JPH04284362A - Alkaline battery - Google Patents

Alkaline battery

Info

Publication number
JPH04284362A
JPH04284362A JP4937591A JP4937591A JPH04284362A JP H04284362 A JPH04284362 A JP H04284362A JP 4937591 A JP4937591 A JP 4937591A JP 4937591 A JP4937591 A JP 4937591A JP H04284362 A JPH04284362 A JP H04284362A
Authority
JP
Japan
Prior art keywords
battery
gelling agent
cathode
alkaline
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4937591A
Other languages
Japanese (ja)
Inventor
Kinya Tada
多 田  欣 也
Masaaki Kurimura
栗 村  正 明
Mutsumi Yano
矢 野   睦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Sanyo Electric Co Ltd
Original Assignee
Sanyo Excell Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Excell Co Ltd, Sanyo Electric Co Ltd filed Critical Sanyo Excell Co Ltd
Priority to JP4937591A priority Critical patent/JPH04284362A/en
Publication of JPH04284362A publication Critical patent/JPH04284362A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide an alkaline battery able to obtain high current and to make efficient discharge while attempting mercury-freeing. CONSTITUTION:A granular state gelling agent, having three-dimensional structure and a grain diameter of 50mum or larger, is contained in a gelling agent mentioned later in a zinc alkaline battery having a gel-like cathode 7 in which a cathode active material, having a main body of zinc alloy powder, is dispersed in a gel-like electrolyte composed of an alkaline electrolyte and the gelling agent.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、亜鉛粉末を主とした陰
極活物質をアルカリ電解液とゲル化剤とからなるゲル状
電解液に分散させたゲル状陰極を有するアルカリ電池に
関し、特にゲル状陰極に使用されるゲル化剤の改良に関
する。
[Field of Industrial Application] The present invention relates to an alkaline battery having a gel cathode in which a cathode active material mainly composed of zinc powder is dispersed in a gel electrolyte consisting of an alkaline electrolyte and a gelling agent, and in particular to a gel cathode. This invention relates to improvements in gelling agents used in shaped cathodes.

【0002】0002

【従来の技術】亜鉛アルカリ乾電池の陰極としては、一
般に所謂ゲル状陰極が用いられている。このゲル状陰極
の具体的な構造は、例えば、粒径約20〜50μmの微
粉末から成る架橋型ポリアクリル酸(日本純薬製,ジュ
ンロンPW150)等のゲル化剤によって高粘度化した
ゲル状アルカリ電解液中に、汞化した亜鉛粉末を分散さ
せた構造となっている。このような構造とすれば、電解
液中のイオンの拡散が容易となると共に陰極の表面積が
拡大するので、強放電下においても分極が小さくなる。 また、陰極の取扱いは液体と同様に取り扱えば良いので
、生産時における取扱性が向上する。
2. Description of the Related Art A so-called gel cathode is generally used as the cathode of a zinc-alkaline dry battery. The specific structure of this gel-like cathode is, for example, a gel-like cathode that is made highly viscous with a gelling agent such as cross-linked polyacrylic acid (Junron PW150, manufactured by Nippon Pure Chemical Industries, Ltd.), which is made of fine powder with a particle size of about 20 to 50 μm. It has a structure in which aqueous zinc powder is dispersed in an alkaline electrolyte. With such a structure, ions in the electrolytic solution can easily diffuse and the surface area of the cathode can be expanded, so that polarization can be reduced even under strong discharge. Furthermore, since the cathode can be handled in the same way as a liquid, handling efficiency during production is improved.

【0003】0003

【発明が解決しようとする課題】ところで、環境汚染の
問題が大きくクローズアップされた今日では、水銀を全
く含有しない電池が強く期待されている。しかしながら
、上記汞化した亜鉛粉末に代えて無汞化の亜鉛粉末を用
いた場合には、亜鉛粒子間或いは亜鉛粒子と集電体との
接触が弱くなるため、電池の内部抵抗が著しく高くなり
、短絡電流や回路電圧が著しく低下する。この結果、大
電流が取り出せて効率的な放電ができるというアルカリ
電池の特徴が損なわれることになるという課題を有して
いた。
Nowadays, with the problem of environmental pollution being brought into sharp focus, there are strong expectations for batteries that do not contain any mercury. However, when non-viscous zinc powder is used in place of the viscous zinc powder mentioned above, the internal resistance of the battery increases significantly because the contact between the zinc particles or between the zinc particles and the current collector becomes weak. , short circuit current and circuit voltage drop significantly. As a result, there was a problem in that the characteristics of alkaline batteries, such as being able to draw a large current and perform efficient discharge, were impaired.

【0004】本発明はかかる現状に鑑みてなされたもの
であり、大電流が取り出せて効率的な放電ができるとい
うアルカリ電池の特徴を損なうことなく、無汞化を達成
できるアルカリ電池を提供することを目的とする。
The present invention has been made in view of the current situation, and it is an object of the present invention to provide an alkaline battery that can achieve zero battery life without impairing the characteristics of alkaline batteries, such as being able to draw a large current and efficiently discharging. With the goal.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するために、亜鉛粉末を主体とする陰極活物質を、アル
カリ電解液とゲル化剤とから成るゲル状電解液に分散さ
せたゲル状陰極を有するアルカリ電池において、前記ゲ
ル化剤には、三次元構造を有し粒径が50μm以上の顆
粒状ゲル化剤が含有されていることを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a gel in which a cathode active material mainly composed of zinc powder is dispersed in a gel electrolyte consisting of an alkaline electrolyte and a gelling agent. In the alkaline battery having a shaped cathode, the gelling agent contains a granular gelling agent having a three-dimensional structure and a particle size of 50 μm or more.

【0006】[0006]

【作用】本発明で用いるゲル化剤の作用は定かではない
が、以下のように推察される。上記顆粒状ゲル化剤はゲ
ル状陰極においてアルカリ電解液を吸収して、ある程度
膨潤すると共に、それ以上は膨潤しなくなる。即ち、顆
粒状ゲル化剤は漁網を広げたような状態となり、且つそ
の状態が長時間保持される。そして、この膨潤したゲル
化剤によって、亜鉛粒子は常時圧力を受けた状態に保た
れるので、亜鉛粒子間或いは亜鉛粒子と集電体との接触
状態が良好に保たれる。即ち、顆粒ゲル化剤は水銀と同
様な役割を有することとなるため、陰極活物質として無
汞化亜鉛粉末を用いた場合であっても、大電流が取り出
せて効率的な放電が可能となる。
[Action] Although the action of the gelling agent used in the present invention is not clear, it is presumed as follows. The granular gelling agent absorbs the alkaline electrolyte in the gelled cathode, swells to some extent, and no longer swells. That is, the granular gelling agent takes on a state similar to that of a fishing net, and maintains this state for a long time. The swollen gelling agent keeps the zinc particles under constant pressure, so that good contact between the zinc particles or between the zinc particles and the current collector is maintained. In other words, the granular gelling agent has a role similar to that of mercury, so even when non-reactive zinc powder is used as the cathode active material, a large current can be extracted and efficient discharge is possible. .

【0007】[0007]

【実施例】(第1実施例)本発明の第1実施例を、図1
に基づいて、以下に説明する。 〔実施例1〕図1は本発明のアルカリ電池の一例である
LR6タイプの電池の断面図である。この図1において
1は陽極缶であり、この陽極缶1内には二酸化マンガン
を主体とする陽極5と、セパレータ6と、亜鉛粒子を含
む陰極7とが配設されている。また、上記陽極缶1の開
口部には封口ガスケット3を介して陰極端子板2が取り
付けられており、この陰極端子板2は集電棒4を介して
上記陰極7と電気的に接続されている。
[Example] (First Example) The first example of the present invention is shown in FIG.
The following is an explanation based on the following. [Embodiment 1] FIG. 1 is a sectional view of an LR6 type battery, which is an example of the alkaline battery of the present invention. In FIG. 1, reference numeral 1 denotes an anode can, and in this anode can 1, an anode 5 mainly made of manganese dioxide, a separator 6, and a cathode 7 containing zinc particles are arranged. Further, a cathode terminal plate 2 is attached to the opening of the anode can 1 via a sealing gasket 3, and this cathode terminal plate 2 is electrically connected to the cathode 7 via a current collector rod 4. .

【0008】ここで、上記陰極7は、以下のようにして
作製した。先ず、40%のKOH水溶液に酸化亜鉛を飽
和させた電解液を、公知の微粉末ポリアクリル酸と架橋
型ポリアクリル酸ソーダ(タイラー標準篩によって調整
し、その粒径は50〜100μmである)とを重量比で
1:1の割合で混合したゲル化剤によってゲル化し、こ
のゲル中に無効果亜鉛粉末を分散させることにより作製
した。
[0008] Here, the cathode 7 was manufactured as follows. First, an electrolytic solution containing 40% KOH aqueous solution saturated with zinc oxide was mixed with known finely powdered polyacrylic acid and cross-linked sodium polyacrylate (adjusted using a Tyler standard sieve, the particle size of which was 50 to 100 μm). It was produced by gelatinizing with a gelling agent mixed in a weight ratio of 1:1 and dispersing ineffective zinc powder in this gel.

【0009】一方、上記陽極5は、二酸化マンガンに黒
鉛を混合し、これを加圧成型することにより作製した。 このようにして作製した電池を、以下(A1 )電池と
称する。 〔実施例2〜5〕架橋型ポリアクリル酸ソーダとして、
粒径が100〜250μm、250〜500μm、50
0〜850μm、850〜1000μmのものをそれぞ
れ用いる他は、上記実施例1と同様にして電池を作製し
た。
On the other hand, the anode 5 was prepared by mixing graphite with manganese dioxide and press-molding the mixture. The battery thus produced is hereinafter referred to as the (A1) battery. [Examples 2 to 5] As a crosslinked polyacrylic acid soda,
Particle size is 100-250μm, 250-500μm, 50
Batteries were produced in the same manner as in Example 1, except that 0 to 850 μm and 850 to 1000 μm were used, respectively.

【0010】このようにして作製した電池を、以下それ
ぞれ(A2 )電池〜(A5 )電池と称する。 〔比較例1〕架橋型ポリアクリル酸ソーダとして、粒径
が32〜50μmのものを用いる他は、上記実施例1と
同様にして電池を作製した。
The batteries thus produced are hereinafter referred to as (A2) battery to (A5) battery, respectively. [Comparative Example 1] A battery was produced in the same manner as in Example 1, except that a crosslinked sodium polyacrylate having a particle size of 32 to 50 μm was used.

【0011】このようにして作製した電池を、以下(X
1 )電池と称する。 〔比較例2〕ゲル化剤として、微粉末ポリアクリル酸の
みを用いる他は、上記実施例1と同様にして電池を作成
した。このようにして作製した電池を、以下(X2 )
電池と称する。 〔実験〕上記本発明の(A1 )電池〜(A5 )電池
及び比較例の(X1 )電池及び(X2 )電池の放電
特性を調べたので、その結果を下記表1に示す。尚、実
験条件は、定抵抗(3.9Ω)で、電池電圧が0.9V
まで放電するという条件である。
[0011] The battery produced in this manner is shown below (X
1) It is called a battery. [Comparative Example 2] A battery was produced in the same manner as in Example 1 above, except that only finely powdered polyacrylic acid was used as the gelling agent. The battery produced in this way is shown below (X2)
It is called a battery. [Experiment] The discharge characteristics of the batteries (A1) to (A5) of the present invention and the batteries (X1) and (X2) of the comparative examples were investigated, and the results are shown in Table 1 below. The experimental conditions were constant resistance (3.9Ω) and battery voltage of 0.9V.
The condition is to discharge up to

【0012】0012

【表1】[Table 1]

【0013】表1より明らかなように、本発明の(A1
 )電池〜(A5 )電池は比較例の(X1 )電池及
び(X2 )電池に比べて放電持続時間が長くなってい
ることが認められる。これは、架橋型ポリアクリル酸ソ
ーダを含有しない(X2 )電池では、ゲル化剤による
圧力が弱いため、亜鉛粒子間或いは亜鉛粒子と集電体と
の接触性が低下する。また、架橋型ポリアクリル酸ソー
ダの粒径が50μm未満の(X1 )電池では、架橋型
ポリアクリル酸ソーダと微粉末架橋型ポリアクリル酸と
の粒径が余り変わらないため、やはりゲル化剤による圧
力の向上を図ることができない。これに対して、(A1
 )電池〜(A5 )電池では、架橋型ポリアクリル酸
ソーダがアルカリ電解液を吸収してある程度膨潤し、且
つその粒径が大きいので、亜鉛粒子は膨潤したゲル化剤
により常に圧力を受ける。したがって、亜鉛粒子間或い
は亜鉛粒子と集電体との接触状態が良好に保たれるとい
う理由によるものと考えられる。
As is clear from Table 1, (A1
) Batteries ~ (A5) It is observed that the discharge duration of the batteries (A5) is longer than that of the comparative examples (X1) and (X2) batteries. This is because in a (X2) battery that does not contain crosslinked sodium polyacrylate, the pressure exerted by the gelling agent is weak, so the contact between the zinc particles or between the zinc particles and the current collector decreases. In addition, in (X1) batteries in which the particle size of the cross-linked sodium polyacrylate is less than 50 μm, the particle size of the cross-linked sodium polyacrylate and the fine powder cross-linked polyacrylic acid is not much different, so the gelling agent It is not possible to improve the pressure. On the other hand, (A1
) Battery - (A5) In the battery, the crosslinked sodium polyacrylate absorbs the alkaline electrolyte and swells to some extent, and its particle size is large, so the zinc particles are constantly subjected to pressure by the swollen gelling agent. Therefore, this is thought to be due to the fact that good contact between the zinc particles or between the zinc particles and the current collector is maintained.

【0014】特に、(A2 )電池〜(A4 )電池で
は、飛躍的に放電持続時間が長くなっていることが認め
られる。これは、架橋型ポリアクリル酸ソーダの粒径が
100μm以上であれば上記添加効果が一層発揮される
一方、架橋型ポリアクリル酸ソーダの粒径が850μm
を超えると、ゲル状陰極とした後の膨潤で粒径が大きく
なり過ぎ、亜鉛粉末の充填量が低下するということによ
るものと考えられる。
In particular, it is recognized that the discharge duration of the (A2) to (A4) batteries is dramatically longer. This is because if the particle size of the cross-linked sodium polyacrylate is 100 μm or more, the above-mentioned effect of addition is more exhibited, but if the particle size of the cross-linked sodium polyacrylate is 850 μm or more,
It is thought that this is because if it exceeds 100%, the particle size becomes too large due to swelling after forming into a gel cathode, and the amount of zinc powder packed decreases.

【0015】したがって、架橋型ポリアクリル酸ソーダ
の粒径は100μm以上850μm以下であることが望
ましい。また、本実施例には示さないが、本発明の(A
2 )電池〜(A4 )電池は、負極に水銀が添加され
た電池と略同等の放電特性を有していることを、実験に
より確認している。
[0015] Therefore, the particle size of the crosslinked sodium polyacrylate is desirably 100 μm or more and 850 μm or less. Although not shown in this example, (A
2) Battery - (A4) It has been confirmed through experiments that the battery has approximately the same discharge characteristics as a battery in which mercury is added to the negative electrode.

【0016】(第2実施例) 〔実施例1〜実施例3〕顆粒状ゲル化剤として、架橋型
ポリアクリル酸ソーダの代わりに、それぞれ架橋型ポリ
アクリル酸、グラフト化デンプン及びカルボキシメチル
セルロースを用いる他は、前記第1実施例の実施例1と
同様にして電池を作成した。
(Second Example) [Example 1 to Example 3] As the granular gelling agent, cross-linked polyacrylic acid, grafted starch, and carboxymethyl cellulose were used instead of cross-linked sodium polyacrylate, respectively. Otherwise, a battery was produced in the same manner as in Example 1 of the first example.

【0017】このようにして作成した電池を、以下それ
ぞれ(B1 )電池〜(B3 )電池と称する。 〔比較例〕ゲル化剤として微粉末ポリアクリル酸のみを
用いると共に、亜鉛粉末の代わりに約0.6wt%の水
銀が添加された亜鉛合金粉末を用いる他は、前記第1実
施例の実施例1と同様の電池を作成した。
The batteries thus produced are hereinafter referred to as (B1) battery to (B3) battery, respectively. [Comparative example] Example of the first example, except that only finely powdered polyacrylic acid was used as the gelling agent, and zinc alloy powder to which about 0.6 wt% of mercury was added was used instead of zinc powder. A battery similar to 1 was created.

【0018】このようにして作製した電池を、以下(Y
)電池と称する。 〔実験1〕前記本発明の(A1 )電池,上記本発明の
(B1 )電池〜(B3 )電池及び上記比較例の(Y
)電池を60℃で30日間保存した後に、各電池の放電
特性を調べたので、その結果を表2に示す。尚、放電特
性の実験条件は、前記第1実施例の実験と同様の条件で
ある。
[0018] The battery produced in this manner is shown below (Y
) is called a battery. [Experiment 1] Battery (A1) of the present invention, batteries (B1) to (B3) of the present invention, and (Y
) After storing the batteries at 60° C. for 30 days, the discharge characteristics of each battery were examined, and the results are shown in Table 2. The experimental conditions for the discharge characteristics were the same as those for the first embodiment.

【0019】[0019]

【表2】[Table 2]

【0020】表2より明らかなように、本発明の(A1
 )電池,(B1 )電池,(B2 )電池では、水銀
を含む(Y)電池と同等の放電持続時間であることが認
められる。これに対して、本発明の(B3)電池では、
放電持続時間が著しく短くなっていることが認められる
。したがって、電池を高温で長期間保存する場合には、
顆粒状ゲル化剤として、架橋型ポリアクリル酸、架橋型
ポリアクリル酸ソーダ、グラフト化デンプンを用いるの
が望ましい。
As is clear from Table 2, (A1
) battery, (B1) battery, and (B2) battery are found to have the same discharge duration as the (Y) battery containing mercury. On the other hand, in the (B3) battery of the present invention,
It is observed that the discharge duration is significantly shortened. Therefore, when storing batteries at high temperatures for long periods of time,
As the granular gelling agent, crosslinked polyacrylic acid, crosslinked sodium polyacrylate, and grafted starch are preferably used.

【0021】尚、上記の如く(B3 )電池の特性が劣
っているのは、アルカリ電解液が存在すること及び60
℃という高温状態で長期間保存されるということに起因
して、カルボキシメチルセルロースが分解する。このた
め、陰極がゲル状状態を保持することができず、亜鉛粉
末が沈降してしまうという理由によるものと考えられる
。 〔実験2〕本実験においては、顆粒状ゲル化剤の最適濃
度を調べた。
As mentioned above, the characteristics of the (B3) battery are inferior due to the presence of the alkaline electrolyte and the 60%
Carboxymethylcellulose decomposes due to being stored for a long period of time at high temperatures of °C. This is thought to be due to the fact that the cathode cannot maintain its gel state and the zinc powder settles. [Experiment 2] In this experiment, the optimum concentration of the granular gelling agent was investigated.

【0022】具体的には、架橋型ポリアクリル酸、架橋
型ポリアクリル酸ソーダ、グラフト化デンプンとの含有
比率を種々変化させる他は、上記実施例1と同様に電池
を作成し、各電池の放電特性を調べたので、その結果を
図2に示す。尚、実験条件は、前記第1実施例の実験と
同様の条件である。図2より明らかなように、何れの顆
粒状ゲル化剤であっても、ゲル化剤の総濃度の40〜6
0wt%の範囲で放電持続時間が長くなっていることが
認められる。
Specifically, batteries were prepared in the same manner as in Example 1 above, except that the content ratios of cross-linked polyacrylic acid, cross-linked sodium polyacrylate, and grafted starch were varied. The discharge characteristics were investigated and the results are shown in FIG. The experimental conditions were the same as those of the first embodiment. As is clear from FIG. 2, no matter which granular gelling agent is used, the total concentration of gelling agent is 40 to 6
It is recognized that the discharge duration becomes longer in the range of 0 wt%.

【0023】[0023]

【発明の効果】以上説明したように本発明によれば、水
銀を用いることなく、亜鉛粒子間或いは亜鉛粒子と集電
体との接触状態を良好に保つことができる。この結果、
無汞化を図りつつ大電流を取り出すことができ、効率的
な放電が可能となるといった優れた効果を奏する。
As explained above, according to the present invention, good contact between zinc particles or between zinc particles and a current collector can be maintained without using mercury. As a result,
It has the excellent effect of being able to extract a large current while achieving zero discharge, and enabling efficient discharge.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のアルカリ電池の一例であるLR6タイ
プの電池の断面図である。
FIG. 1 is a cross-sectional view of an LR6 type battery, which is an example of the alkaline battery of the present invention.

【図2】顆粒状ゲル化剤濃度と放電持続時間との関係を
示すグラフである。
FIG. 2 is a graph showing the relationship between granular gelling agent concentration and discharge duration.

【符号の説明】[Explanation of symbols]

5    陽極 6    セパレータ 7    陰極 5 Anode 6 Separator 7 Cathode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  亜鉛粉末を主体とする陰極活物質を、
アルカリ電解液とゲル化剤とから成るゲル状電解液に分
散させたゲル状陰極を有するアルカリ電池において、前
記ゲル化剤には、三次元構造を有し粒径が50μm以上
の顆粒状ゲル化剤が含有されていることを特徴とするア
ルカリ電池。
[Claim 1] A cathode active material mainly composed of zinc powder,
In an alkaline battery having a gelled cathode dispersed in a gelled electrolyte consisting of an alkaline electrolyte and a gelling agent, the gelling agent includes a gelled granule having a three-dimensional structure and a particle size of 50 μm or more. An alkaline battery characterized by containing an agent.
JP4937591A 1991-03-14 1991-03-14 Alkaline battery Pending JPH04284362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4937591A JPH04284362A (en) 1991-03-14 1991-03-14 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4937591A JPH04284362A (en) 1991-03-14 1991-03-14 Alkaline battery

Publications (1)

Publication Number Publication Date
JPH04284362A true JPH04284362A (en) 1992-10-08

Family

ID=12829283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4937591A Pending JPH04284362A (en) 1991-03-14 1991-03-14 Alkaline battery

Country Status (1)

Country Link
JP (1) JPH04284362A (en)

Similar Documents

Publication Publication Date Title
JP3491897B2 (en) Additives for primary electrochemical cells with manganese dioxide cathode
US4563404A (en) Cell gelling agent
US6759166B2 (en) Alkaline cell with improved cathode
US6753109B2 (en) Alkaline cell with improved cathode
EP1203417B1 (en) Alkaline cell with improved anode
US4288913A (en) Method of forming in situ gelled anode
US8003258B2 (en) Alkaline cell with improved anode
JP4222488B2 (en) Alkaline battery
US4332870A (en) Cell having a gelled anode containing a polyhydric alcohol
JPH07254406A (en) Unamalgamated zinc alkaline battery
US3996068A (en) Primary dry cell
WO2008021799A1 (en) Alkaline cell with nickel oxyhydroxide cathode and zinc anode
JPH0222984B2 (en)
JPH04284362A (en) Alkaline battery
JPH09180736A (en) Alkaline manganese battery
JPH1083811A (en) Alkaline dry cell
US4014712A (en) Cathode-depolarizer mix containing a polyacrylamide binder
JP2001307746A (en) Alkaline battery
JPH04366549A (en) Zinc alkaline battery
JPH04286865A (en) Zinc-alkaline battery
JP2867458B2 (en) Alkaline battery
JPH0140472B2 (en)
JP2000030695A (en) Manufacture of gelatinous zinc negative electrode for zinc alkaline battery
JPS59186256A (en) Zinc negative electrode for alkali battery
JPH0317182B2 (en)