力損失(mm
H2 O)[Claim 1] The maximum pore diameter Pm of the filter paper is expressed by the following formula (a):
A glass fiber filter paper for a high-performance air filter, characterized in that, with respect to the maximum pore diameter Pc calculated as follows, Pm≦Pc. Pc = −0.135×ΔP+15
(a) Pc: Maximum pore diameter (unit: μm) ΔP: Pressure loss at surface wind speed 5.33 cm/S (mm
H2O)
0μm 以下のチョップストランドガラス繊維の含有率
が10〜50重量% 、極細ガラス繊維の含有率が90
〜50重量% であることを特徴とする、請求項 1に
記載の高性能エアフィルタ用ガラス繊維濾紙。Claim 2: In the glass fiber composition, the fiber diameter is 1
The content of chopped strand glass fibers of 0 μm or less is 10 to 50% by weight, and the content of ultrafine glass fibers is 90% by weight.
The glass fiber filter paper for high performance air filters according to claim 1, characterized in that the content is 50% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3047146A JPH0732851B2 (en) | 1991-03-13 | 1991-03-13 | Glass fiber filter paper for high performance air filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3047146A JPH0732851B2 (en) | 1991-03-13 | 1991-03-13 | Glass fiber filter paper for high performance air filter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04284803A true JPH04284803A (en) | 1992-10-09 |
JPH0732851B2 JPH0732851B2 (en) | 1995-04-12 |
Family
ID=12766964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3047146A Expired - Lifetime JPH0732851B2 (en) | 1991-03-13 | 1991-03-13 | Glass fiber filter paper for high performance air filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0732851B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001212415A (en) * | 2000-02-04 | 2001-08-07 | Nippon Sheet Glass Co Ltd | Filter paper for high temperature air filter and its manufacturing method |
JP2019177331A (en) * | 2018-03-30 | 2019-10-17 | 北越コーポレーション株式会社 | Filter medium for air filter |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS624418A (en) * | 1985-06-29 | 1987-01-10 | Nippon Muki Kk | Glass fiber filter paper for air filter having ultrahigh performance |
JPS6393316A (en) * | 1986-10-07 | 1988-04-23 | Yoshimi Oshitari | Filter layer |
JPH02251214A (en) * | 1989-03-24 | 1990-10-09 | Hokuetsu Paper Mills Ltd | Glass fiber filter paper for high performance air filter and manufacture thereof |
-
1991
- 1991-03-13 JP JP3047146A patent/JPH0732851B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS624418A (en) * | 1985-06-29 | 1987-01-10 | Nippon Muki Kk | Glass fiber filter paper for air filter having ultrahigh performance |
JPS6393316A (en) * | 1986-10-07 | 1988-04-23 | Yoshimi Oshitari | Filter layer |
JPH02251214A (en) * | 1989-03-24 | 1990-10-09 | Hokuetsu Paper Mills Ltd | Glass fiber filter paper for high performance air filter and manufacture thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001212415A (en) * | 2000-02-04 | 2001-08-07 | Nippon Sheet Glass Co Ltd | Filter paper for high temperature air filter and its manufacturing method |
JP4639419B2 (en) * | 2000-02-04 | 2011-02-23 | 日本無機株式会社 | Filter paper for high-temperature air filter and manufacturing method thereof |
JP2019177331A (en) * | 2018-03-30 | 2019-10-17 | 北越コーポレーション株式会社 | Filter medium for air filter |
Also Published As
Publication number | Publication date |
---|---|
JPH0732851B2 (en) | 1995-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2987544B1 (en) | Filter material for air filter, method for manufacturing same, and air filter provided with same | |
EP2275186B1 (en) | Filter material for air filters | |
JP2010253449A (en) | Filter medium for air filter having electrostatic spinning nanofiber layer, and method of manufacturing the same | |
JP6270971B2 (en) | Filter material for air filter and method for producing the same | |
JPH04284803A (en) | Glass fiber filter sheet for use in air filter of high performance | |
JP3874038B2 (en) | Filter material for air filter and manufacturing method thereof | |
JPH07102293B2 (en) | Glass fiber filter paper for high performance air filter and method for producing the same | |
JP3669798B2 (en) | Flame retardant volume reducing high performance air filter medium and method for producing the same | |
JP6964033B2 (en) | Filter material for air filter | |
JP5290507B2 (en) | Air filter medium and air filter including the same | |
JP2007007586A (en) | Filter medium for air filter, and air filter | |
JP3960440B2 (en) | Filter paper for air cleaning filter, manufacturing method thereof, and air cleaning filter using the filter paper | |
JPH0757293B2 (en) | Filter material for air filter | |
US8951324B2 (en) | Air filter medium | |
JP3848132B2 (en) | Air filter media | |
JP3948990B2 (en) | Volume reduction high performance air filter medium with little expansion and contraction and method for manufacturing the same | |
JP2015085250A (en) | Filter medium for air filter and production method of the same | |
JP6858678B2 (en) | Filter media for air filters and their manufacturing methods | |
JP2001212416A (en) | Filter paper for high temperature air filter | |
JP4639419B2 (en) | Filter paper for high-temperature air filter and manufacturing method thereof | |
JP2022124201A (en) | Filter medium for air filters | |
JP2001334115A (en) | Production process of filter paper for high temperature air filter and filter paper for high temperature air filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980721 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110412 Year of fee payment: 16 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110412 Year of fee payment: 16 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |