JPH04284409A - Central structural body for optical fiber cable - Google Patents

Central structural body for optical fiber cable

Info

Publication number
JPH04284409A
JPH04284409A JP3074746A JP7474691A JPH04284409A JP H04284409 A JPH04284409 A JP H04284409A JP 3074746 A JP3074746 A JP 3074746A JP 7474691 A JP7474691 A JP 7474691A JP H04284409 A JPH04284409 A JP H04284409A
Authority
JP
Japan
Prior art keywords
layer
heat
reinforced plastic
optical fiber
fiber cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3074746A
Other languages
Japanese (ja)
Inventor
Masahiko Hori
正彦 堀
Yasuro Yamamoto
山本 康郎
Masaaki Hattori
服部 正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP3074746A priority Critical patent/JPH04284409A/en
Publication of JPH04284409A publication Critical patent/JPH04284409A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/4434Central member to take up tensile loads

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To securely adhere an ethylene/vinyl acetate copolymer layer of an inside layer to an aramid fiber-reinforced plastic filamentous body by the thermal shrinkage force of thermal shrinkage-completed polyethylene(PE). CONSTITUTION:The ethylene/vinyl acetate copolymer layer 2 is formed on the outer periphery of the aramid fiber-reinforced plastic filamentous body 1 and the thermal shrinkage-completed layer 3 is formed on the outer peripheral surface of the ethylene/vinyl acetate copolymer layer 2. Further, a PE layer 4 formed circumferentially with 5 pieces of axially extending recessed line grooves 5 are formed on the outer periphery of the thermal shrinkage-completed PE layer 3.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、光フアイバーケーブ
ルの中心構造体に用いられる光フアイバーケーブル用中
心構造体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a central structure for an optical fiber cable, which is used as a central structure for an optical fiber cable.

【0002】0002

【従来の技術】光フアイバーケーブルの中心部分には、
一般に、抗張力線(テンシヨンメンバー)が用いられて
いる。上記テンシヨンメンバーとしては、通常、鋼線や
強化プラスチツク線条体(FRP)が用いられ、このテ
ンシヨンメンバーの外周には熱可塑性樹脂が一次被覆さ
れ層形成されている。さらに、この熱可塑性樹脂層の外
周には、複数の光フアイバーを各々収容する複数の凹条
溝が形成されたポリエチレン製等のスロツトが形成され
、光フアイバーケーブル用中心構造体となる。上記一次
被覆用熱可塑性樹脂としては、一般に、低密度ポリエチ
レン,高密度ポリエチレン,直鎖状低密度ポリエチレン
,接着性ポリエチレン,エチレン−酢酸ビニル共重合体
,ナイロン12等が用いられている。このような光フア
イバーケーブル用中心構造体は、例えば、まず、一次被
覆熱可塑性樹脂層を、クロスヘツドを有する押出成形機
によりテンシヨンメンバーの外周に形成する。そして、
上記熱可塑性樹脂層が外周に形成されたテンシヨンメン
バーのさらに外周に、複数の凹条溝形成用の成形ダイス
を有する押出成形機を用いてスロツト部を形成する。こ
のようにして、光フアイバーケーブル用の中心構造体が
得られる。
[Prior art] In the central part of an optical fiber cable,
Generally, tensile strength wires (tension members) are used. As the tension member, a steel wire or a reinforced plastic filament (FRP) is usually used, and the outer periphery of the tension member is primarily coated with a thermoplastic resin layer. Further, on the outer periphery of this thermoplastic resin layer, slots made of polyethylene or the like are formed, each having a plurality of grooves for accommodating a plurality of optical fibers, forming a central structure for an optical fiber cable. As the thermoplastic resin for the primary coating, low density polyethylene, high density polyethylene, linear low density polyethylene, adhesive polyethylene, ethylene-vinyl acetate copolymer, nylon 12, etc. are generally used. Such a central structure for an optical fiber cable is produced, for example, by first forming a primary coating thermoplastic resin layer on the outer periphery of a tension member using an extrusion molding machine having a crosshead. and,
A slot portion is formed on the outer periphery of the tension member on which the thermoplastic resin layer is formed using an extrusion molding machine having a plurality of molding dies for forming grooves. In this way, a central structure for a fiber optic cable is obtained.

【0003】0003

【発明が解決しようとする課題】しかしながら、上記の
ようにして得られる従来の中心構造体は、その中心のテ
ンシヨンメンバーと、テンシヨンメンバーの外周に一次
被覆し層形成された熱可塑性樹脂との密着性に劣るとい
う問題を有している。特に、上記熱可塑性樹脂のなかで
も、比較的テンシヨンメンバーとの密着性に優れている
接着性ポリエチレン,エチレン−酢酸ビニル共重合体,
ナイロン12を用いても、満足のいく密着性が得られな
い。また、テンシヨンメンバーとしてアラミド繊維強化
プラスチツク線条体を用いた場合、充分な密着性が得ら
れないのが実情である。
[Problems to be Solved by the Invention] However, the conventional central structure obtained as described above has a tension member at the center and a thermoplastic resin layer formed as a primary coating around the outer periphery of the tension member. The problem is that the adhesion is poor. In particular, among the above thermoplastic resins, adhesive polyethylene, ethylene-vinyl acetate copolymer, which has relatively excellent adhesion to the tension member,
Even if nylon 12 is used, satisfactory adhesion cannot be obtained. Furthermore, when an aramid fiber-reinforced plastic striae is used as a tension member, the actual situation is that sufficient adhesion cannot be obtained.

【0004】この発明は、このような事情に鑑みなされ
たもので、テンシヨンメンバーと、その外周に形成され
る樹脂層との密着性に優れた光フアイバーケーブル用中
心構造体の提供をその目的とする。
The present invention was made in view of the above circumstances, and an object thereof is to provide a central structure for an optical fiber cable that has excellent adhesion between a tension member and a resin layer formed on the outer periphery of the tension member. shall be.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、この発明の光フアイバーケーブル用中心構造体は、
強化プラスチツク線条体の外周に接着層が形成され、上
記接着層の外周面に熱収縮性完了樹脂層が形成され、さ
らに上記熱収縮性完了樹脂層の外周に、軸方向に延びる
凹条溝が円周方向に複数個形成された熱可塑性樹脂層が
形成されているという構成をとる。
[Means for Solving the Problems] In order to achieve the above object, the central structure for an optical fiber cable of the present invention has the following features:
An adhesive layer is formed on the outer periphery of the reinforced plastic filament, a heat-shrinkable resin layer is formed on the outer periphery of the adhesive layer, and a concave groove extending in the axial direction is formed on the outer periphery of the heat-shrinkable resin layer. The thermoplastic resin layer has a plurality of thermoplastic resin layers formed in the circumferential direction.

【0006】[0006]

【作用】すなわち、この発明の光フアイバーケーブル用
中心構造体は、強化プラスチツク線条体の外周に、接着
層が形成され、さらに上記接着層の外周に熱収縮性顔料
樹脂層が形成されている。このため、上記熱収縮性完了
樹脂の熱収縮力により接着層が強化プラスチツク線条体
に強固に接着される。したがつて、強化プラスチツク線
条体とその外周に形成される層との密着性が向上する。
[Operation] That is, in the central structure for an optical fiber cable of the present invention, an adhesive layer is formed on the outer periphery of a reinforced plastic filament, and a heat-shrinkable pigment resin layer is further formed on the outer periphery of the adhesive layer. . Therefore, the adhesive layer is firmly adhered to the reinforced plastic filament by the heat shrinkage force of the heat-shrinkable resin. Therefore, the adhesion between the reinforced plastic striated body and the layer formed around its outer periphery is improved.

【0007】つぎに、この発明を詳しく説明する。Next, the present invention will be explained in detail.

【0008】この発明の光フアイバーケーブル用中心構
造体は、図1に示すように、強化プラスチツク線条体1
と、この強化プラスチツク線条体1の外周に形成される
接着層2と、この接着層2の外周に形成される熱収縮性
完了樹脂層3と、さらにその外周に形成される熱可塑性
樹脂層4との構成からなる。
As shown in FIG. 1, the central structure for an optical fiber cable of the present invention includes a reinforced plastic striated body 1.
, an adhesive layer 2 formed on the outer periphery of this reinforced plastic filament 1, a heat-shrinkable resin layer 3 formed on the outer periphery of this adhesive layer 2, and a thermoplastic resin layer further formed on the outer periphery. It consists of 4.

【0009】上記強化プラスチツク線条体1は、補強繊
維と含浸樹脂とを用いて得られる。上記補強繊維として
は、アラミド繊維,ガラス繊維等があげられる。また、
上記含浸樹脂としては、ビニルエステル樹脂,エポキシ
樹脂等があげられる。特に、補強繊維としてアラミド繊
維を用い、含浸樹脂としてビニルエステル樹脂を用いた
アラミド繊維強化プラスチツク線条体が好適に用いられ
る。そして、上記アラミド繊維強化プラスチツク線条体
を用いる場合、そのアラミド繊維の体積含有率が50〜
70%のものを用いるのが好ましい。
The reinforced plastic filament 1 is obtained using reinforcing fibers and impregnated resin. Examples of the reinforcing fibers include aramid fibers and glass fibers. Also,
Examples of the impregnating resin include vinyl ester resin, epoxy resin, and the like. In particular, an aramid fiber-reinforced plastic strand using aramid fiber as the reinforcing fiber and vinyl ester resin as the impregnated resin is preferably used. When the aramid fiber reinforced plastic striae mentioned above is used, the volume content of the aramid fibers is 50 to 50%.
It is preferable to use 70%.

【0010】上記接着層2形成材料としては、エチレン
−酢酸ビニル共重合体,低密度ポリエチレン,高密度ポ
リエチレン,直鎖状低密度ポリエチレン,接着性ポリエ
チレン等があげられる。なかでも、エチレン−酢酸ビニ
ル共重合体が好適に用いられ、特に酢酸ビニル含有量が
19〜45重量%のものを用いるのが好ましい。すなわ
ち、酢酸ビニル含有量が19重量%未満ではテンシヨン
メンバーに対する密着力が弱く、45重量%を超えると
テンシヨンメンバーの外周に層形成する場合に均一な厚
みで層形成するのが困難になる傾向がみられるからであ
る。
Examples of the material for forming the adhesive layer 2 include ethylene-vinyl acetate copolymer, low-density polyethylene, high-density polyethylene, linear low-density polyethylene, and adhesive polyethylene. Among these, ethylene-vinyl acetate copolymers are preferably used, particularly those having a vinyl acetate content of 19 to 45% by weight. That is, if the vinyl acetate content is less than 19% by weight, the adhesion to the tension member is weak, and if it exceeds 45% by weight, it becomes difficult to form a layer with a uniform thickness when forming a layer around the outer periphery of the tension member. This is because there is a trend.

【0011】上記熱収縮性完了樹脂層3形成材料として
は、熱収縮性樹脂が用いられ、特に、後記の熱可塑性樹
脂層4形成材料との密着性に優れたものが好ましい。例
えば熱収縮性ポリエチレン等があげられる。このような
熱収縮性樹脂の形態としては、チユーブ状のものを用い
るのが作業性等の観点から好ましい。そして、このよう
な熱収縮性樹脂の収縮率は、30〜70%の範囲が好ま
しく、特に好ましくは40〜60%である。すなわち、
熱収縮性樹脂の収縮率が30%未満では、樹脂の収縮に
より生じる接着層に対する締めつけ力が不足し充分な密
着力が得られず、逆に70%を超えると中心構造体の軸
方向における収縮の不均一が生ずる傾向がみられるから
である。
[0011] As the material for forming the heat-shrinkable resin layer 3, a heat-shrinkable resin is used, and a material having excellent adhesion with the material for forming the thermoplastic resin layer 4 described later is particularly preferred. For example, heat-shrinkable polyethylene may be used. As for the form of such heat-shrinkable resin, it is preferable to use a tube-like form from the viewpoint of workability and the like. The shrinkage rate of such a heat-shrinkable resin is preferably in the range of 30 to 70%, particularly preferably in the range of 40 to 60%. That is,
If the shrinkage rate of the heat-shrinkable resin is less than 30%, the tightening force against the adhesive layer caused by the shrinkage of the resin will be insufficient, making it impossible to obtain sufficient adhesion.On the other hand, if it exceeds 70%, the central structure will shrink in the axial direction. This is because there is a tendency for non-uniformity to occur.

【0012】上記熱可塑性樹脂層4形成材料として、特
に限定するものではなく従来公知のものが用いられ、ポ
リエチレン,塩化ビニル樹脂等があげられる。
The material for forming the thermoplastic resin layer 4 is not particularly limited, and conventionally known materials may be used, such as polyethylene, vinyl chloride resin, etc.

【0013】この発明の光フアイバーケーブル用中心構
造体は、例えばつぎのようにして作製される。すなわち
、まず、補強繊維と含浸樹脂とからなる成形材料を準備
し、これらを用いて連続引抜成形により強化プラスチツ
ク線条体を作製する。そして、上記強化プラスチツク線
条体の外周に押出成形機により均一に接着層を形成する
。つぎに、上記接着層の外周に熱収縮性樹脂製チユーブ
を被覆し加熱することにより上記チユーブを熱収縮させ
熱収縮性完了樹脂層を形成する。さらに、凹条溝に対応
する成形部が形成されたダイスを有する押出成形機を用
いて熱可塑性樹脂を溶融押出し、上記熱収縮性完了樹脂
層の外周に熱可塑性樹脂層を形成する。このような一連
の工程を経ることにより光フアイバーケーブル用中心構
造体が作製される。
The central structure for an optical fiber cable of the present invention is manufactured, for example, as follows. That is, first, a molding material consisting of reinforcing fibers and impregnated resin is prepared, and a reinforced plastic linear body is produced by continuous pultrusion using these materials. Then, an adhesive layer is uniformly formed on the outer periphery of the reinforced plastic filament using an extrusion molding machine. Next, a heat-shrinkable resin tube is coated on the outer periphery of the adhesive layer and heated to cause the tube to be heat-shrinked to form a heat-shrinkable resin layer. Further, the thermoplastic resin is melt-extruded using an extrusion molding machine having a die in which molding portions corresponding to the grooves are formed, thereby forming a thermoplastic resin layer around the outer periphery of the heat-shrinkable resin layer. A central structure for an optical fiber cable is produced through such a series of steps.

【0014】上記熱収縮性樹脂製チユーブを熱収縮させ
る温度としては、接着層形成材料の軟化温度より高い温
度に設定する必要があり、例えば150〜230℃に設
定するのが好ましい。上記温度に設定することにより、
接着層形成材料の粘度が下がり、強化プラスチツク線条
体への濡れ性が向上し、その結果、接着層と強化プラス
チツク線条体との密着性が向上する。
The temperature at which the heat-shrinkable resin tube is heat-shrinked must be set at a temperature higher than the softening temperature of the adhesive layer forming material, and is preferably set at, for example, 150 to 230°C. By setting the temperature above,
The viscosity of the adhesive layer-forming material is reduced, and its wettability to the reinforced plastic strands is improved, resulting in improved adhesion between the adhesive layer and the reinforced plastic strands.

【0015】このようにして得られる光フアイバーケー
ブル用中心構造体は、図1に示すように、強化プラスチ
ツク線条体1の外周に接着層2が形成され、この接着層
2の外周に熱収縮性完了樹脂層3が形成されている。そ
して、この熱収縮性完了樹脂層3の外周には、軸方向に
延びる光フアイバー収納用の凹条溝5が円周方向に5個
形成された熱可塑性樹脂層4が形成されている。
As shown in FIG. 1, the core structure for an optical fiber cable obtained in this way has an adhesive layer 2 formed on the outer periphery of a reinforced plastic filament 1, and a heat-shrinkable material on the outer periphery of the adhesive layer 2. A completed resin layer 3 is formed. On the outer periphery of this heat-shrinkable resin layer 3, there is formed a thermoplastic resin layer 4 in which five grooves 5 for storing optical fibers extending in the axial direction are formed in the circumferential direction.

【0016】[0016]

【発明の効果】以上のように、この発明の光フアイバー
ケーブル用中心構造体は、強化プラスチツク線条体の外
周に、接着層が形成され、さらに上記接着層の外周に熱
収縮性完了樹脂層が形成されている。このため、上記熱
収縮性完了樹脂の熱収縮力により接着層が強化プラスチ
ツク線条体に強固に接着される。さらに、強化プラスチ
ツク線条体に対する防水性が付与されることになる。し
たがつて、強化プラスチツク線条体とその外周に形成さ
れる樹脂層との密着性が向上する。そして、この発明の
光フアイバーケーブル用中心構造体を高いテンシヨンで
巻き取ると、熱収縮性完了樹脂層がクツシヨンの役割を
果たし、整列巻き状に巻き取ることができる。
As described above, in the central structure for optical fiber cable of the present invention, an adhesive layer is formed on the outer periphery of the reinforced plastic filament, and a heat-shrinkable resin layer is further formed on the outer periphery of the adhesive layer. is formed. Therefore, the adhesive layer is firmly adhered to the reinforced plastic filament by the heat shrinkage force of the heat-shrinkable resin. Furthermore, waterproof properties will be imparted to the reinforced plastic striae. Therefore, the adhesion between the reinforced plastic filament and the resin layer formed on its outer periphery is improved. When the central structure for an optical fiber cable of the present invention is wound up with high tension, the heat-shrinkable resin layer acts as a cushion and can be wound up in an aligned manner.

【0017】つぎに、実施例について比較例と併せて説
明する。
Next, examples will be explained together with comparative examples.

【0018】[0018]

【実施例1】まず、ビニルエステル樹脂とアラミド繊維
とからなる成形用材料をダイスに通し、連続引抜成形を
行うことによりビニルエステル樹脂を含浸させた直径4
.5mmのアラミド繊維強化プラスチツク線条体(アラ
ミド繊維体積含有量55%)を作製した。ついで、クロ
スヘツドを有する押出成形機を用いて上記アラミド繊維
強化プラスチツク線条体の外周に、厚み0.2mmのエ
チレン−酢酸ビニル共重合体(酢酸ビニル含有量28重
量%)層を形成した。ついで、熱収縮性ポリエチレンチ
ユーブを上記エチレン−酢酸ビニル共重合体層の外周に
被覆し、温度200℃で2分間加熱することにより上記
熱収縮性ポリエチレンチユーブを収縮させて厚み0.3
mmの熱収縮性完了ポリエチレン層を形成した。そして
、外周にエチレン−酢酸ビニル共重合体層および熱収縮
性完了ポリエチレン層の形成されたアラミド繊維強化プ
ラスチツク線条体の最外層に、凹条溝に対応する成形部
が形成されたダイスを備えた押出成形機を用いてポリエ
チレンを溶融押出することにより軸方向に延びる凹条溝
が円周方向に5個形成されたポリエチレン層を形成した
。このような工程を経ることにより目的とする光フアイ
バーケーブル用中心構造体を作製した。得られた光フア
イバーケーブル用中心構造体を図1に示した。図におい
て、1はアラミド繊維強化プラスチツク線条体、2はエ
チレン−酢酸ビニル共重合体層、3は熱収縮性完了ポリ
エチレン層、4は軸方向に延びる凹条溝5が円周方向に
5個形成されたポリエチレン層である。
[Example 1] First, a molding material made of vinyl ester resin and aramid fiber was passed through a die, and continuous pultrusion was performed to make a molding material with a diameter of 4 mm impregnated with vinyl ester resin.
.. A 5 mm aramid fiber reinforced plastic striatum (aramid fiber volume content 55%) was prepared. Next, an ethylene-vinyl acetate copolymer (vinyl acetate content: 28% by weight) layer having a thickness of 0.2 mm was formed around the outer periphery of the aramid fiber-reinforced plastic strip using an extrusion molding machine having a crosshead. Next, a heat-shrinkable polyethylene tube is coated around the outer periphery of the ethylene-vinyl acetate copolymer layer, and heated at 200°C for 2 minutes to shrink the heat-shrinkable polyethylene tube to a thickness of 0.3.
A heat-shrinkable finished polyethylene layer of mm was formed. The outermost layer of the aramid fiber-reinforced plastic filament, on which an ethylene-vinyl acetate copolymer layer and a heat-shrinkable polyethylene layer are formed on the outer periphery, is equipped with a die in which a molded portion corresponding to the groove is formed. By melt-extruding polyethylene using an extrusion molding machine, a polyethylene layer was formed in which five grooves extending in the axial direction were formed in the circumferential direction. Through these steps, the desired central structure for an optical fiber cable was produced. The obtained central structure for an optical fiber cable is shown in FIG. In the figure, 1 is an aramid fiber-reinforced plastic filament, 2 is an ethylene-vinyl acetate copolymer layer, 3 is a heat-shrinkable polyethylene layer, and 4 is 5 grooves 5 extending in the axial direction in the circumferential direction. A polyethylene layer formed.

【0019】[0019]

【比較例1】直径4.5mmのアラミド繊維強化プラス
チツク線条体を作製し、このアラミド繊維強化プラスチ
ツク線条体の外周に押出成形により厚み0.5mmの高
密度ポリエチレン層を形成した。そして、熱収縮性完了
ポリエチレン層を形成しなかつた。これ以外は実施例1
と同様にして光フアイバーケーブル用中心構造体を作製
した。
[Comparative Example 1] An aramid fiber-reinforced plastic strand with a diameter of 4.5 mm was prepared, and a high-density polyethylene layer with a thickness of 0.5 mm was formed on the outer periphery of the aramid fiber-reinforced plastic strand by extrusion molding. And no heat-shrinkable polyethylene layer was formed. Other than this, Example 1
A central structure for an optical fiber cable was produced in the same manner as described above.

【0020】[0020]

【比較例2】高密度ポリエチレンをナイロン12に代え
た。それ以外は比較例1と同様にして光フアイバーケー
ブル用中心構造体を作製した。
[Comparative Example 2] High-density polyethylene was replaced with nylon 12. Other than that, a central structure for an optical fiber cable was produced in the same manner as in Comparative Example 1.

【0021】このようにして得られた実施例品および比
較例品のアラミド繊維強化プラスチツク線条体とこのア
ラミド繊維強化プラスチツク線条体に形成された樹脂層
との密着力を測定し評価し、後記の表1に示した。上記
密着力の測定方法を下記に示す。
[0021] The adhesion between the aramid fiber-reinforced plastic striated bodies of the example products and comparative example products thus obtained and the resin layer formed on the aramid fiber-reinforced plastic striated bodies was measured and evaluated. It is shown in Table 1 below. The method for measuring the adhesion is shown below.

【0022】〔密着力の測定方法〕まず、図2に示すよ
うに、長さ150mmの光フアイバーケーブル用中心構
造体のうち、長さ25mmの部分だけ樹脂層6を残し、
残りの部分がアラミド繊維強化プラスチツク線条体1が
剥き出しにした密着力測定用試験片を作製した。そして
、図3に示すように、アラミド繊維強化プラスチツク線
条体1剥き出しの長い部分をチヤツク7で挟持し、樹脂
層6の端部面に当接するよう引張具8を取りつけ矢印A
方向に引つ張り、測定装置(オートグラフG−5000
A,島津製作所社製)で密着力を測定した。なお、引張
スピードは5mm/min で、測定温度は23℃に設
定した。
[Method for Measuring Adhesion] First, as shown in FIG. 2, the resin layer 6 is left only in a 25 mm long portion of the optical fiber cable central structure having a length of 150 mm.
A test piece for adhesion measurement was prepared in which the remaining portion of the aramid fiber-reinforced plastic filament 1 was exposed. Then, as shown in FIG. 3, the exposed long part of the aramid fiber-reinforced plastic filament 1 is held between chucks 7, and a tensioning tool 8 is attached so as to come into contact with the end surface of the resin layer 6.
Pull in the direction, measuring device (Autograph G-5000
A, manufactured by Shimadzu Corporation), the adhesion force was measured. Note that the tensile speed was 5 mm/min, and the measurement temperature was set at 23°C.

【0023】[0023]

【表1】[Table 1]

【0024】上記表1の結果から、実施例品は比較例品
より高い密着力の数値が得られた。このことから、実施
例品はアラミド繊維強化プラスチツク線条体とこの外周
に形成された樹脂層との密着性に優れていることがわか
る。
From the results shown in Table 1 above, the Example products had higher adhesion values than the Comparative Example products. From this, it can be seen that the example product has excellent adhesion between the aramid fiber-reinforced plastic linear body and the resin layer formed on the outer periphery thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の光フアイバーケーブル用中心構造体
の断面図である。
FIG. 1 is a sectional view of a central structure for an optical fiber cable according to the present invention.

【図2】密着力測定用試験片の形状を示す側面図である
FIG. 2 is a side view showing the shape of a test piece for adhesion measurement.

【図3】密着力測定方法を示す模式図である。FIG. 3 is a schematic diagram showing a method for measuring adhesion force.

【符号の説明】[Explanation of symbols]

1  アラミド繊維強化プラスチツク線条体2  エチ
レン−酢酸ビニル共重合体層3  熱収縮性完了ポリエ
チレン層 4  ポリエチレン層 5  凹条溝
1 Aramid fiber-reinforced plastic striated body 2 Ethylene-vinyl acetate copolymer layer 3 Heat-shrinkable polyethylene layer 4 Polyethylene layer 5 Concave groove

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  強化プラスチツク線条体の外周に接着
層が形成され、上記接着層の外周面に熱収縮性完了樹脂
層が形成され、さらに上記熱収縮性完了樹脂層の外周に
、軸方向に延びる凹条溝が円周方向に複数個形成された
熱可塑性樹脂層が形成されていることを特徴とする光フ
アイバーケーブル用中心構造体。
1. An adhesive layer is formed on the outer periphery of the reinforced plastic filament, a heat-shrinkable resin layer is formed on the outer peripheral surface of the adhesive layer, and a heat-shrinkable resin layer is formed on the outer periphery of the heat-shrinkable resin layer in the axial direction. 1. A central structure for an optical fiber cable, characterized in that a thermoplastic resin layer is formed with a plurality of grooves extending in the circumferential direction.
【請求項2】  強化プラスチツク線条体が、アラミド
繊維強化プラスチツク線条体である請求項1記載の光フ
アイバーケーブル用中心構造体。
2. The central structure for an optical fiber cable according to claim 1, wherein the reinforced plastic strand is an aramid fiber reinforced plastic strand.
【請求項3】  接着層が、エチレン−酢酸ビニル共重
合体により形成されたものである請求項1または2記載
の光フアイバーケーブル用中心構造体。
3. The central structure for an optical fiber cable according to claim 1, wherein the adhesive layer is formed of an ethylene-vinyl acetate copolymer.
【請求項4】  エチレン−酢酸ビニル共重合体の酢酸
ビニル含有量が19〜45重量%である請求項3記載の
光フアイバーケーブル用中心構造体。
4. The central structure for an optical fiber cable according to claim 3, wherein the vinyl acetate content of the ethylene-vinyl acetate copolymer is 19 to 45% by weight.
【請求項5】  熱収縮性完了樹脂が、収縮率30〜7
0%を有する熱収縮性樹脂が熱収縮したものである請求
項1〜4のいずれか一項に記載の光フアイバーケーブル
用中心構造体。
[Claim 5] The heat-shrinkable resin has a shrinkage rate of 30 to 7.
The central structure for an optical fiber cable according to any one of claims 1 to 4, wherein the heat-shrinkable resin has a heat-shrinkable content of 0%.
JP3074746A 1991-03-13 1991-03-13 Central structural body for optical fiber cable Pending JPH04284409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3074746A JPH04284409A (en) 1991-03-13 1991-03-13 Central structural body for optical fiber cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3074746A JPH04284409A (en) 1991-03-13 1991-03-13 Central structural body for optical fiber cable

Publications (1)

Publication Number Publication Date
JPH04284409A true JPH04284409A (en) 1992-10-09

Family

ID=13556127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3074746A Pending JPH04284409A (en) 1991-03-13 1991-03-13 Central structural body for optical fiber cable

Country Status (1)

Country Link
JP (1) JPH04284409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3525022A4 (en) * 2016-10-04 2020-06-10 Sumitomo Electric Industries, Ltd. Slot rod and optical fiber cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3525022A4 (en) * 2016-10-04 2020-06-10 Sumitomo Electric Industries, Ltd. Slot rod and optical fiber cable

Similar Documents

Publication Publication Date Title
US4770834A (en) Method for continuous molding of a rod-like product
US3970495A (en) Method of making a tubular shaft of helically wound filaments
US4795234A (en) Reinforced optical fiber
US20230241837A1 (en) Continuous Fiber Reinforced Thermoplastic Resin Composite Material and Method for Producing Same
JPH06182882A (en) Structural member made of fiber-reinforced thermoplastic material and its production
US5182064A (en) Method for producing fiber reinforced plastic rods having helical ribs
JPS61194276A (en) Composite reinforcing member and method and apparatus for producing the same
US5830304A (en) Method for producing a tension-resistance core element for a cable
JPH04284409A (en) Central structural body for optical fiber cable
US5238114A (en) Strand packages
JP2984021B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JP2004163501A (en) Drop optical fiber cable
US5292459A (en) Process for the production of a continuous object of a theromosetting polymer
JP4116968B2 (en) FRP tensile body for drop optical fiber cable
JPS60243611A (en) Wire rod carrying spiral spacer for communication and its manufacture
JPS62288633A (en) Composite material of continuous carbon fiber and polyolefin resin
JP2869116B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JP2996481B2 (en) Method for manufacturing fiber reinforced curable resin spacer for supporting optical fiber
EP0950504B1 (en) Thermoplastic resin-combined glass fiber base material, process for its production and its use
JPH0833502B2 (en) Optical fiber carrying spacer
JPH0852814A (en) Composite article and its production
JPH07128552A (en) Spacer for cable
JP3471837B2 (en) Manufacturing method of composite member
CN115946373A (en) Production process of cable sheath pipe and cable sheath pipe
JPH09218330A (en) Tube for laying optical fiber and its production