JPH04283669A - Locating device for fault point of gas-insulated machinery and apparatus - Google Patents

Locating device for fault point of gas-insulated machinery and apparatus

Info

Publication number
JPH04283669A
JPH04283669A JP3047066A JP4706691A JPH04283669A JP H04283669 A JPH04283669 A JP H04283669A JP 3047066 A JP3047066 A JP 3047066A JP 4706691 A JP4706691 A JP 4706691A JP H04283669 A JPH04283669 A JP H04283669A
Authority
JP
Japan
Prior art keywords
light
optical fiber
diagnostic
failure point
locating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3047066A
Other languages
Japanese (ja)
Other versions
JP2979678B2 (en
Inventor
Hiromi Iwai
岩井 弘美
Miyuki Tsuchikawa
土川 幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3047066A priority Critical patent/JP2979678B2/en
Publication of JPH04283669A publication Critical patent/JPH04283669A/en
Application granted granted Critical
Publication of JP2979678B2 publication Critical patent/JP2979678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1254Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of gas-insulated power appliances or vacuum gaps

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Locating Faults (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

PURPOSE:To diagnose easily and frequently whether a fault point locating device locates a fault section out of a plurality of sections screened by insulation spaces when a flashover fault occurs in a gas-insulated apparatus operates properly or not. CONSTITUTION:A diagnosis light which is emitted from a short-circuiting light detection part 3A is received by an accident monitoring device 1A and the presence is judged, thus enabling whether a fault point locating device operates properly or not. For obtaining the diagnosis light, a method for obtaining a fluorescent light by emitting a counterlight diagnosis light to a fluorescent substance 35 and a method for obtaining a reflection light at a reflection part are available. With the counterlight diagnosis light, a method for transmitting the counterlight diagnosis light which is emitted from a light-emitting device 182 which is provided at an accident monitoring device 1A to a short-circuiting light detection part 3A using an optical fiber for diagnosis 23 which is provided in parallel with an optical fiber for receiving light 22A and a method for providing a penetration hole at the short-circuiting light detection light 3A and then allowing the counterlight diagnosis light to enter it are available.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、GISと称されるガ
ス絶縁開閉器装置やGICと称されるガス絶縁ケーブル
などの、絶縁スペーサで仕切られて複数の密封された区
画が形成されているガス絶縁機器の区画ごとの内部閃絡
光を検出し、閃絡故障が生じた区画を標定する故障点標
定装置に関する。
[Industrial Application Field] This invention is applicable to gas insulated switchgear devices called GIS and gas insulated cables called GIC, which are partitioned by insulating spacers to form a plurality of sealed compartments. The present invention relates to a failure point locating device that detects internal flash light in each section of gas-insulated equipment and locates the section where a flash fault has occurred.

【0002】0002

【従来の技術】GISやGICなどのガス絶縁機器は電
力の輸送にとって重要な機器であり、万一これらガス絶
縁機器内部で地絡や相間短絡などの故障が生じた場合に
はこれを速やかに復旧させることが要求される。そのた
めにはこれらの機器は完全密封でかつ前述のように内部
も絶縁スペーサで区切られて複数の区画が形成されてい
るために、故障が生じた場合その区画を的確に標定する
ことが望ましい。そしてこのための故障点標定装置とし
てガス絶縁機器内部での地絡などのときに発生する閃絡
光を光学的に検出する方式のものが実用に供せられてい
る。
[Prior Art] Gas insulated equipment such as GIS and GIC is important equipment for the transportation of electricity, and in the unlikely event that a failure such as a ground fault or phase-to-phase short circuit occurs inside these gas insulated equipment, it must be immediately removed. It is requested that it be restored. To this end, these devices are completely sealed and, as mentioned above, are internally divided into multiple compartments by insulating spacers, so in the event of a failure, it is desirable to accurately locate the compartment. As a failure point locating device for this purpose, a system that optically detects flash light generated when a ground fault occurs inside gas-insulated equipment is in practical use.

【0003】一般に前述のような故障が発生する確率は
極めて小さいため、故障点標定装置が動作した場合、そ
の信頼度を確保するために故障点標定装置が健全である
ことを常に診断する機能が重要である。
[0003] Generally, the probability that the above-mentioned failure will occur is extremely small, so if the failure point locating device operates, a function is required to constantly diagnose whether the failure point locating device is healthy in order to ensure its reliability. is important.

【0004】図10は従来のガス絶縁機器の故障点標定
装置を示す回路図並びに断面図である。この図において
、ガス絶縁機器を構成する区画のうちの1つとしての密
封容器100に設けられた閃絡光検出部3から引き出さ
れた受光用光ファイバ2が事故監視装置1まで導かれる
FIG. 10 is a circuit diagram and a sectional view showing a conventional failure point locating device for gas insulated equipment. In this figure, a light-receiving optical fiber 2 drawn out from a flashlight detection unit 3 provided in a sealed container 100 as one of the compartments constituting a gas-insulated device is guided to an accident monitoring device 1.

【0005】事故監視装置1は受光用光ファイバ2で導
かれた光を受けて電気信号に変換するホトダイオードな
どの受光部11、その出力信号を増幅する増幅器12、
その信号の強度が所定の電圧値V1 を超えたときだけ
信号を出力する比較器13、その出力の波形を整形する
波形整形器14、その結果を出力する信号出力部15及
び増幅器12の入力側に設けられた診断信号発生部16
とからなっている。
The accident monitoring device 1 includes a light receiving section 11 such as a photodiode that receives light guided by a light receiving optical fiber 2 and converts it into an electrical signal, an amplifier 12 that amplifies the output signal,
The input side of the comparator 13 that outputs a signal only when the strength of the signal exceeds a predetermined voltage value V1, the waveform shaper 14 that shapes the waveform of its output, the signal output section 15 that outputs the result, and the amplifier 12 A diagnostic signal generating section 16 provided in
It consists of

【0006】受光用光ファイバ2は光ファイバ21とこ
れに外部から光が侵入するのを防止する被覆22とから
なっており、一端が受光部11、他端が閃絡光検出部3
に挿入されている。
The light-receiving optical fiber 2 consists of an optical fiber 21 and a coating 22 that prevents light from entering from the outside.One end is a light-receiving section 11, and the other end is a flashlight detecting section 3.
is inserted into.

【0007】閃絡光検出部3は密封容器100に設けら
れた貫通孔から密封容器100内部で発生した閃絡光を
取り出す部分であり、密封容器100に溶接で取付けら
れたリング状の取付けフランジ33、この取付けフラン
ジ33の中央の貫通孔部にはめ込まれた導光ガラス32
、取付けフランジ33にボルト37で取付けられる気密
フランジ、これにボルト36で取付けられる受光用光フ
ァイバ2の端部を取付けた光ファイバ端末部31及び気
密を保持するためのパッキン38,39からなっている
The flash light detection section 3 is a part that extracts the flash light generated inside the sealed container 100 from a through hole provided in the sealed container 100, and is a ring-shaped mounting flange attached to the sealed container 100 by welding. 33, light guide glass 32 fitted into the central through hole of this mounting flange 33
, an airtight flange attached to the mounting flange 33 with bolts 37, an optical fiber terminal part 31 to which the end of the receiving optical fiber 2 is attached with bolts 36, and packings 38 and 39 for maintaining airtightness. There is.

【0008】密封容器100内で閃絡光が発生するとこ
の閃絡光は直接に又は密封容器100の内壁で反射して
導光ガラス32を通って受光用光ファイバ2に入る。こ
の閃絡光は受光用光ファイバ2を伝わって事故監視装置
1の受光部11によって受光され光の強度に比例した強
度の電気信号に変換される。この電気信号が処理し易い
程度の強度に増幅器12で増幅され、閃絡光だけを検出
する比較器13を介して波形整形器14で閃絡光を検出
したときにHigh、検出されないときにLow の2
値信号に変換され、信号出力部15から出力されて図示
しない表示部で故障部位の表示や警報として標定結果が
出力される。
When flash light is generated within the sealed container 100, the flash light enters the light receiving optical fiber 2 through the light guiding glass 32 either directly or by being reflected from the inner wall of the sealed container 100. This flash light is transmitted through the light-receiving optical fiber 2, received by the light-receiving section 11 of the accident monitoring device 1, and converted into an electrical signal with an intensity proportional to the intensity of the light. This electric signal is amplified by an amplifier 12 to a strength that is easy to process, and is passed through a comparator 13 that detects only flashlight.When a flashlight is detected by a waveform shaper 14, the signal becomes High, and when no flashlight is detected, the signal becomes Low. 2
It is converted into a value signal, outputted from the signal output section 15, and the location result is outputted as a display of a failure part or an alarm on a display section (not shown).

【0009】万一、故障発生時に受光用光ファイバ2や
事故監視装置1内の電子回路に不具合が生じていると、
閃絡光が発生しても検出されないために故障を生じた区
画の標定ができないことになる。その結果、系統切替え
や復旧に長時間を要し重大な社会問題にまで発展する恐
れがある。このため、故障点標定装置全体が常に正常で
あることが重要で、その診断方法が強く求められている
[0009] In the unlikely event that a malfunction occurs in the light receiving optical fiber 2 or the electronic circuit in the accident monitoring device 1,
Even if a flash of light occurs, it is not detected, making it impossible to locate the section where the failure has occurred. As a result, grid switching and restoration may take a long time, leading to serious social problems. For this reason, it is important that the entire failure point locating device is always normal, and a diagnostic method is strongly desired.

【0010】現状では、診断用の電気信号を出力する診
断信号発生部16を事故監視装置1の内部に設け、巡視
点検時に監視員が診断信号を発信して電気回路部分だけ
を確認する方式や、受光用光ファイバ2の閃絡光検出部
3の先端部である光ファイバ端末部31を取り外し、閃
絡光相当の診断光を入射し、正常に動作するかどうかを
定期的に点検する方式が採用されている。そして、この
点検のために、光ファイバ端末部31を取り外しても導
光ガラス32によって閃絡光検出部3での気密が保持さ
れる構成が採用されている。しかし、この方式、特に光
ファイバ端末部31を取り外す点検の間隔は年単位であ
るため、故障の時期が予測できない密封容器内部の閃絡
光の発生を検出するための診断方法に対するものとして
は充分とはいえない。
At present, there is a method in which a diagnostic signal generator 16 that outputs an electrical signal for diagnosis is provided inside the accident monitoring device 1, and a supervisor sends out a diagnostic signal during a patrol inspection to check only the electrical circuit portion. , a method in which the optical fiber terminal section 31, which is the tip of the flashlight detection section 3 of the light-receiving optical fiber 2, is removed, diagnostic light equivalent to flashlight is input, and it is periodically inspected to see if it is operating normally. has been adopted. For this inspection, a configuration is adopted in which even if the optical fiber terminal section 31 is removed, the light guide glass 32 maintains the airtightness of the flashlight detection section 3. However, this method, especially since the inspection interval for removing the optical fiber terminal section 31 is on a yearly basis, is sufficient as a diagnostic method for detecting the occurrence of flash light inside a sealed container where the time of failure cannot be predicted. I can't say that.

【0011】[0011]

【発明が解決しようとする課題】前述のように、定期的
に点検することによって閃絡光検出部3や受光用光ファ
イバ2を含めて故障点標定装置が正常に動作することを
確認するのであるが、点検間隔の間に何らかの原因で閃
絡光の検出が不能になっていると密封容器内で閃絡が発
生したときに故障点の標定ができなくなるという問題が
生ずる。かといって前述の点検間隔を短くして頻度を高
くすると点検に要する費用が大きくなり、また点検のた
めの閃絡光検出部3の取り外し取付け作業によって受光
用光ファイバ2やその他の部品が損傷する可能性も高く
なって却って信頼性が低下するという問題も生ずる。ま
た、点検間隔を1年程度に短縮したとしても前述のよう
な検出不能の確率が小さくなるだけで実質的に皆無とみ
なせる程度には到底ならないという問題もある。
[Problem to be Solved by the Invention] As mentioned above, by periodically inspecting it, it is confirmed that the failure point locating device including the flash light detection section 3 and the light receiving optical fiber 2 is operating normally. However, if flash flash cannot be detected for some reason during the inspection interval, a problem arises in that when flash flash occurs in a sealed container, it becomes impossible to locate the failure point. On the other hand, shortening the above-mentioned inspection interval and increasing the frequency increases the cost required for inspection, and the work of removing and attaching the flash detector 3 for inspection may damage the light-receiving optical fiber 2 and other parts. There is also the problem that the possibility of failure increases and reliability deteriorates. Another problem is that even if the inspection interval is shortened to about one year, the probability of undetectability as described above will only decrease, but it will not reach the level where it can be considered as virtually non-existent.

【0012】この発明の目的はこのような問題を解決し
、実質的に常時点検することのできるガス絶縁機器の故
障点標定装置を提供することにある。
An object of the present invention is to solve such problems and to provide a failure point locating device for gas insulated equipment that can be inspected virtually all the time.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、ガス絶縁機器の密封容器に設け
この容器内で発生した閃絡光を導光ガラスを介して外部
に導く閃絡光検出部、この閃絡光検出部から出た閃絡光
を故障点標定装置まで導く受光用光ファイバ及びこの受
光用光ファイバが導いた光を受光して電気信号に変換し
て故障点を標定する事故監視装置からなるガス絶縁機器
の故障点標定装置において、前記受光用光ファイバとこ
の受光用光ファイバに並列に設けた診断光送光用光ファ
イバとで光ケーブルを構成し、前記事故監視装置に、送
光診断光を生成して前記診断光送光用光ファイバに入射
する診断光発光部及び電気信号に変換された受光診断光
の有無を検出する診断信号用比較器とを設け、前記光ケ
ーブルの閃絡光検出部側の先端に送光診断光が照射され
て受光診断光としての蛍光を発する蛍光物質を設けてな
るものとし、更に、蛍光物質を、受光用光ファイバと診
断光伝送用光ファイバとの先端にそれぞれ設けてなるも
のとし、また、蛍光物質を、光ケーブルの端部に対向す
る導光ガラスの面に設けてなるものとし、また、光ケー
ブルの端部に対向する導光ガラスの面に設けた凹穴に蛍
光物質を充填してなるものとし、また、光ケーブルに対
向する導光ガラスの面に蛍光物質を塗布してなるものと
し、また、光ケーブルに診断光受光用光ファイバを設け
、光ケーブルの閃絡光検出部側の先端に診断光送光用光
ファイバから出射した送光診断光を診断光受光用光ファ
イバに入射して受光診断光とする反射部を設けてなるも
のとし、更に、反射部が、光ケーブルの先端に設けたプ
リズムからなるものとし、また、光ケーブルの先端に対
向する導光ガラスの面に凹部を設けこの凹部面を反射面
として反射部を構成してなるものとし、また、ガス絶縁
機器の密封容器に設けこの容器内で発生した閃絡光を導
光ガラスを介して外部に導く閃絡光検出部、この閃絡光
検出部から出た閃絡光を故障点標定装置まで導く受光用
光ファイバ及びこの受光用光ファイバが導いた光を受光
して電気信号に変換して故障点を標定する事故監視装置
からなるガス絶縁機器の故障点標定装置において、前記
受光用光ファイバの閃絡光検出部側の端部に蛍光物質を
、この蛍光物質に前記閃絡光検出部の外部から送光診断
光を前記蛍光物質に照射する導光孔をそれぞれ設け、事
故監視装置に、前記蛍光物質が導光孔から照射されて送
光診断光によって受光診断光としての蛍光を発光してこ
の受光診断光が前記受光用光ファイバを伝わって事故監
視装置に達して電気信号に変換されてその強度を所定の
強度と比較する診断信号用比較器を設けてなるものとす
る。
[Means for Solving the Problems] In order to solve the above-mentioned problems, according to the present invention, a device is provided in a sealed container of gas insulated equipment and guides flashlight generated within the container to the outside through a light guide glass. A flashlight detection unit, a light-receiving optical fiber that guides the flashlight emitted from the flashlight detection unit to the failure point locating device, and a light-receiving optical fiber that receives the light guided and converts it into an electrical signal to detect the failure point. In a failure point locating device for gas insulated equipment consisting of an accident monitoring device for locating a point, an optical cable is constituted by the light receiving optical fiber and a diagnostic light transmitting optical fiber provided in parallel with the light receiving optical fiber, The accident monitoring device includes a diagnostic light emitting unit that generates a transmitted diagnostic light and enters the diagnostic light transmitting optical fiber, and a diagnostic signal comparator that detects the presence or absence of the received diagnostic light that has been converted into an electrical signal. and a fluorescent substance that emits fluorescence as the received diagnostic light when the transmitted diagnostic light is irradiated on the tip of the optical cable on the side of the flash detection unit, and further, the fluorescent substance is connected to the light receiving optical fiber. A fluorescent substance shall be provided at each end of the optical fiber for transmitting diagnostic light, and a fluorescent material shall be provided on the surface of the light guide glass facing the end of the optical cable. The recessed hole provided in the surface of the light guiding glass shall be filled with a fluorescent material, and the surface of the light guiding glass facing the optical cable shall be coated with a fluorescent material, and the optical cable shall be provided with a diagnostic light. A light-receiving optical fiber is provided, and a reflecting part is provided at the tip of the optical cable on the side of the flash light detection section to make the transmitted diagnostic light emitted from the diagnostic light-transmitting optical fiber enter the diagnostic light-receiving optical fiber to become received diagnostic light. Furthermore, the reflecting section shall consist of a prism provided at the tip of the optical cable, and a concave portion shall be provided on the surface of the light guide glass facing the tip of the optical cable, and the concave surface shall be used as a reflective surface to reflect light. and a flashlight detection section that is installed in a sealed container of gas-insulated equipment and guides the flashlight generated in the container to the outside through a light guide glass, and this flashlight detection section. A gas-insulated device consisting of a light-receiving optical fiber that guides the flashing light emitted from the device to a failure point locating device, and an accident monitoring device that receives the light guided by this light-receiving optical fiber and converts it into an electrical signal to locate the failure point. In the failure point locating device, a fluorescent material is provided at the end of the light-receiving optical fiber on the side of the flash light detection section, and the fluorescent material is irradiated with transmitted diagnostic light from outside the flash light detection section. The fluorescent substance is irradiated from the light guide hole and emits fluorescence as a received diagnostic light by the transmitted diagnostic light, and this received diagnostic light connects the received optical fiber. A diagnostic signal comparator is provided for transmitting the signal to the accident monitoring device, converting it into an electrical signal, and comparing the intensity with a predetermined intensity.

【0014】[0014]

【作用】この発明の構成において、受光用光ファイバと
この受光用光ファイバに並列に診断光送光用光ファイバ
を設けてこれらで光ケーブルを構成し、事故監視装置に
、診断光を生成しこれを送光診断光として診断光送光用
光ファイバに入射する診断光発光部及び受光診断光の有
無を検出する診断信号用比較器とを設け、光ケーブルの
閃絡光検出部側の先端に蛍光物質を設けることにより、
送光診断光によって診断光送光用光ファイバの先端の蛍
光物質が蛍光を発し、この蛍光が受光診断光となって受
光診断光用光ファイバを伝わって事故監視装置に戻り受
光され受光部によって電気信号に変換され、その強度を
診断信号比較器によって所定の強度を越えたときに受光
診断光が受信されしたがって故障点標定装置が正常であ
ると判断することができる。更に、蛍光物質を、受光用
光ファイバと診断光送光用光ファイバの双方の先端にそ
れぞれ設けることによって、診断光送光用光ファイバの
先端に設けた蛍光物質が送光診断光によって蛍光を発し
、更にこの蛍光によって診断光受光用光ファイバの先端
に設けた蛍光物質が蛍光を発し、この蛍光が受光診断光
となって診断光受光用光ファイバによって事故監視装置
までを伝わり受光される。又は、蛍光物質を光ケーブル
の端部に対向する導光ガラスの面に設けることによって
、診断光送光用光ファイバから入射した送光診断光によ
ってこの蛍光物質が蛍光を発するが、この蛍光は四方に
放射するのでその一部が診断光受光用光ファイバを伝わ
って事故監視装置に受光される。また、光ケーブルの端
部に対向する導光ガラスの面に設けた凹穴に蛍光物質を
充填することによって、容易に蛍光物質を設けることが
できるとともに蛍光物質を光ケーブルの先端に設ける場
合にくらべて蛍光による蛍光の発生の段階が不要になる
ので、比較的大きな受光診断光を得ることができる。ま
た、光ケーブルに対向する導光ガラスの面に蛍光物質を
塗布することによって、導光ガラスに凹穴を設ける加工
が不要になる。又は、光ケーブルに診断光受光用光ファ
イバを設け、光ケーブルの閃絡光検出部側の先端に診断
光送光用光ファイバから出射した診断光を診断光受光用
光ファイバに入射する反射部を設けることによって、蛍
光物質によって受光診断光を生成する方式に比べてより
大きな受光診断光を得ることができる。また、反射部を
、光ケーブルの先端に設けたプリズムで構成することが
できる。又は、プリズムの代わりに、光ケーブルの先端
に対向する導光ガラスの面に凹部を設けこの凹部面を反
射面として反射部を構成することによって、プリズムを
取付けるための光ケーブル先端の複雑な加工が不要にな
る。又は、受光用光ファイバの閃絡光検出部側の端部に
蛍光物質を、この蛍光物質に閃絡光検出部の外部から診
断光を蛍光物質に照射する導光孔をそれぞれ設け、事故
監視装置に、蛍光物質が導光孔から照射された診断光に
よって発光して受光用光ファイバを伝わって事故監視装
置に達した蛍光が電気信号に変換された電気信号の強度
を所定の強度と比較する診断信号用比較器を設けること
によって、診断光送光用光ファイバが不要になる。
[Operation] In the configuration of the present invention, an optical fiber for receiving light and an optical fiber for transmitting diagnostic light are provided in parallel with the optical fiber for receiving light, and these constitute an optical cable, and the diagnostic light is generated and transmitted to the accident monitoring device. A diagnostic light emitting part that enters the diagnostic light transmitting optical fiber as the diagnostic light and a diagnostic signal comparator that detects the presence or absence of the received diagnostic light are provided, and a fluorescent light is attached to the tip of the optical cable on the flash light detection part side. By providing a substance,
The transmitted diagnostic light causes the fluorescent material at the tip of the diagnostic light transmitting optical fiber to emit fluorescence, and this fluorescence becomes received diagnostic light that travels through the received diagnostic light optical fiber and returns to the accident monitoring device, where it is received and received by the light receiving unit. The diagnostic light is converted into an electrical signal, and when the intensity exceeds a predetermined intensity by a diagnostic signal comparator, the received diagnostic light is received, and therefore it can be determined that the failure point locating device is normal. Furthermore, by providing a fluorescent material at the tips of both the light receiving optical fiber and the diagnostic light transmitting optical fiber, the fluorescent material provided at the tip of the diagnostic light transmitting optical fiber is emitted by the transmitted diagnostic light. Furthermore, this fluorescence causes a fluorescent material provided at the tip of the diagnostic light receiving optical fiber to emit fluorescence, and this fluorescence becomes received diagnostic light which is transmitted through the diagnostic light receiving optical fiber to the accident monitoring device and received. Alternatively, by providing a fluorescent substance on the surface of the light guide glass facing the end of the optical cable, the fluorescent substance emits fluorescence due to the transmitted diagnostic light incident from the optical fiber for transmitting the diagnostic light, but this fluorescence is emitted in all directions. A portion of the light is transmitted through the diagnostic light receiving optical fiber and received by the accident monitoring device. In addition, by filling the recessed hole in the light guide glass facing the end of the optical cable with the fluorescent material, it is easier to provide the fluorescent material, and it is easier to provide the fluorescent material than in the case where the fluorescent material is provided at the tip of the optical cable. Since the step of generating fluorescence by fluorescence is not necessary, a relatively large amount of received diagnostic light can be obtained. Further, by applying a fluorescent substance to the surface of the light guide glass facing the optical cable, it becomes unnecessary to provide a recessed hole in the light guide glass. Alternatively, an optical fiber for receiving diagnostic light is provided in the optical cable, and a reflecting portion is provided at the tip of the optical cable on the side of the flash light detection unit to input the diagnostic light emitted from the optical fiber for transmitting diagnostic light into the optical fiber for receiving diagnostic light. As a result, a larger amount of received diagnostic light can be obtained compared to a method in which the received diagnostic light is generated using a fluorescent substance. Further, the reflecting section can be configured with a prism provided at the tip of the optical cable. Alternatively, instead of a prism, a recess is provided on the surface of the light guide glass facing the tip of the optical cable, and the concave surface is used as a reflective surface to form a reflective section, thereby eliminating the need for complicated processing of the tip of the optical cable to attach the prism. become. Alternatively, a fluorescent substance is provided at the end of the optical fiber for receiving light on the side of the flashlight detection unit, and a light guide hole is provided in this fluorescent substance to irradiate diagnostic light from outside the flashlight detection unit to the fluorescent substance, and accident monitoring is performed. In the device, a fluorescent material is emitted by the diagnostic light irradiated from the light guiding hole, and the fluorescence that reaches the accident monitoring device through the light-receiving optical fiber is converted into an electrical signal.The intensity of the electrical signal is compared with a predetermined intensity. By providing a diagnostic signal comparator, an optical fiber for transmitting diagnostic light becomes unnecessary.

【0015】[0015]

【実施例】以下この発明を実施例に基づいて説明する。 図1はこの発明の第1の実施例を示す故障点標定装置の
回路図及び断面図であり、図10と同じ構成要素に対し
ては共通の符号を付け、また同じ機能の構成要素に対し
ては添字Aを付けることにより詳細な説明を省略する。 この図において、光ケーブル2Aは被覆21Aで共通に
被覆された2本の光ファイバからなり、そのうちの1本
は図10の受光用光ファイバ2と同じ機能の受光用光フ
ァイバ22A、もう1本は故障点標定装置診断時の診断
光を伝える診断光送光用光ファイバ23である。
EXAMPLES The present invention will be explained below based on examples. FIG. 1 is a circuit diagram and a cross-sectional view of a failure point locating device showing a first embodiment of the present invention. The same components as in FIG. The detailed explanation will be omitted by adding the subscript A. In this figure, an optical cable 2A consists of two optical fibers commonly coated with a coating 21A, one of which is a light-receiving optical fiber 22A having the same function as the light-receiving optical fiber 2 of FIG. This is an optical fiber 23 for transmitting diagnostic light that transmits diagnostic light when diagnosing the failure point locating device.

【0016】光ケーブク2Aの閃絡光検出部3A側の端
部は2本の光ファイバ22A,23それぞれに同じ断面
の蛍光物質35を取付けてある。また、事故監視装置1
A側の端部は、受光用光ファイバ22Aは図10と同様
に受光部11が受光できるように、診断光送光用光ファ
イバ23の端部は事故監視装置1A内に設けた診断光発
光部18から送光診断光が入射されるようにそれぞれ取
付けてある。診断光発光部18は診断信号発生部181
とこれからの信号によって発光する発光器182とから
なっている。また、比較器13及び波形整形器14と並
列に診断信号用比較器17を設けてある。
At the end of the optical cable 2A on the side of the flash detection section 3A, a fluorescent substance 35 having the same cross section is attached to each of the two optical fibers 22A and 23. In addition, the accident monitoring device 1
The end of the A-side optical fiber 22A for receiving light is connected to the diagnostic light emitting unit provided in the accident monitoring device 1A, and the end of the diagnostic light transmitting optical fiber 23 is connected to the diagnostic light emitting unit so that the light receiving unit 11 can receive the light as in FIG. 10. They are respectively attached so that the transmitted diagnostic light is incident from the section 18. The diagnostic light emitting unit 18 is a diagnostic signal generating unit 181
and a light emitter 182 that emits light in response to a signal from it. Further, a diagnostic signal comparator 17 is provided in parallel with the comparator 13 and waveform shaper 14.

【0017】このような構成において故障点標定装置の
診断は次のようにして行われる。まず、診断光発光部1
8で発光した光は送光診断光として診断光送光用光ファ
イバ23を伝わって蛍光物質35に照射されこの蛍光物
質35が励起して蛍光を発する。この蛍光は四方に放射
されるので隣接している受光用光ファイバ22Aの先端
の蛍光物質35に照射されてこれを励起して蛍光を発す
る。この蛍光の一部が受光診断光として受光用光ファイ
バ22Aを伝わって受光部11によって受光され電気信
号に変換される。この電気信号が診断信号として増幅器
12によって増幅され2つの比較器13,17に入力さ
れる。
In such a configuration, diagnosis of the failure point locating device is performed as follows. First, the diagnostic light emitting section 1
The light emitted at step 8 is transmitted as diagnostic light through the diagnostic light transmitting optical fiber 23 and irradiated onto the fluorescent substance 35, which is excited and emits fluorescence. Since this fluorescence is emitted in all directions, it is irradiated onto the fluorescent material 35 at the tip of the adjacent light-receiving optical fiber 22A and excites it to emit fluorescence. A part of this fluorescence is transmitted through the light-receiving optical fiber 22A as received diagnostic light, is received by the light-receiving section 11, and is converted into an electrical signal. This electrical signal is amplified by an amplifier 12 as a diagnostic signal and input to two comparators 13 and 17.

【0018】比較器13の設定電圧V1 は、強度の比
較的大きな閃絡光を検出するに適した値に設定されてい
るのに対して、診断信号用比較器17は蛍光物質35の
励起によって発光した微弱な蛍光の有無を検出するもの
なので、その設定電圧V2 は比較器13の設定電圧V
1 よりも小さな電圧値に設定してある。したがって、
比較器13が検出することができない微弱な診断信号を
診断信号用比較器17で検出することができる。検出さ
れた診断信号は信号出力部15に入力され図示しない表
示部に表示して正常か否かが診断者よって判定される。
The set voltage V1 of the comparator 13 is set to a value suitable for detecting flashlight of relatively high intensity, whereas the diagnostic signal comparator 17 is Since it detects the presence or absence of emitted weak fluorescence, the set voltage V2 is the set voltage V of the comparator 13.
It is set to a voltage value smaller than 1. therefore,
A weak diagnostic signal that cannot be detected by the comparator 13 can be detected by the diagnostic signal comparator 17. The detected diagnostic signal is input to the signal output section 15 and displayed on a display section (not shown), and a diagnostician determines whether or not it is normal.

【0019】閃絡光が検出されたときには比較器13で
検出される他に診断信号用比較器17でも検出されるの
で、これらが両方とも表示部で表示されることになる。
When flash light is detected, it is detected not only by the comparator 13 but also by the diagnostic signal comparator 17, so that both of these are displayed on the display section.

【0020】図2は図1の閃絡光検出部3Aの一部を拡
大した拡大断面図である。この図において、前述のよう
に診断光発光部18で発光した送光診断光45が診断光
送光用光ファイバ23の先端の蛍光物質35に照射され
て蛍光を発し、その蛍光が受光用光ファイバ221Aの
先端に設けられた隣の蛍光物質35に照射されて受光診
断光44としての蛍光が発することになる。この受光診
断光44は受光用光ファイバ22Aを伝わって事故監視
装置1Aまで達示し前述のように故障点標定の診断が行
われる。
FIG. 2 is an enlarged cross-sectional view of a part of the flash detection section 3A of FIG. 1. In this figure, as described above, the transmitted diagnostic light 45 emitted by the diagnostic light emitting unit 18 is irradiated onto the fluorescent substance 35 at the tip of the diagnostic light transmitting optical fiber 23 to emit fluorescence, and the fluorescence is used as the receiving light. The adjacent fluorescent substance 35 provided at the tip of the fiber 221A is irradiated with fluorescence as received diagnostic light 44 to be emitted. The received diagnostic light 44 travels through the light receiving optical fiber 22A and reaches the accident monitoring device 1A, where diagnosis of failure point location is performed as described above.

【0021】閃絡光41が導光ガラス32を通って入っ
てきたときにはそれぞれの光ファイバ22A,23の中
に閃絡光42,43として伝わってゆくが、このうちの
閃絡光42だけが実際に検出されるものとなる。
When the flashlight 41 enters through the light guiding glass 32, it is transmitted as flashlight 42, 43 into the respective optical fibers 22A, 23, but only the flashlight 42 among these is transmitted as flashlight 42, 43. This will actually be detected.

【0022】図3はこの発明の第2の実施例を示す断面
図であり、図2と異なる点は蛍光物質35Bを光ケーブ
ル2Bと対向する導入ガラス32Bの表面に設けたもの
であり、導光ガラス32Bの図の上表面に凹穴を設けこ
の凹穴に蛍光物質35Bを充填した構成である。この構
成では送光診断光43は蛍光物質35Bに照射されて蛍
光が発する。この蛍光は四方に放射するがそのうちの受
光用光ファイバ22Bに入った蛍光だけが受光診断光4
4として図1の事故監視装置1Aまで伝達される。
FIG. 3 is a sectional view showing a second embodiment of the present invention, which differs from FIG. 2 in that a fluorescent substance 35B is provided on the surface of the introduction glass 32B facing the optical cable 2B, and the light guide The configuration is such that a recessed hole is provided on the upper surface of the glass 32B, and the recessed hole is filled with a fluorescent material 35B. In this configuration, the transmitted diagnostic light 43 is irradiated onto the fluorescent material 35B to emit fluorescence. This fluorescent light is emitted in all directions, but only the fluorescent light that has entered the receiving optical fiber 22B is the received diagnostic light 4.
4 is transmitted to the accident monitoring device 1A in FIG.

【0023】この実施例では図2の場合のように蛍光物
質の発光が2段になっていないので受光用光ファイバ2
2Bが受光する診断用模擬光44の強度が大きいという
特長がある。
In this embodiment, since the fluorescent material does not emit light in two stages as in the case of FIG.
A feature is that the intensity of the diagnostic simulated light 44 received by 2B is high.

【0024】図4はこの発明の第3の実施例を示す断面
図であり、図3と異なる点は蛍光物質35Cを導光ガラ
ス32Cの表面全面に設けた点であり、その他は同じな
ので蛍光物質35Cと導光ガラス32Cでけを図示して
ある。導光ガラス32Cの上表面は平面であり凹穴を設
ける必要がないので、図2の導光ガラス32Bに比べて
製作が容易であるという特長がある。
FIG. 4 is a sectional view showing a third embodiment of the present invention, and the difference from FIG. 3 is that a fluorescent material 35C is provided on the entire surface of the light guide glass 32C, and the other points are the same, so the fluorescent material The material 35C and the light guiding glass 32C are illustrated. Since the upper surface of the light guide glass 32C is flat and there is no need to provide a recessed hole, it has the advantage of being easier to manufacture than the light guide glass 32B shown in FIG.

【0025】図5はこの発明の第4の実施例を示す光ケ
ーブル2D先端部と導光ガラス32の断面図、図6はそ
のA−A矢視図であり、図2、図3及び図4と異なる点
は受光用光ファイバ22Bによって伝えられる受光診断
光44を蛍光物質で生成するのではなく、図示のように
プリズム5で送光診断光45を反射させて生成する点で
ある。光ケーブル2Dは被覆21Dで共通に被覆された
3本の光ファイバである受光用光ファイバ22D,診断
光送光用光ファイバ23D、診断光受光用光ファイバ2
4及びこれらを被覆する被覆21Dからなっており、診
断光送光用光ファイバ23Dで伝送された送光診断光4
5は断面が台形状のプリズム5で2回の全反射をしてそ
の方向を反転して受光診断光となり、診断光受光用光フ
ァイバ24によって事故監視装置1Aまで伝送される。 閃絡光41はプリズム5の導光ガラス32と対向する平
行面を通って閃絡光42となって受光用光ファイバ22
Dに入射する。
FIG. 5 is a cross-sectional view of the optical cable 2D tip and light guide glass 32 showing a fourth embodiment of the present invention, and FIG. 6 is a view taken along the line A--A, and FIGS. The difference is that the received diagnostic light 44 transmitted by the light receiving optical fiber 22B is not generated by a fluorescent material, but is generated by reflecting the transmitted diagnostic light 45 by a prism 5 as shown. The optical cable 2D includes three optical fibers commonly coated with a coating 21D: an optical fiber for receiving light 22D, an optical fiber for transmitting diagnostic light 23D, and an optical fiber for receiving diagnostic light 2.
4 and a coating 21D covering these, and transmitting diagnostic light 4 transmitted by an optical fiber 23D for transmitting diagnostic light.
5 is totally reflected twice by a prism 5 having a trapezoidal cross section, and its direction is reversed to become a received diagnostic light, which is transmitted to the accident monitoring device 1A through a diagnostic light receiving optical fiber 24. The flashlight 41 passes through the parallel surface of the prism 5 facing the light guide glass 32, becomes flashlight 42, and is transmitted to the light-receiving optical fiber 22.
incident on D.

【0026】この実施例では受光用光ファイバ22Dに
受光診断光44が伝わることはないので、直接この受光
用光ファイバ22Dを診断することにはならない。しか
し、この受光用光ファイバ22Dは2本の診断用光ファ
イバ23D,24に挟まれて配置してあるので、受光用
光ファイバ22Dだけが断線して後の2本は正常である
ということは殆ど有り得ないので、診断光送光用光ファ
イバ23D、診断光受光用光ファイバ24の双方が正常
であると診断されれば受光用光ファイバ22Dも正常で
あると判断することができる。
In this embodiment, since the received diagnostic light 44 is not transmitted to the receiving optical fiber 22D, the receiving optical fiber 22D is not directly diagnosed. However, since the light-receiving optical fiber 22D is sandwiched between the two diagnostic optical fibers 23D and 24, it is unlikely that only the light-receiving optical fiber 22D is broken and the other two are normal. Since this is highly unlikely, if both the diagnostic light transmitting optical fiber 23D and the diagnostic light receiving optical fiber 24 are diagnosed as being normal, it can be determined that the light receiving optical fiber 22D is also normal.

【0027】図7はこの発明の第5の実施例を示す断面
図、図8はそのB−B矢視図であり、図5、図6と異な
る点はプリズム5を設けない代わりに、導光ガラス32
Eに穴を掘り反射面5Eを設けた点である。送光診断光
45はこの反射面5Eで2回反射してその方向を反転し
て受光診断光44となり事故監視装置1Aに戻る。図5
とは異なりプリズム内での反射ではなく気中での反射な
ので低い反射率であることを考慮して受光側を製作する
か、図5と同じ程度に強度の大きい反射光を得るために
反射面5Eを反射膜でコーティングする構成を採用して
もよい。反射膜をコーティングする面は反射をする斜面
だけにすればその間のコーティングしない面を通って閃
絡光が光ケーブルに到達して閃絡光42として事故監視
装置1Aに伝達される。反射面をコーティングしない場
合でも斜面を通る閃絡光41はこの面で屈折又は反射し
て閃絡光42を形成する成分にはならないので、コーテ
ィングすることによって閃絡光42の強度に大きな変化
はない。
FIG. 7 is a sectional view showing a fifth embodiment of the present invention, and FIG. 8 is a view taken along the line B--B. light glass 32
A hole is dug at point E and a reflective surface 5E is provided. The transmitted diagnostic light 45 is reflected twice by the reflective surface 5E, reverses its direction, and becomes the received diagnostic light 44 and returns to the accident monitoring device 1A. Figure 5
Unlike the above, the reflection is not within the prism but in the air, so the light-receiving side must be manufactured taking into account the low reflectance, or the reflective surface must be fabricated to obtain the same strong reflected light as shown in Figure 5. A configuration may be adopted in which 5E is coated with a reflective film. If the surface coated with a reflective film is only the reflective slope, the flash light reaches the optical cable through the uncoated surface between them and is transmitted as flash light 42 to the accident monitoring device 1A. Even if the reflective surface is not coated, the flashlight 41 that passes through the slope will not be refracted or reflected by this surface to form the flashlight 42, so coating will not cause a large change in the intensity of the flashlight 42. do not have.

【0028】図5,6の第4の実施例ではいずれも3本
の光ファイバ22D,23D,24を並べて配置するも
のであるが、このような構成にこだわるものでなく、例
えばそれぞれの光ファイバの断面が三角形の頂点になる
ように配置することも可能であり、その配置に応じたプ
リズム5の形状を設定すればよい。この場合、閃絡光4
1はプリズムを通さないで受光用光ファイバ22Dに入
射する構成も容易に得られる。3本の光ファイバの配置
については図7,8の第5の実施例でも同様に実施する
ことができる。
In the fourth embodiment shown in FIGS. 5 and 6, three optical fibers 22D, 23D, and 24 are arranged side by side. It is also possible to arrange the prism 5 so that the cross section thereof becomes the apex of a triangle, and the shape of the prism 5 may be set according to the arrangement. In this case, flashlight 4
It is also possible to easily obtain a configuration in which the light beam 1 enters the light-receiving optical fiber 22D without passing through the prism. The arrangement of the three optical fibers can be similarly implemented in the fifth embodiment shown in FIGS. 7 and 8.

【0029】図9はこの発明の第6の実施例を示す故障
点標定装置の回路図及び断面図であり、図1と異なる点
は診断光送光用光ファイバを設けず閃絡光検出部3Fで
送光診断光を与える点である。受光用光ファイバ2Fの
閃絡光検出部3F側の先端には図1と同様に蛍光物質3
5Fを設けてある。蛍光物質35Fを発光させるための
送光診断光は気密フランジ34Fに設けた導光孔62か
ら入射する。この部分の被覆は取り除かれて被覆はく離
部62を形成しており、導光孔62から導入された送光
診断光は蛍光物質35Fに照射される。照射された蛍光
物質35Fは蛍光を発してその一部が光ケーブル2Fを
伝わって事故監視装置1Fの受光部11に受光される。 送光診断光としては、太陽光や照明光などを適宜導光孔
62に導くことによって生成することができる。
FIG. 9 is a circuit diagram and a sectional view of a failure point locating device according to a sixth embodiment of the present invention. This is the point where the diagnostic light is transmitted on the 3rd floor. At the tip of the light-receiving optical fiber 2F on the side of the flashlight detection section 3F, there is a fluorescent material 3 as in FIG.
There is a 5th floor. Transmitted diagnostic light for causing the fluorescent substance 35F to emit light enters through a light guide hole 62 provided in the airtight flange 34F. The coating of this portion is removed to form a coating peeling part 62, and the transmitted diagnostic light introduced from the light guide hole 62 is irradiated onto the fluorescent substance 35F. The irradiated fluorescent substance 35F emits fluorescence, a part of which is transmitted through the optical cable 2F and received by the light receiving section 11 of the accident monitoring device 1F. The transmitted diagnostic light can be generated by appropriately guiding sunlight, illumination light, etc. to the light guide hole 62.

【0030】事故監視装置1Fの図1に示す事故監視装
置1Aとの違いは診断光発光部18が設けられていない
点である。受光部11で受光された診断光の処理は図1
と同様である。
The difference between the accident monitoring device 1F and the accident monitoring device 1A shown in FIG. 1 is that the diagnostic light emitting section 18 is not provided. The processing of the diagnostic light received by the light receiving unit 11 is shown in Figure 1.
It is similar to

【0031】この実施例では、図1の実施例と比べて光
ファイバの構成が簡単なので、閃絡光検出部側の先端を
除いては光ファイバ1本を使用する従来の技術と同じな
ので、市販の光ファイバを使用することができることか
らその実現が容易であるとともに安価な故障点標定装置
とすることができる。
In this embodiment, the structure of the optical fiber is simpler than that in the embodiment shown in FIG. Since commercially available optical fibers can be used, the failure point locating device is easy to implement and inexpensive.

【0032】[0032]

【発明の効果】この発明は前述のように、受光用光ファ
イバに並列に診断光送光用光ファイバを設けてこれらで
光ケーブルを構成し、事故監視装置に、送光診断光を生
成して診断光送光用光ファイバに入射する診断光発光部
及び受光診断光の有無を検出する診断信号用比較器を設
け、光ケーブルの閃絡光検出部側の先端に蛍光物質を設
けることにより、送光診断光によって診断光送光用光フ
ァイバの先端の蛍光物質が蛍光を発し、この蛍光が受光
診断光となって受光診断光用光ファイバを伝わって事故
監視装置に戻り受光され受光部によって電気信号に変換
される。この電気信号の強度を診断信号比較器によって
所定の強度を越えたときに受光診断光が受信されしたが
って故障点標定装置が正常であると判断することができ
る。診断光発光部によって送光診断光を生成するごとに
診断が可能なので、この送光診断光の生成を適当な間隔
で行うことによって実質的に連続した故障点標定が可能
になるという効果が得られ、その結果、故障点標定装置
を正常状態を確認することができ、万一異常が発見され
れば故障点標定装置を直ちに修理することによって実質
的に常に正常状態を維持することができルとうい効果が
得られる。更に、蛍光物質を受光用光ファイバと診断光
送光用光ファイバの双方の先端にそれぞれ設けると、診
断光送光用光ファイバの先端の蛍光物質が送光診断光に
よって蛍光を発し、更にこれによって診断光受光用光フ
ァイバの先端の蛍光物質が受光診断光としての蛍光を発
するので、確実に受光診断光を得ることができる。又は
、蛍光物質を、光ケーブルの端部に対向する導光ガラス
の面に設けることによって、光ファイバの先端部の加工
が不要になるともに、蛍光が蛍光を発するという段階が
不要になるので、比較的大きな受光診断光を得ることが
できる。又は、光ケーブルの端部に対向する導光ガラス
の面に設けた凹穴に蛍光物質を充填することによって、
容易に蛍光物質を設けることができる。また、光ケーブ
ルに対向する導光ガラスの面に蛍光物質を塗布すること
によって、導光ガラスに凹穴を設ける加工が不要になる
。また、光ケーブルに診断光受光用光ファイバを設け、
光ケーブルの閃絡光検出部側の先端に診断光送光用光フ
ァイバから出射した診断光を診断光受光用光ファイバに
入射する反射部を設けることによって、蛍光物質によっ
て受光診断光を生成する方式に比べてより大きな受光診
断光の強度を得ることができる。更に、反射部を、光ケ
ーブルの先端に設けたプリズムで構成することによって
、容易に反射部を形成することができる。また、プリズ
ムの代わりに、光ケーブルの先端に対向する導光ガラス
の面に凹部を設けこの凹部面を反射面として反射部を構
成することによって、プリズムを取付けるための光ケー
ブル先端の複雑な加工が不要になる。また、光ケーブル
を従来と同じ受光用光ファイバの1本だけとし、閃絡光
検出部側の端部に蛍光物質を設け、この蛍光物質に閃絡
光検出部の外部から診断光を蛍光物質に照射する導光孔
を設け、事故監視装置に、受光された蛍光が電気信号に
変換された電気信号の強度を所定の強度と比較する診断
信号用比較器を設けることによって、光ケーブルが従来
と同じ1本の光ファイバでよいので、前述の故障点標定
を常に正常状態に維持することができるという効果に加
えて簡単な構成でその結果として安価な故障点標定装置
になるという効果も得られる。
[Effects of the Invention] As described above, the present invention provides an optical fiber for transmitting diagnostic light in parallel with an optical fiber for receiving light, constitutes an optical cable, and generates diagnostic light for the accident monitoring device. By providing a diagnostic light emitting part that enters the diagnostic light transmitting optical fiber and a diagnostic signal comparator that detects the presence or absence of the received diagnostic light, and by providing a fluorescent substance at the tip of the optical cable on the flash light detection part side, the transmission can be improved. The optical diagnostic light causes the fluorescent substance at the tip of the optical fiber for transmitting the diagnostic light to emit fluorescence, and this fluorescence becomes received diagnostic light that travels through the optical fiber for the received diagnostic light and returns to the accident monitoring device. converted into a signal. When the intensity of this electrical signal exceeds a predetermined intensity by the diagnostic signal comparator, the received diagnostic light is received and it can therefore be determined that the failure point locating device is normal. Diagnosis is possible each time the diagnostic light emitting section generates the transmitted diagnostic light, so by generating the transmitted diagnostic light at appropriate intervals, it is possible to virtually continuously locate the fault point. As a result, it is possible to confirm that the failure point locating device is in a normal condition, and if an abnormality is discovered, the failure point locating device can be repaired immediately to maintain the normal condition virtually all the time. A great effect can be obtained. Furthermore, if a fluorescent substance is provided at the tips of both the optical fiber for receiving light and the optical fiber for transmitting diagnostic light, the fluorescent substance at the tip of the optical fiber for transmitting diagnostic light will emit fluorescence due to the transmitted diagnostic light. As a result, the fluorescent substance at the tip of the diagnostic light receiving optical fiber emits fluorescence as the received diagnostic light, so that the received diagnostic light can be reliably obtained. Alternatively, by providing a fluorescent material on the surface of the light guide glass facing the end of the optical cable, it is not necessary to process the tip of the optical fiber, and the step of emitting fluorescence is also unnecessary. It is possible to obtain diagnostic light with a large target. Alternatively, by filling a recessed hole in the surface of the light guide glass facing the end of the optical cable with a fluorescent substance,
A fluorescent material can be easily provided. Further, by applying a fluorescent material to the surface of the light guide glass facing the optical cable, it becomes unnecessary to provide a recessed hole in the light guide glass. In addition, an optical fiber for receiving diagnostic light is installed in the optical cable.
A method of generating received diagnostic light using a fluorescent material by providing a reflecting section at the tip of the optical cable on the side of the flash detection section that makes the diagnostic light emitted from the diagnostic light transmitting optical fiber enter the diagnostic light receiving optical fiber. It is possible to obtain a higher intensity of the received diagnostic light compared to the conventional method. Furthermore, by forming the reflecting section with a prism provided at the tip of the optical cable, the reflecting section can be easily formed. In addition, instead of a prism, a recess is provided on the surface of the light guide glass facing the tip of the optical cable, and by using this recessed surface as a reflective surface to form the reflective section, there is no need for complicated processing of the tip of the optical cable to attach the prism. become. In addition, the optical cable is made of only one optical fiber for light reception, which is the same as before, and a fluorescent substance is provided at the end on the side of the flashlight detection unit, and the diagnostic light from outside the flashlight detection unit is transferred to the fluorescent substance. By providing a light guiding hole for irradiation and installing a diagnostic signal comparator in the accident monitoring device that converts the received fluorescence into an electrical signal and compares the intensity of the electrical signal with a predetermined intensity, the optical cable can be used in the same way as before. Since only one optical fiber is required, in addition to the above-mentioned effect that the fault point location can always be maintained in a normal state, it is also possible to obtain the effect that the fault point locating device is simple in structure and, as a result, becomes an inexpensive fault point location device.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の第1の実施例を示す故障点標定装置
の回路図及び断面図
[Fig. 1] A circuit diagram and a sectional view of a failure point locating device showing a first embodiment of the present invention.

【図2】図1の一部を拡大した拡大断面図[Figure 2] Enlarged cross-sectional view of a part of Figure 1

【図3】この
発明の第2の実施例を示す断面図
FIG. 3 is a sectional view showing a second embodiment of the invention.

【図4】この発明の第
3の実施例を示す断面図
[Fig. 4] A cross-sectional view showing a third embodiment of the present invention.

【図5】この発明の第4の実施
例を示す断面図
FIG. 5 is a sectional view showing a fourth embodiment of the invention.

【図6】図5のA−A矢視図[Fig. 6] A-A arrow view in Fig. 5

【図7】この発明の第5の実施例を示す断面図FIG. 7 is a sectional view showing a fifth embodiment of the present invention.

【図8】
図7のB−B矢視図
[Figure 8]
BB arrow view in Figure 7

【図9】この発明の第6の実施例を示す故障点標定装置
の回路図及び断面図
[Fig. 9] A circuit diagram and a sectional view of a failure point locating device showing a sixth embodiment of the present invention.

【図10】従来のガス絶縁機器の故障点標定装置を示す
回路図及び断面図
[Figure 10] Circuit diagram and cross-sectional diagram showing a conventional failure point locating device for gas insulated equipment

【符号の説明】[Explanation of symbols]

1    事故監視装置 1A  事故監視装置 1F  事故監視装置 11    受光部 12    増幅器 13    比較器 14    波形整形器 15    出力部 17    診断信号用比較器 18    診断光発光部 2    受光用光ファイバ 21    被覆 22    光ファイバ 2A  光ケーブル 21A  被覆 22A  受光用光ファイバ 23    受光診断光用光ファイバ 2B  光ケーブル 22B  受光用光ファイバ 23B  受光診断光用光ファイバ 2D  光ケーブル 21D  被覆 22D  受光用光ファイバ 23D  診断光受光用光ファイバ 24    診断光送光用光ファイバ 2F  光ケーブル 3    閃絡光検出部 3A  閃絡光検出部 3F  閃絡光検出部 31    光ファイバ端末部 32    導光ガラス 32B  導光ガラス 32C  導光ガラス 32E  導光ガラス 34    気密フランジ 34F  気密フランジ 35    蛍光物質 35B  蛍光物質 35C  蛍光物質 35F  蛍光物質 41    閃絡光 42    閃絡光 43    閃絡光 44    受光診断光 45    送光診断光 5    プリズム(反射部) 5E  反射面(反射部) 100    密封容器 1 Accident monitoring device 1A Accident monitoring device 1F Accident monitoring device 11 Light receiving part 12 Amplifier 13 Comparator 14 Waveform shaper 15 Output section 17 Diagnostic signal comparator 18 Diagnostic light emitting part 2 Optical fiber for light reception 21 Coating 22 Optical fiber 2A optical cable 21A Coating 22A Optical fiber for light reception 23 Optical fiber for receiving diagnostic light 2B Optical cable 22B Optical fiber for light reception 23B Optical fiber for receiving diagnostic light 2D optical cable 21D Coating 22D Optical fiber for light reception 23D Optical fiber for receiving diagnostic light 24 Optical fiber for transmitting diagnostic light 2F Optical cable 3 Flash light detection section 3A Flash light detection section 3F Flash light detection section 31 Optical fiber terminal section 32 Light guide glass 32B Light guide glass 32C light guide glass 32E Light guide glass 34 Airtight flange 34F Airtight flange 35 Fluorescent material 35B Fluorescent material 35C fluorescent substance 35F Fluorescent material 41 Flashlight 42 Flashlight 43 Flashlight 44 Received diagnostic light 45 Transmitting diagnostic light 5 Prism (reflection part) 5E Reflective surface (reflective part) 100 Sealed container

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】ガス絶縁機器の密封容器に設けこの容器内
で発生した閃絡光を導光ガラスを介して外部に導く閃絡
光検出部、この閃絡光検出部から出た閃絡光を故障点標
定装置まで導く受光用光ファイバ及びこの受光用光ファ
イバが導いた光を受光して電気信号に変換して故障点を
標定する事故監視装置からなるガス絶縁機器の故障点標
定装置において、前記受光用光ファイバとこの受光用光
ファイバに並列に設けた診断光送光用光ファイバとで光
ケーブルを構成し、前記事故監視装置に、送光診断光を
生成して前記診断光送光用光ファイバに入射する診断光
発光部及び電気信号に変換された受光診断光の有無を検
出する診断信号用比較器とを設け、前記光ケーブルの閃
絡光検出部側の先端に送光診断光が照射されて受光診断
光としての蛍光を発する蛍光物質を設けてなることを特
徴とするガス絶縁機器の故障点標定装置。
1. A flashlight detection unit installed in a sealed container of gas-insulated equipment to guide flashlight generated within the container to the outside via a light guide glass; a flashlight detection unit that guides flashlight generated within the container to the outside through a light guide glass; In a failure point locating device for gas insulated equipment, which comprises a light-receiving optical fiber that guides the light to the failure point locating device, and an accident monitoring device that receives the light guided by the light-receiving optical fiber and converts it into an electrical signal to locate the failure point. , an optical cable is constituted by the light-receiving optical fiber and a diagnostic light-transmitting optical fiber provided in parallel with the light-receiving optical fiber, and the diagnostic light is generated and transmitted to the accident monitoring device. A diagnostic light emitter that enters the optical fiber and a diagnostic signal comparator that detects the presence or absence of the received diagnostic light converted into an electrical signal are provided, and the transmitted diagnostic light is provided at the tip of the optical cable on the side of the flash detection section. 1. A failure point locating device for gas insulated equipment, characterized in that it is provided with a fluorescent material that emits fluorescence as received diagnostic light when irradiated with it.
【請求項2】蛍光物質を、受光用光ファイバと診断光伝
送用光ファイバとの先端にそれぞれ設けてなることを特
徴とする請求項1記載のガス絶縁機器の故障点標定装置
2. The failure point locating device for gas insulated equipment according to claim 1, wherein a fluorescent substance is provided at the tips of the light receiving optical fiber and the diagnostic light transmitting optical fiber.
【請求項3】蛍光物質を、光ケーブルの端部に対向する
導光ガラスの面に設けてなることを特徴とする請求項1
記載のガス絶縁機器の故障点標定装置。
3. Claim 1, wherein the fluorescent substance is provided on the surface of the light guide glass facing the end of the optical cable.
Fault point locating device for the gas insulated equipment described.
【請求項4】光ケーブルの端部に対向する導光ガラスの
面に設けた凹穴に蛍光物質を充填してなることを特徴と
する請求項3記載のガス絶縁機器の故障点標定装置。
4. The failure point locating device for gas insulated equipment according to claim 3, wherein a concave hole provided in the surface of the light guide glass facing the end of the optical cable is filled with a fluorescent material.
【請求項5】光ケーブルに対向する導光ガラスの面に蛍
光物質を塗布してなることを特徴とする請求項3記載の
ガス絶縁機器の故障点標定装置。
5. The failure point locating device for gas insulated equipment according to claim 3, wherein a fluorescent material is coated on the surface of the light guiding glass facing the optical cable.
【請求項6】ガス絶縁機器の密封容器に設けこの容器内
で発生した閃絡光を導光ガラスを介して外部に導く閃絡
光検出部、この閃絡光検出部から出た閃絡光を故障点標
定装置まで導く受光用光ファイバ及びこの受光用光ファ
イバが導いた光を受光して電気信号に変換して故障点を
標定する事故監視装置からなるガス絶縁機器の故障点標
定装置において、前記受光用光ファイバとこの受光用光
ファイバに並列に設けた診断光送光用光ファイバ及び診
断光受光用光ファイバとの3本の光ファイバで光ケーブ
ルを構成し、前記事故監視装置に、送光診断光を生成し
て前記診断光送光用光ファイバに入射する診断光発光部
及び電気信号に変換された受光診断光の有無を検出する
診断信号用比較器とを設け、前記光ケーブルの閃絡光検
出部側の先端に診断光送光用光ファイバから出射した送
光診断光を診断光受光用光ファイバに入射して受光診断
光とする反射部を設けてなることを特徴とするガス絶縁
機器の故障点標定装置。
6. A flashlight detection unit installed in a sealed container of gas-insulated equipment to guide flashlight generated within the container to the outside via a light guide glass; In a failure point locating device for gas insulated equipment, which comprises a light-receiving optical fiber that guides the light to the failure point locating device, and an accident monitoring device that receives the light guided by the light-receiving optical fiber and converts it into an electrical signal to locate the failure point. , an optical cable is constituted by three optical fibers: the optical fiber for receiving light, an optical fiber for transmitting diagnostic light, and an optical fiber for receiving diagnostic light, which are provided in parallel with the optical fiber for receiving light, and in the accident monitoring device, A diagnostic light emitting unit that generates a transmitted diagnostic light and enters the diagnostic light transmitting optical fiber, and a diagnostic signal comparator that detects the presence or absence of the received diagnostic light that has been converted into an electrical signal, A reflecting part is provided at the tip on the side of the flash detection part to make the transmitted diagnostic light emitted from the diagnostic light transmitting optical fiber enter the diagnostic light receiving optical fiber and convert it into received diagnostic light. Fault point locating device for gas insulated equipment.
【請求項7】反射部が、光ケーブルの先端に設けたプリ
ズムからなることを特徴とする請求項6記載のガス絶縁
機器の故障点標定装置。
7. The failure point locating device for gas insulated equipment according to claim 6, wherein the reflecting section is comprised of a prism provided at the tip of the optical cable.
【請求項8】光ケーブルの先端に対向する導光ガラスの
面に凹部を設けこの凹部面を反射面として反射部を構成
してなることを特徴とする請求項6記載のガス絶縁機器
の故障点標定装置。
8. A failure point of the gas insulated equipment according to claim 6, characterized in that a recess is provided on the surface of the light guiding glass facing the tip of the optical cable, and the recessed surface is used as a reflecting surface to constitute a reflecting section. Locating equipment.
【請求項9】ガス絶縁機器の密封容器に設けこの容器内
で発生した閃絡光を導光ガラスを介して外部に導く閃絡
光検出部、この閃絡光検出部から出た閃絡光を故障点標
定装置まで導く受光用光ファイバ及びこの受光用光ファ
イバが導いた光を受光して電気信号に変換して故障点を
標定する事故監視装置からなるガス絶縁機器の故障点標
定装置において、前記受光用光ファイバの閃絡光検出部
側の端部に蛍光物質を、この蛍光物質に前記閃絡光検出
部の外部から送光診断光を前記蛍光物質に照射する導光
孔をそれぞれ設け、事故監視装置に、前記蛍光物質が導
光孔から照射されて送光診断光によって受光診断光とし
ての蛍光を発光してこの受光診断光が前記受光用光ファ
イバを伝わって事故監視装置に達して電気信号に変換さ
れてその強度を所定の強度と比較する診断信号用比較器
を設けてなることを特徴とするガス絶縁機器の故障点標
定装置。
9. A flashlight detection section provided in a sealed container of gas insulated equipment to guide flashlight generated within the container to the outside via a light guiding glass; In a failure point locating device for gas insulated equipment, which comprises a light-receiving optical fiber that guides the light to the failure point locating device, and an accident monitoring device that receives the light guided by the light-receiving optical fiber and converts it into an electrical signal to locate the failure point. , a fluorescent material is provided at the end of the light-receiving optical fiber on the side of the flash detection section, and a light guide hole is provided in the fluorescent material for irradiating the transmitted diagnostic light onto the fluorescent material from outside the flash detection section. The fluorescent material is irradiated from the light guide hole and emits fluorescence as a received diagnostic light by the transmitted diagnostic light, and the received diagnostic light is transmitted through the light receiving optical fiber and sent to the accident monitoring device. 1. A failure point locating device for gas insulated equipment, characterized in that it is provided with a diagnostic signal comparator for converting the detected signal into an electrical signal and comparing the intensity with a predetermined intensity.
JP3047066A 1991-03-13 1991-03-13 Fault locator for gas insulation equipment Expired - Fee Related JP2979678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3047066A JP2979678B2 (en) 1991-03-13 1991-03-13 Fault locator for gas insulation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3047066A JP2979678B2 (en) 1991-03-13 1991-03-13 Fault locator for gas insulation equipment

Publications (2)

Publication Number Publication Date
JPH04283669A true JPH04283669A (en) 1992-10-08
JP2979678B2 JP2979678B2 (en) 1999-11-15

Family

ID=12764786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3047066A Expired - Fee Related JP2979678B2 (en) 1991-03-13 1991-03-13 Fault locator for gas insulation equipment

Country Status (1)

Country Link
JP (1) JP2979678B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105988064A (en) * 2015-11-25 2016-10-05 国网辽宁省电力有限公司锦州供电公司 Functional meter capable of locating fault point and method used for locating fault point and applied to functional meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105988064A (en) * 2015-11-25 2016-10-05 国网辽宁省电力有限公司锦州供电公司 Functional meter capable of locating fault point and method used for locating fault point and applied to functional meter

Also Published As

Publication number Publication date
JP2979678B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
KR960003646B1 (en) Optical fiber arrangement structure for locating electric faults in cables
US7277822B2 (en) Embedded system for diagnostics and prognostics of conduits
US7142291B2 (en) Detection of partial discharge or arcing in wiring via fiber optics
US4702553A (en) Fiber-optical sensor for detecting electric arc-discharges
US7668412B2 (en) Systems and methods for detecting electric discharge
US6909977B2 (en) Method for diagnosing degradation in aircraft wiring
JPH04283669A (en) Locating device for fault point of gas-insulated machinery and apparatus
JPH02269980A (en) Abnormality detecting device for power cable or its connection part
JP2000065887A (en) Fault locator for electric power equipment
JP2707823B2 (en) Failure monitoring device for electrical equipment
JPS5850379B2 (en) circuit testing equipment
JPH03194479A (en) Fault position locating device for electric apparatus
JPH0514216B2 (en)
CN110174600A (en) GIS detection device and application based on μ PMT combining ultrasonic sensor
JPH0759221A (en) Abnormality detector for gas insulated power equipment
Gräf et al. Nonconventional partial discharge measurement using fiber optic sensor system for transmission systems and switchgear
JPH02181668A (en) Abnormality detecting device for gas insulation electric equipment
JP2000208332A (en) Transformer monitoring device
JPH0435798Y2 (en)
JPH02232570A (en) Fault detector for power equipment
CN118067640A (en) Cable joint gas measurement device
JPH0851708A (en) Arc light detector for gas insulated electric equipment
JPH01177809A (en) Trouble point locating device for gas insulated apparatus
JPS61142437A (en) Combustion detector for power transmitting section of laser unit
JPH11125653A (en) Internal arc detection device of gas insulation apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees