JP2979678B2 - Fault locator for gas insulation equipment - Google Patents

Fault locator for gas insulation equipment

Info

Publication number
JP2979678B2
JP2979678B2 JP3047066A JP4706691A JP2979678B2 JP 2979678 B2 JP2979678 B2 JP 2979678B2 JP 3047066 A JP3047066 A JP 3047066A JP 4706691 A JP4706691 A JP 4706691A JP 2979678 B2 JP2979678 B2 JP 2979678B2
Authority
JP
Japan
Prior art keywords
light
optical fiber
diagnostic
fluorescent substance
flashlight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3047066A
Other languages
Japanese (ja)
Other versions
JPH04283669A (en
Inventor
弘美 岩井
幸 土川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3047066A priority Critical patent/JP2979678B2/en
Publication of JPH04283669A publication Critical patent/JPH04283669A/en
Application granted granted Critical
Publication of JP2979678B2 publication Critical patent/JP2979678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1254Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of gas-insulated power appliances or vacuum gaps

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Locating Faults (AREA)
  • Gas-Insulated Switchgears (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、GISと称されるガ
ス絶縁開閉器装置やGICと称されるガス絶縁ケーブル
などの、絶縁スペーサで仕切られて複数の密封された区
画が形成されているガス絶縁機器の区画ごとの内部閃絡
光を検出し、閃絡故障が生じた区画を標定する故障点標
定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas-insulated switchgear device referred to as GIS, a gas-insulated cable referred to as GIC, and the like, which are separated by insulating spacers to form a plurality of sealed sections. The present invention relates to a failure point locating device that detects internal flash light in each section of a gas insulated device and locates a section where a flash failure has occurred.

【0002】[0002]

【従来の技術】GISやGICなどのガス絶縁機器は電
力の輸送にとって重要な機器であり、万一これらガス絶
縁機器内部で地絡や相間短絡などの故障が生じた場合に
はこれを速やかに復旧させることが要求される。そのた
めにはこれらの機器は完全密封でかつ前述のように内部
も絶縁スペーサで区切られて複数の区画が形成されてい
るために、故障が生じた場合その区画を的確に標定する
ことが望ましい。そしてこのための故障点標定装置とし
てガス絶縁機器内部での地絡などのときに発生する閃絡
光を光学的に検出する方式のものが実用に供せられてい
る。
2. Description of the Related Art Gas insulated devices such as GIS and GIC are important devices for power transmission, and if a failure such as a ground fault or a short-circuit between phases occurs inside these gas insulated devices, the failure must be quickly resolved. It is required to be restored. For this purpose, these devices are completely sealed, and as described above, the inside is also divided by insulating spacers to form a plurality of sections. Therefore, when a failure occurs, it is desirable to accurately locate the sections. As a fault point locating device for this purpose, a device which optically detects flash light generated at the time of a ground fault or the like inside a gas insulated device has been put to practical use.

【0003】一般に前述のような故障が発生する確率は
極めて小さいため、故障点標定装置が動作した場合、そ
の信頼度を確保するために故障点標定装置が健全である
ことを常に診断する機能が重要である。
In general, the probability of occurrence of the above-described failure is extremely small. Therefore, when the failure point locator operates, a function for constantly diagnosing that the failure point locator is sound is provided in order to ensure its reliability. is important.

【0004】図10は従来のガス絶縁機器の故障点標定
装置を示す回路図並びに断面図である。この図におい
て、ガス絶縁機器を構成する区画のうちの1つとしての
密封容器100に設けられた閃絡光検出部3から引き出
された受光用光ファイバ2が事故監視装置1まで導かれ
る。
FIG. 10 is a circuit diagram and a sectional view showing a conventional fault locating device for gas-insulated equipment. In this figure, a light receiving optical fiber 2 pulled out from a flash light detecting unit 3 provided in a sealed container 100 as one of the sections constituting a gas insulating device is guided to an accident monitoring device 1.

【0005】事故監視装置1は受光用光ファイバ2で導
かれた光を受けて電気信号に変換するホトダイオードな
どの受光部11、その出力信号を増幅する増幅器12、
その信号の強度が所定の電圧値V1 を超えたときだけ信
号を出力する比較器13、その出力の波形を整形する波
形整形器14、その結果を出力する信号出力部15及び
増幅器12の入力側に設けられた診断信号発生部16と
からなっている。
The accident monitoring device 1 includes a light receiving unit 11 such as a photodiode for receiving light guided by the light receiving optical fiber 2 and converting the light into an electric signal, an amplifier 12 for amplifying an output signal of the photodiode, and the like.
A comparator 13 that outputs a signal only when the intensity of the signal exceeds a predetermined voltage value V 1 , a waveform shaper 14 that shapes the waveform of the output, a signal output unit 15 that outputs the result, and an input of the amplifier 12. And a diagnostic signal generator 16 provided on the side.

【0006】受光用光ファイバ2は光ファイバ21とこ
れに外部から光が侵入するのを防止する被覆22とから
なっており、一端が受光部11、他端が閃絡光検出部3
に挿入されている。
The light receiving optical fiber 2 comprises an optical fiber 21 and a coating 22 for preventing light from entering the fiber from outside, one end of which is a light receiving section 11 and the other end is a flash light detecting section 3.
Has been inserted.

【0007】閃絡光検出部3は密封容器100に設けら
れた貫通孔から密封容器100内部で発生した閃絡光を
取り出す部分であり、密封容器100に溶接で取付けら
れたリング状の取付けフランジ33、この取付けフラン
ジ33の中央の貫通孔部にはめ込まれた導光ガラス3
2、取付けフランジ33にボルト37で取付けられる気
密フランジ、これにボルト36で取付けられる受光用光
ファイバ2の端部を取付けた光ファイバ端末部31及び
気密を保持するためのパッキン38,39からなってい
る。
The flash light detecting section 3 is a portion for extracting flash light generated inside the sealed container 100 from a through hole provided in the sealed container 100, and is a ring-shaped mounting flange which is mounted on the sealed container 100 by welding. 33, the light guide glass 3 fitted in the central through hole of the mounting flange 33
2. An airtight flange attached to the mounting flange 33 with bolts 37, an optical fiber end 31 to which the end of the optical fiber 2 for light receiving attached to the mounting flange 33 with bolts 36, and packings 38 and 39 for maintaining airtightness. ing.

【0008】密封容器100内で閃絡光が発生するとこ
の閃絡光は直接に又は密封容器100の内壁で反射して
導光ガラス32を通って受光用光ファイバ2に入る。こ
の閃絡光は受光用光ファイバ2を伝わって事故監視装置
1の受光部11によって受光され光の強度に比例した強
度の電気信号に変換される。この電気信号が処理し易い
程度の強度に増幅器12で増幅され、閃絡光だけを検出
する比較器13を介して波形整形器14で閃絡光を検出
したときにHigh、検出されないときにLow の2値信号に
変換され、信号出力部15から出力されて図示しない表
示部で故障部位の表示や警報として標定結果が出力され
る。
When flash light is generated in the sealed container 100, the flash light is reflected directly or on the inner wall of the sealed container 100, and enters the light receiving optical fiber 2 through the light guide glass 32. The flash light travels through the light receiving optical fiber 2 and is received by the light receiving unit 11 of the accident monitoring device 1 and is converted into an electric signal having an intensity proportional to the intensity of the light. The electric signal is amplified by the amplifier 12 to such an intensity that it can be easily processed, and is high when the flashlight is detected by the waveform shaper 14 via the comparator 13 that detects only the flashlight, and is low when the flashlight is not detected. The signal is output from the signal output unit 15 and a display unit (not shown) outputs a location result as a display of a faulty part or an alarm.

【0009】万一、故障発生時に受光用光ファイバ2や
事故監視装置1内の電子回路に不具合が生じていると、
閃絡光が発生しても検出されないために故障を生じた区
画の標定ができないことになる。その結果、系統切替え
や復旧に長時間を要し重大な社会問題にまで発展する恐
れがある。このため、故障点標定装置全体が常に正常で
あることが重要で、その診断方法が強く求められてい
る。
If a failure occurs in the optical fiber 2 for receiving light or the electronic circuit in the accident monitoring device 1 when a failure occurs,
Even if flash light is generated, it is not detected, so that it is impossible to locate the faulty section. As a result, it takes a long time for system switching and restoration, and there is a possibility that the problem may develop into a serious social problem. For this reason, it is important that the entire failure point locating device is always normal, and a diagnosis method therefor is strongly required.

【0010】現状では、診断用の電気信号を出力する診
断信号発生部16を事故監視装置1の内部に設け、巡視
点検時に監視員が診断信号を発信して電気回路部分だけ
を確認する方式や、受光用光ファイバ2の閃絡光検出部
3の先端部である光ファイバ端末部31を取り外し、閃
絡光相当の診断光を入射し、正常に動作するかどうかを
定期的に点検する方式が採用されている。そして、この
点検のために、光ファイバ端末部31を取り外しても導
光ガラス32によって閃絡光検出部3での気密が保持さ
れる構成が採用されている。しかし、この方式、特に光
ファイバ端末部31を取り外す点検の間隔は年単位であ
るため、故障の時期が予測できない密封容器内部の閃絡
光の発生を検出するための診断方法に対するものとして
は充分とはいえない。
At present, a diagnostic signal generator 16 for outputting an electrical signal for diagnosis is provided inside the accident monitoring apparatus 1, and a patrol member transmits a diagnostic signal during a patrol inspection to confirm only an electrical circuit portion. A method of removing the optical fiber terminal portion 31 which is the tip of the flash light detecting section 3 of the optical fiber 2 for light reception, and entering diagnostic light equivalent to flash light to periodically check whether or not the optical fiber operates normally. Has been adopted. For this inspection, a configuration is adopted in which the airtightness of the flashlight detection unit 3 is maintained by the light guide glass 32 even when the optical fiber terminal unit 31 is removed. However, since this method, particularly the inspection interval for removing the optical fiber terminal section 31, is on a yearly basis, it is sufficient as a diagnostic method for detecting the occurrence of flashing light inside a sealed container in which the time of failure cannot be predicted. Not really.

【0011】[0011]

【発明が解決しようとする課題】前述のように、定期的
に点検することによって閃絡光検出部3や受光用光ファ
イバ2を含めて故障点標定装置が正常に動作することを
確認するのであるが、点検間隔の間に何らかの原因で閃
絡光の検出が不能になっていると密封容器内で閃絡が発
生したときに故障点の標定ができなくなるという問題が
生ずる。かといって前述の点検間隔を短くして頻度を高
くすると点検に要する費用が大きくなり、また点検のた
めの閃絡光検出部3の取り外し取付け作業によって受光
用光ファイバ2やその他の部品が損傷する可能性も高く
なって却って信頼性が低下するという問題も生ずる。ま
た、点検間隔を1年程度に短縮したとしても前述のよう
な検出不能の確率が小さくなるだけで実質的に皆無とみ
なせる程度には到底ならないという問題もある。
As described above, it is confirmed that the fault locator including the flash light detector 3 and the light receiving optical fiber 2 operates normally by performing periodic inspection. However, if flash light cannot be detected for some reason during the inspection interval, a problem arises in that a flash point cannot be located when a flash occurs in the sealed container. On the other hand, if the above-mentioned inspection interval is shortened and the frequency is increased, the cost required for the inspection increases, and the light receiving optical fiber 2 and other parts are damaged by the work of removing and installing the flash light detection unit 3 for the inspection. There is also a problem that the possibility of the operation is increased and the reliability is rather lowered. Further, even if the inspection interval is shortened to about one year, there is a problem that the probability of non-detection as described above is reduced, but it is hardly considered that there is substantially no detection.

【0012】この発明の目的はこのような問題を解決
し、実質的に常時点検することのできるガス絶縁機器の
故障点標定装置を提供することにある。
An object of the present invention is to solve such a problem and to provide an apparatus for locating a fault of a gas insulated apparatus which can be inspected substantially constantly.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、ガス絶縁機器の密封容器に設け
この容器内で発生した閃絡光を導光ガラスを介して外部
に導く閃絡光検出部、この閃絡光検出部から出た閃絡光
を故障点標定装置まで導く受光用光ファイバ及びこの受
光用光ファイバが導いた光を受光して電気信号に変換し
て故障点を標定する事故監視装置からなるガス絶縁機器
の故障点標定装置において、前記受光用光ファイバとこ
の受光用光ファイバに並列に設けた診断光送光用光ファ
イバとで光ケーブルを構成し、前記事故監視装置に、送
光診断光を生成して前記診断光送光用光ファイバに入射
する診断光発光部及び電気信号に変換された受光診断光
の有無を検出する診断信号用比較器とを設け、前記光ケ
ーブルの閃絡光検出部側の先端に送光診断光が照射され
て受光診断光としての蛍光を発する蛍光物質を設けてな
るものとし、更に、蛍光物質を、受光用光ファイバと診
断光伝送用光ファイバとの先端にそれぞれ設けてなるも
のとし、また、蛍光物質を、光ケーブルの端部に対向す
る導光ガラスの面に設けてなるものとし、また、光ケー
ブルの端部に対向する導光ガラスの面に設けた凹穴に蛍
光物質を充填してなるものとし、また、光ケーブルに対
向する導光ガラスの面に蛍光物質を塗布してなるものと
し、また、光ケーブルに診断光受光用光ファイバを設
け、光ケーブルの閃絡光検出部側の先端に診断光送光用
光ファイバから出射した送光診断光を診断光受光用光フ
ァイバに入射して受光診断光とする反射部を設けてなる
ものとし、更に、反射部が、光ケーブルの先端に設けた
プリズムからなるものとし、また、光ケーブルの先端に
対向する導光ガラスの面に凹部を設けこの凹部面を反射
面として反射部を構成してなるものとし、また、ガス絶
縁機器の密封容器に設けこの容器内で発生した閃絡光を
導光ガラスを介して外部に導く閃絡光検出部、この閃絡
光検出部から出た閃絡光を故障点標定装置まで導く受光
用光ファイバ及びこの受光用光ファイバが導いた光を受
光して電気信号に変換して故障点を標定する事故監視装
置からなるガス絶縁機器の故障点標定装置において、前
記受光用光ファイバの閃絡光検出部側の端部に蛍光物質
を、この蛍光物質に前記閃絡光検出部の外部から送光診
断光を前記蛍光物質に照射する導光孔をそれぞれ設け、
事故監視装置に、前記蛍光物質が導光孔から照射されて
送光診断光によって受光診断光としての蛍光を発光して
この受光診断光が前記受光用光ファイバを伝わって事故
監視装置に達して電気信号に変換されてその強度を所定
の強度と比較する診断信号用比較器を設けてなるものと
する。
According to the present invention, in order to solve the above-mentioned problems, flash light generated in a hermetically sealed container of a gas-insulated device is guided outside through a light guide glass. A flash light detector, a light receiving optical fiber that guides flash light emitted from the flash light detector to a failure point locating device, receives light guided by the light receiving optical fiber, converts the light into an electric signal, and breaks down. In a failure point locating device for a gas insulated device comprising an accident monitoring device for locating a point, an optical cable is constituted by the light receiving optical fiber and a diagnostic light transmitting optical fiber provided in parallel with the light receiving optical fiber, The accident monitoring device includes a diagnostic light emitting unit that generates a light transmission diagnostic light to be incident on the diagnostic light transmitting optical fiber and a diagnostic signal comparator that detects the presence or absence of the received light diagnostic light converted into an electric signal. Flash light detection of the optical cable A fluorescent substance which emits fluorescence as light reception diagnostic light when the light transmission diagnostic light is applied to the distal end of the unit side is provided, and the fluorescent substance is further divided into a light receiving optical fiber and a diagnostic optical transmission optical fiber. The fluorescent substance is provided on the surface of the light guide glass facing the end of the optical cable, and the fluorescent substance is provided on the surface of the light guide glass facing the end of the optical cable. The concave hole shall be filled with a fluorescent substance, the fluorescent substance shall be applied to the surface of the light guide glass facing the optical cable, and the optical cable shall be provided with an optical fiber for receiving diagnostic light, At the tip on the side of the flash light detection unit, a reflection unit is provided, which receives the transmitted light diagnostic light emitted from the diagnostic light transmitting optical fiber into the diagnostic light receiving optical fiber and serves as the received light diagnostic light, and further, The reflective part is an optical cable And a reflector provided on the surface of the light guide glass opposed to the tip of the optical cable, and the concave portion is used as a reflection surface to constitute a reflection portion. A flashlight detector that guides flashlight generated in the container to the outside through the light guide glass, and a light guide that guides flashlight emitted from the flashlight detector to the failure point locating device In the fault locating device for a gas insulated device comprising an optical fiber for use and an accident monitoring device for receiving the light guided by the light receiving optical fiber, converting the light into an electric signal and locating the fault, the flash of the light receiving optical fiber is used. A fluorescent substance is provided at an end on the side of the light detection unit, and light guide holes are provided for irradiating the fluorescent substance with light-transmitting diagnostic light from outside of the flash light detection unit.
In the accident monitoring device, the fluorescent substance is emitted from the light guide hole, emits fluorescence as light receiving diagnostic light by the light transmitting diagnostic light, and the light receiving diagnostic light travels through the light receiving optical fiber and reaches the accident monitoring device. It is assumed that a diagnostic signal comparator is provided which is converted into an electric signal and compares the intensity with a predetermined intensity.

【0014】[0014]

【作用】この発明の構成において、受光用光ファイバと
この受光用光ファイバに並列に診断光送光用光ファイバ
を設けてこれらで光ケーブルを構成し、事故監視装置
に、診断光を生成しこれを送光診断光として診断光送光
用光ファイバに入射する診断光発光部及び受光診断光の
有無を検出する診断信号用比較器とを設け、光ケーブル
の閃絡光検出部側の先端に蛍光物質を設けることによ
り、送光診断光によって診断光送光用光ファイバの先端
の蛍光物質が蛍光を発し、この蛍光が受光診断光となっ
て受光診断光用光ファイバを伝わって事故監視装置に戻
り受光され受光部によって電気信号に変換され、その強
度を診断信号比較器によって所定の強度を越えたときに
受光診断光が受信されしたがって故障点標定装置が正常
であると判断することができる。更に、蛍光物質を、受
光用光ファイバと診断光送光用光ファイバの双方の先端
にそれぞれ設けることによって、診断光送光用光ファイ
バの先端に設けた蛍光物質が送光診断光によって蛍光を
発し、更にこの蛍光によって診断光受光用光ファイバの
先端に設けた蛍光物質が蛍光を発し、この蛍光が受光診
断光となって診断光受光用光ファイバによって事故監視
装置までを伝わり受光される。又は、蛍光物質を光ケー
ブルの端部に対向する導光ガラスの面に設けることによ
って、診断光送光用光ファイバから入射した送光診断光
によってこの蛍光物質が蛍光を発するが、この蛍光は四
方に放射するのでその一部が診断光受光用光ファイバを
伝わって事故監視装置に受光される。また、光ケーブル
の端部に対向する導光ガラスの面に設けた凹穴に蛍光物
質を充填することによって、容易に蛍光物質を設けるこ
とができるとともに蛍光物質を光ケーブルの先端に設け
る場合にくらべて蛍光による蛍光の発生の段階が不要に
なるので、比較的大きな受光診断光を得ることができ
る。また、光ケーブルに対向する導光ガラスの面に蛍光
物質を塗布することによって、導光ガラスに凹穴を設け
る加工が不要になる。又は、光ケーブルに診断光受光用
光ファイバを設け、光ケーブルの閃絡光検出部側の先端
に診断光送光用光ファイバから出射した診断光を診断光
受光用光ファイバに入射する反射部を設けることによっ
て、蛍光物質によって受光診断光を生成する方式に比べ
てより大きな受光診断光を得ることができる。また、反
射部を、光ケーブルの先端に設けたプリズムで構成する
ことができる。又は、プリズムの代わりに、光ケーブル
の先端に対向する導光ガラスの面に凹部を設けこの凹部
面を反射面として反射部を構成することによって、プリ
ズムを取付けるための光ケーブル先端の複雑な加工が不
要になる。又は、受光用光ファイバの閃絡光検出部側の
端部に蛍光物質を、この蛍光物質に閃絡光検出部の外部
から診断光を蛍光物質に照射する導光孔をそれぞれ設
け、事故監視装置に、蛍光物質が導光孔から照射された
診断光によって発光して受光用光ファイバを伝わって事
故監視装置に達した蛍光が電気信号に変換された電気信
号の強度を所定の強度と比較する診断信号用比較器を設
けることによって、診断光送光用光ファイバが不要にな
る。
In the construction of the present invention, a light receiving optical fiber and an optical fiber for transmitting a diagnostic light are provided in parallel with the light receiving optical fiber to constitute an optical cable, and a diagnostic light is generated in an accident monitoring device. A diagnostic light emitting unit which enters the optical fiber for transmitting diagnostic light as diagnostic light, and a comparator for diagnostic signal which detects the presence / absence of received diagnostic light. By providing the substance, the fluorescent substance at the tip of the optical fiber for transmitting diagnostic light emits fluorescent light by the diagnostic light for transmitting light, and this fluorescent light becomes the diagnostic light for light reception and propagates through the optical fiber for diagnostic light to be transmitted to the accident monitoring device. The returned light is received and converted into an electric signal by the light receiving unit, and when the intensity exceeds a predetermined intensity by the diagnostic signal comparator, the received light diagnostic light is received, and thus it is determined that the fault locating device is normal. It can be. Furthermore, by providing a fluorescent substance at both ends of the optical fiber for receiving light and the optical fiber for transmitting diagnostic light, the fluorescent substance provided at the distal end of the optical fiber for transmitting diagnostic light emits fluorescence by the transmitted diagnostic light. The fluorescent material provided at the tip of the optical fiber for receiving diagnostic light emits fluorescent light, and the fluorescent light becomes diagnostic light for reception and is transmitted to the accident monitoring device by the optical fiber for diagnostic light reception and received. Alternatively, by providing a fluorescent substance on the surface of the light guide glass facing the end of the optical cable, the fluorescent substance emits fluorescence by the transmitted diagnostic light incident from the diagnostic light transmitting optical fiber. Part of the light is transmitted through the diagnostic light receiving optical fiber and is received by the accident monitoring device. In addition, by filling the fluorescent material into the concave hole provided on the surface of the light guide glass opposed to the end of the optical cable, the fluorescent material can be easily provided and the fluorescent material can be provided at the tip of the optical cable. Since the stage of generation of fluorescence by fluorescence is not required, relatively large received diagnostic light can be obtained. Further, by applying a fluorescent substance to the surface of the light guide glass facing the optical cable, it is not necessary to provide a concave hole in the light guide glass. Alternatively, an optical fiber for receiving a diagnostic light is provided on the optical cable, and a reflecting portion for inputting the diagnostic light emitted from the optical fiber for transmitting the diagnostic light to the optical fiber for receiving the diagnostic light is provided at the end of the optical cable on the side of the flashlight detecting unit. Thereby, it is possible to obtain a larger received light diagnostic light as compared with the method of generating the received light diagnostic light by the fluorescent substance. Further, the reflecting portion can be constituted by a prism provided at the tip of the optical cable. Alternatively, instead of a prism, a concave portion is provided on the surface of the light guide glass facing the distal end of the optical cable, and the concave portion is used as a reflective surface to constitute a reflecting portion, so that complicated processing of the optical cable distal end for mounting the prism is unnecessary. become. Alternatively, a fluorescent substance is provided at the end of the optical fiber for light reception on the side of the flashlight detection section, and a light guide hole for irradiating the fluorescent substance with diagnostic light from outside the flashlight detection section is provided on the fluorescent substance, thereby monitoring the accident. A fluorescent substance is emitted by the diagnostic light emitted from the light guide hole through the light guide hole, and the fluorescence that reaches the accident monitoring device through the light receiving optical fiber is converted to an electrical signal. By providing the diagnostic signal comparator, the optical fiber for transmitting the diagnostic light becomes unnecessary.

【0015】[0015]

【実施例】以下この発明を実施例に基づいて説明する。
図1はこの発明の第1の実施例を示す故障点標定装置の
回路図及び断面図であり、図10と同じ構成要素に対し
ては共通の符号を付け、また同じ機能の構成要素に対し
ては添字Aを付けることにより詳細な説明を省略する。
この図において、光ケーブル2Aは被覆21Aで共通に
被覆された2本の光ファイバからなり、そのうちの1本
は図10の受光用光ファイバ2と同じ機能の受光用光フ
ァイバ22A、もう1本は故障点標定装置診断時の診断
光を伝える診断光送光用光ファイバ23である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.
FIG. 1 is a circuit diagram and a cross-sectional view of a fault locating apparatus showing a first embodiment of the present invention. In FIG. 1, the same components as those in FIG. Therefore, a detailed description is omitted by adding a subscript A.
In this figure, the optical cable 2A is composed of two optical fibers commonly coated with a coating 21A, one of which is a light receiving optical fiber 22A having the same function as the light receiving optical fiber 2 of FIG. 10, and the other is one. An optical fiber 23 for transmitting diagnostic light for transmitting diagnostic light at the time of diagnosing the fault point locating device.

【0016】光ケーブク2Aの閃絡光検出部3A側の端
部は2本の光ファイバ22A,23それぞれに同じ断面
の蛍光物質35を取付けてある。また、事故監視装置1
A側の端部は、受光用光ファイバ22Aは図10と同様
に受光部11が受光できるように、診断光送光用光ファ
イバ23の端部は事故監視装置1A内に設けた診断光発
光部18から送光診断光が入射されるようにそれぞれ取
付けてある。診断光発光部18は診断信号発生部181
とこれからの信号によって発光する発光器182とから
なっている。また、比較器13及び波形整形器14と並
列に診断信号用比較器17を設けてある。
At the end of the optical cable 2A on the side of the flashlight detector 3A, a fluorescent substance 35 having the same cross section is attached to each of the two optical fibers 22A and 23. In addition, the accident monitoring device 1
The end of the A side is provided with an end of the diagnostic light transmitting optical fiber 23 so that the light receiving optical fiber 22A can be received by the light receiving section 11 as in FIG. The light-transmitting diagnostic light is attached from the unit 18 so as to be incident thereon. The diagnostic light emitting section 18 is a diagnostic signal generating section 181
And a light emitter 182 that emits light in response to a signal from now on. A diagnostic signal comparator 17 is provided in parallel with the comparator 13 and the waveform shaper 14.

【0017】このような構成において故障点標定装置の
診断は次のようにして行われる。まず、診断光発光部1
8で発光した光は送光診断光として診断光送光用光ファ
イバ23を伝わって蛍光物質35に照射されこの蛍光物
質35が励起して蛍光を発する。この蛍光は四方に放射
されるので隣接している受光用光ファイバ22Aの先端
の蛍光物質35に照射されてこれを励起して蛍光を発す
る。この蛍光の一部が受光診断光として受光用光ファイ
バ22Aを伝わって受光部11によって受光され電気信
号に変換される。この電気信号が診断信号として増幅器
12によって増幅され2つの比較器13,17に入力さ
れる。
In such a configuration, diagnosis of the fault point locating device is performed as follows. First, the diagnostic light emitting unit 1
The light emitted in 8 travels through the diagnostic light transmitting optical fiber 23 as light transmission diagnostic light and is irradiated on the fluorescent substance 35, which excites the fluorescent substance 35 to emit fluorescence. Since the fluorescent light is emitted in all directions, the fluorescent material 35 at the tip of the adjacent light-receiving optical fiber 22A is irradiated and excites the fluorescent material 35 to emit fluorescent light. A part of the fluorescent light is transmitted through the light receiving optical fiber 22A as the light receiving diagnostic light, is received by the light receiving unit 11, and is converted into an electric signal. This electric signal is amplified as a diagnostic signal by the amplifier 12 and input to the two comparators 13 and 17.

【0018】比較器13の設定電圧V1 は、強度の比較
的大きな閃絡光を検出するに適した値に設定されている
のに対して、診断信号用比較器17は蛍光物質35の励
起によって発光した微弱な蛍光の有無を検出するものな
ので、その設定電圧V2 は比較器13の設定電圧V1
りも小さな電圧値に設定してある。したがって、比較器
13が検出することができない微弱な診断信号を診断信
号用比較器17で検出することができる。検出された診
断信号は信号出力部15に入力され図示しない表示部に
表示して正常か否かが診断者よって判定される。
The set voltage V 1 of the comparator 13 is set to a value suitable for detecting flash light having a relatively large intensity, while the diagnostic signal comparator 17 is configured to excite the fluorescent substance 35. because it is to detect the presence or absence of weak fluorescence emitted by the set voltage V 2 is set at a small voltage value than the set voltage V 1 of the comparator 13. Therefore, a weak diagnostic signal that cannot be detected by the comparator 13 can be detected by the diagnostic signal comparator 17. The detected diagnostic signal is input to the signal output unit 15 and displayed on a display unit (not shown) to determine whether or not the signal is normal.

【0019】閃絡光が検出されたときには比較器13で
検出される他に診断信号用比較器17でも検出されるの
で、これらが両方とも表示部で表示されることになる。
When flash light is detected, it is detected not only by the comparator 13 but also by the diagnostic signal comparator 17, so that both of them are displayed on the display unit.

【0020】図2は図1の閃絡光検出部3Aの一部を拡
大した拡大断面図である。この図において、前述のよう
に診断光発光部18で発光した送光診断光45が診断光
送光用光ファイバ23の先端の蛍光物質35に照射され
て蛍光を発し、その蛍光が受光用光ファイバ221Aの
先端に設けられた隣の蛍光物質35に照射されて受光診
断光44としての蛍光が発することになる。この受光診
断光44は受光用光ファイバ22Aを伝わって事故監視
装置1Aまで達示し前述のように故障点標定の診断が行
われる。
FIG. 2 is an enlarged sectional view showing a part of the flashlight detector 3A of FIG. In this figure, the transmitted light diagnostic light 45 emitted from the diagnostic light emitting section 18 as described above is irradiated on the fluorescent substance 35 at the tip of the diagnostic light transmitting optical fiber 23 to emit fluorescent light. The adjacent fluorescent substance 35 provided at the tip of the fiber 221A is irradiated to emit fluorescent light as the received light diagnostic light 44. The light-receiving diagnostic light 44 travels through the light-receiving optical fiber 22A and reaches the accident monitoring device 1A, where the diagnosis of the fault point is performed as described above.

【0021】閃絡光41が導光ガラス32を通って入っ
てきたときにはそれぞれの光ファイバ22A,23の中
に閃絡光42,43として伝わってゆくが、このうちの
閃絡光42だけが実際に検出されるものとなる。
When the flash light 41 enters through the light guide glass 32, the flash light 41 is transmitted as flash light 42, 43 into the respective optical fibers 22A, 23, but only the flash light 42 of the light is transmitted. It will be actually detected.

【0022】図3はこの発明の第2の実施例を示す断面
図であり、図2と異なる点は蛍光物質35Bを光ケーブ
ル2Bと対向する導入ガラス32Bの表面に設けたもの
であり、導光ガラス32Bの図の上表面に凹穴を設けこ
の凹穴に蛍光物質35Bを充填した構成である。この構
成では送光診断光43は蛍光物質35Bに照射されて蛍
光が発する。この蛍光は四方に放射するがそのうちの受
光用光ファイバ22Bに入った蛍光だけが受光診断光4
4として図1の事故監視装置1Aまで伝達される。
FIG. 3 is a sectional view showing a second embodiment of the present invention. The difference from FIG. 2 is that the fluorescent substance 35B is provided on the surface of the introduction glass 32B facing the optical cable 2B. In this configuration, a concave hole is provided in the upper surface of the glass 32B in the figure, and the concave hole is filled with the fluorescent substance 35B. In this configuration, the light transmission diagnostic light 43 is irradiated on the fluorescent substance 35B to emit fluorescent light. This fluorescent light is emitted in all directions, but only the fluorescent light that enters the light receiving optical fiber 22B is the light receiving diagnostic light 4.
4 is transmitted to the accident monitoring device 1A of FIG.

【0023】この実施例では図2の場合のように蛍光物
質の発光が2段になっていないので受光用光ファイバ2
2Bが受光する診断用模擬光44の強度が大きいという
特長がある。
In this embodiment, since the light emission of the fluorescent substance is not in two stages as in the case of FIG.
There is a feature that the intensity of the diagnostic simulation light 44 received by 2B is large.

【0024】図4はこの発明の第3の実施例を示す断面
図であり、図3と異なる点は蛍光物質35Cを導光ガラ
ス32Cの表面全面に設けた点であり、その他は同じな
ので蛍光物質35Cと導光ガラス32Cでけを図示して
ある。導光ガラス32Cの上表面は平面であり凹穴を設
ける必要がないので、図2の導光ガラス32Bに比べて
製作が容易であるという特長がある。
FIG. 4 is a sectional view showing a third embodiment of the present invention. The difference from FIG. 3 is that a fluorescent substance 35C is provided on the entire surface of the light guide glass 32C. An illustration of the material 35C and light guide glass 32C is shown. Since the upper surface of the light guide glass 32C is flat and does not need to be provided with a concave hole, there is a feature that it is easier to manufacture than the light guide glass 32B of FIG.

【0025】図5はこの発明の第4の実施例を示す光ケ
ーブル2D先端部と導光ガラス32の断面図、図6はそ
のA−A矢視図であり、図2、図3及び図4と異なる点
は受光用光ファイバ22Bによって伝えられる受光診断
光44を蛍光物質で生成するのではなく、図示のように
プリズム5で送光診断光45を反射させて生成する点で
ある。光ケーブル2Dは被覆21Dで共通に被覆された
3本の光ファイバである受光用光ファイバ22D,診断
光送光用光ファイバ23D、診断光受光用光ファイバ2
4及びこれらを被覆する被覆21Dからなっており、診
断光送光用光ファイバ23Dで伝送された送光診断光4
5は断面が台形状のプリズム5で2回の全反射をしてそ
の方向を反転して受光診断光となり、診断光受光用光フ
ァイバ24によって事故監視装置1Aまで伝送される。
閃絡光41はプリズム5の導光ガラス32と対向する平
行面を通って閃絡光42となって受光用光ファイバ22
Dに入射する。
FIG. 5 is a cross-sectional view of the tip of an optical cable 2D and a light guide glass 32 showing a fourth embodiment of the present invention, and FIG. 6 is a view taken along the line AA in FIGS. 2, 3, and 4. The difference is that the received light diagnostic light 44 transmitted by the light receiving optical fiber 22B is not generated by a fluorescent substance, but is generated by reflecting the transmitted light diagnostic light 45 by the prism 5 as shown in the figure. The optical cable 2D is composed of three optical fibers, which are commonly covered with a coating 21D, a light receiving optical fiber 22D, a diagnostic light transmitting optical fiber 23D, and a diagnostic light receiving optical fiber 2D.
4 and a coating 21D that covers them, and the light transmitting diagnostic light 4 transmitted through the diagnostic light transmitting optical fiber 23D.
Reference numeral 5 denotes a prism 5 having a trapezoidal cross section, which performs total reflection twice and reverses its direction to become a received light diagnostic light, which is transmitted to the accident monitoring device 1A by a diagnostic light receiving optical fiber 24.
The flash light 41 passes through a parallel surface of the prism 5 facing the light guide glass 32 to become flash light 42 and becomes a light receiving optical fiber 22.
It is incident on D.

【0026】この実施例では受光用光ファイバ22Dに
受光診断光44が伝わることはないので、直接この受光
用光ファイバ22Dを診断することにはならない。しか
し、この受光用光ファイバ22Dは2本の診断用光ファ
イバ23D,24に挟まれて配置してあるので、受光用
光ファイバ22Dだけが断線して後の2本は正常である
ということは殆ど有り得ないので、診断光送光用光ファ
イバ23D、診断光受光用光ファイバ24の双方が正常
であると診断されれば受光用光ファイバ22Dも正常で
あると判断することができる。
In this embodiment, since the light receiving diagnostic light 44 is not transmitted to the light receiving optical fiber 22D, the light receiving optical fiber 22D is not directly diagnosed. However, since the light receiving optical fiber 22D is disposed so as to be sandwiched between the two diagnostic optical fibers 23D and 24, only the light receiving optical fiber 22D is disconnected and the other two are normal. Since it is hardly possible, if both the diagnostic light transmitting optical fiber 23D and the diagnostic light receiving optical fiber 24 are diagnosed to be normal, it can be determined that the light receiving optical fiber 22D is also normal.

【0027】図7はこの発明の第5の実施例を示す断面
図、図8はそのB−B矢視図であり、図5、図6と異な
る点はプリズム5を設けない代わりに、導光ガラス32
Eに穴を掘り反射面5Eを設けた点である。送光診断光
45はこの反射面5Eで2回反射してその方向を反転し
て受光診断光44となり事故監視装置1Aに戻る。図5
とは異なりプリズム内での反射ではなく気中での反射な
ので低い反射率であることを考慮して受光側を製作する
か、図5と同じ程度に強度の大きい反射光を得るために
反射面5Eを反射膜でコーティングする構成を採用して
もよい。反射膜をコーティングする面は反射をする斜面
だけにすればその間のコーティングしない面を通って閃
絡光が光ケーブルに到達して閃絡光42として事故監視
装置1Aに伝達される。反射面をコーティングしない場
合でも斜面を通る閃絡光41はこの面で屈折又は反射し
て閃絡光42を形成する成分にはならないので、コーテ
ィングすることによって閃絡光42の強度に大きな変化
はない。
FIG. 7 is a sectional view showing a fifth embodiment of the present invention, and FIG. 8 is a view taken along the line BB of FIG. Light glass 32
A point is that a hole is dug in E and a reflecting surface 5E is provided. The light-sending diagnostic light 45 is reflected twice on the reflecting surface 5E, reverses its direction, becomes the light-receiving diagnostic light 44, and returns to the accident monitoring device 1A. FIG.
Unlike the reflection in the prism, it is reflection in the air and not in the prism, so the light receiving side is manufactured in consideration of the low reflectance, or the reflection surface is used to obtain the reflected light with the same intensity as in FIG. A configuration in which 5E is coated with a reflective film may be employed. If the surface to be coated with the reflective film is only the reflecting slope, the flash light reaches the optical cable through the uncoated surface between them, and is transmitted to the accident monitoring device 1A as flash light 42. Even when the reflection surface is not coated, the flash light 41 passing through the inclined surface does not become a component forming the flash light 42 by being refracted or reflected by this surface, so that the coating causes a large change in the intensity of the flash light 42. Absent.

【0028】図5,6の第4の実施例ではいずれも3本
の光ファイバ22D,23D,24を並べて配置するも
のであるが、このような構成にこだわるものでなく、例
えばそれぞれの光ファイバの断面が三角形の頂点になる
ように配置することも可能であり、その配置に応じたプ
リズム5の形状を設定すればよい。この場合、閃絡光4
1はプリズムを通さないで受光用光ファイバ22Dに入
射する構成も容易に得られる。3本の光ファイバの配置
については図7,8の第5の実施例でも同様に実施する
ことができる。
In the fourth embodiment shown in FIGS. 5 and 6, all three optical fibers 22D, 23D and 24 are arranged side by side. However, the present invention is not limited to such a configuration. Can be arranged such that the cross section of the prism becomes the vertex of the triangle, and the shape of the prism 5 may be set according to the arrangement. In this case, flashlight 4
1 can easily be obtained without passing through the prism and entering the light receiving optical fiber 22D. The arrangement of the three optical fibers can be similarly implemented in the fifth embodiment shown in FIGS.

【0029】図9はこの発明の第6の実施例を示す故障
点標定装置の回路図及び断面図であり、図1と異なる点
は診断光送光用光ファイバを設けず閃絡光検出部3Fで
送光診断光を与える点である。受光用光ファイバ2Fの
閃絡光検出部3F側の先端には図1と同様に蛍光物質3
5Fを設けてある。蛍光物質35Fを発光させるための
送光診断光は気密フランジ34Fに設けた導光孔62か
ら入射する。この部分の被覆は取り除かれて被覆はく離
部62を形成しており、導光孔62から導入された送光
診断光は蛍光物質35Fに照射される。照射された蛍光
物質35Fは蛍光を発してその一部が光ケーブル2Fを
伝わって事故監視装置1Fの受光部11に受光される。
送光診断光としては、太陽光や照明光などを適宜導光孔
62に導くことによって生成することができる。
FIG. 9 is a circuit diagram and a sectional view of a fault point locating apparatus showing a sixth embodiment of the present invention. The difference from FIG. 1 is that no flash fiber detecting optical fiber is provided and a flash light detecting section is provided. The point is that the light transmission diagnostic light is given at 3F. As in FIG. 1, a fluorescent substance 3 is provided at the end of the light receiving optical fiber 2F on the side of the flashlight detector 3F.
5F is provided. Light transmission diagnostic light for causing the fluorescent substance 35F to emit light enters from a light guide hole 62 provided in the airtight flange 34F. The coating on this portion is removed to form a coating peeling portion 62, and the light transmission diagnostic light introduced from the light guide hole 62 is irradiated on the fluorescent substance 35F. The illuminated fluorescent substance 35F emits fluorescence, and a part thereof is transmitted through the optical cable 2F and received by the light receiving section 11 of the accident monitoring device 1F.
The light transmission diagnostic light can be generated by appropriately guiding sunlight, illumination light, or the like to the light guide hole 62.

【0030】事故監視装置1Fの図1に示す事故監視装
置1Aとの違いは診断光発光部18が設けられていない
点である。受光部11で受光された診断光の処理は図1
と同様である。
The accident monitoring device 1F is different from the accident monitoring device 1A shown in FIG. 1 in that the diagnostic light emitting section 18 is not provided. The processing of the diagnostic light received by the light receiving unit 11 is shown in FIG.
Is the same as

【0031】この実施例では、図1の実施例と比べて光
ファイバの構成が簡単なので、閃絡光検出部側の先端を
除いては光ファイバ1本を使用する従来の技術と同じな
ので、市販の光ファイバを使用することができることか
らその実現が容易であるとともに安価な故障点標定装置
とすることができる。
In this embodiment, since the structure of the optical fiber is simpler than that of the embodiment of FIG. 1, the structure is the same as the conventional technology using one optical fiber except for the tip on the side of the flash light detector. Since a commercially available optical fiber can be used, the realization is easy and an inexpensive fault locator can be provided.

【0032】[0032]

【発明の効果】この発明は前述のように、受光用光ファ
イバに並列に診断光送光用光ファイバを設けてこれらで
光ケーブルを構成し、事故監視装置に、送光診断光を生
成して診断光送光用光ファイバに入射する診断光発光部
及び受光診断光の有無を検出する診断信号用比較器を設
け、光ケーブルの閃絡光検出部側の先端に蛍光物質を設
けることにより、送光診断光によって診断光送光用光フ
ァイバの先端の蛍光物質が蛍光を発し、この蛍光が受光
診断光となって受光診断光用光ファイバを伝わって事故
監視装置に戻り受光され受光部によって電気信号に変換
される。この電気信号の強度を診断信号比較器によって
所定の強度を越えたときに受光診断光が受信されしたが
って故障点標定装置が正常であると判断することができ
る。診断光発光部によって送光診断光を生成するごとに
診断が可能なので、この送光診断光の生成を適当な間隔
で行うことによって実質的に連続した故障点標定が可能
になるという効果が得られ、その結果、故障点標定装置
を正常状態を確認することができ、万一異常が発見され
れば故障点標定装置を直ちに修理することによって実質
的に常に正常状態を維持することができルとうい効果が
得られる。更に、蛍光物質を受光用光ファイバと診断光
送光用光ファイバの双方の先端にそれぞれ設けると、診
断光送光用光ファイバの先端の蛍光物質が送光診断光に
よって蛍光を発し、更にこれによって診断光受光用光フ
ァイバの先端の蛍光物質が受光診断光としての蛍光を発
するので、確実に受光診断光を得ることができる。又
は、蛍光物質を、光ケーブルの端部に対向する導光ガラ
スの面に設けることによって、光ファイバの先端部の加
工が不要になるともに、蛍光が蛍光を発するという段階
が不要になるので、比較的大きな受光診断光を得ること
ができる。又は、光ケーブルの端部に対向する導光ガラ
スの面に設けた凹穴に蛍光物質を充填することによっ
て、容易に蛍光物質を設けることができる。また、光ケ
ーブルに対向する導光ガラスの面に蛍光物質を塗布する
ことによって、導光ガラスに凹穴を設ける加工が不要に
なる。また、光ケーブルに診断光受光用光ファイバを設
け、光ケーブルの閃絡光検出部側の先端に診断光送光用
光ファイバから出射した診断光を診断光受光用光ファイ
バに入射する反射部を設けることによって、蛍光物質に
よって受光診断光を生成する方式に比べてより大きな受
光診断光の強度を得ることができる。更に、反射部を、
光ケーブルの先端に設けたプリズムで構成することによ
って、容易に反射部を形成することができる。また、プ
リズムの代わりに、光ケーブルの先端に対向する導光ガ
ラスの面に凹部を設けこの凹部面を反射面として反射部
を構成することによって、プリズムを取付けるための光
ケーブル先端の複雑な加工が不要になる。また、光ケー
ブルを従来と同じ受光用光ファイバの1本だけとし、閃
絡光検出部側の端部に蛍光物質を設け、この蛍光物質に
閃絡光検出部の外部から診断光を蛍光物質に照射する導
光孔を設け、事故監視装置に、受光された蛍光が電気信
号に変換された電気信号の強度を所定の強度と比較する
診断信号用比較器を設けることによって、光ケーブルが
従来と同じ1本の光ファイバでよいので、前述の故障点
標定を常に正常状態に維持することができるという効果
に加えて簡単な構成でその結果として安価な故障点標定
装置になるという効果も得られる。
As described above, according to the present invention, an optical cable is provided by providing an optical fiber for transmitting diagnostic light in parallel with an optical fiber for receiving light, and an optical cable is constructed by these. A diagnostic light emitting section incident on the optical fiber for transmitting the diagnostic light and a diagnostic signal comparator for detecting the presence or absence of the received diagnostic light are provided, and a fluorescent substance is provided at the end of the optical cable on the side of the flash light detecting section. The fluorescent substance at the tip of the optical fiber for transmitting diagnostic light emits fluorescence due to the optical diagnostic light, and the fluorescent light becomes diagnostic light for light reception, travels through the optical fiber for diagnostic light reception, is returned to the accident monitoring device, and is received by the light receiving unit. Converted to a signal. When the intensity of the electric signal exceeds a predetermined intensity by the diagnostic signal comparator, the received diagnostic light is received, so that it can be determined that the fault locating device is normal. Diagnosis can be performed each time the diagnostic light emitting unit generates the diagnostic light, so that the generation of the diagnostic light at appropriate intervals can provide substantially continuous fault location. As a result, the normal state of the fault locating device can be confirmed, and if an abnormality is found, the fault locating device can be repaired immediately so that the normal state can be substantially always maintained. The effect is finally obtained. Further, when a fluorescent substance is provided at both ends of the optical fiber for receiving light and the optical fiber for transmitting diagnostic light, respectively, the fluorescent substance at the distal end of the optical fiber for transmitting diagnostic light emits fluorescence by the transmitted diagnostic light. As a result, the fluorescent substance at the tip of the optical fiber for receiving diagnostic light emits fluorescent light as diagnostic light for received light, so that diagnostic light for received light can be obtained reliably. Alternatively, by providing a fluorescent substance on the surface of the light guide glass facing the end of the optical cable, processing of the tip of the optical fiber becomes unnecessary, and the step of emitting fluorescent light becomes unnecessary. It is possible to obtain an extremely large received light diagnostic light. Alternatively, the fluorescent substance can be easily provided by filling the concave hole provided on the surface of the light guide glass facing the end of the optical cable with the fluorescent substance. Further, by applying a fluorescent substance to the surface of the light guide glass facing the optical cable, it is not necessary to provide a concave hole in the light guide glass. Also, an optical fiber for receiving the diagnostic light is provided on the optical cable, and a reflecting portion for inputting the diagnostic light emitted from the optical fiber for transmitting the diagnostic light to the optical fiber for receiving the diagnostic light is provided at the end of the optical cable on the side of the flashlight detecting unit. This makes it possible to obtain a higher intensity of the received diagnostic light as compared with the method of generating the received diagnostic light using the fluorescent substance. Furthermore, the reflection part,
By using a prism provided at the end of the optical cable, the reflecting portion can be easily formed. Also, instead of the prism, a concave portion is provided on the surface of the light guide glass facing the distal end of the optical cable, and the concave portion is used as a reflective surface to constitute a reflecting portion, so that complicated processing of the optical cable distal end for mounting the prism is unnecessary. become. Also, the optical cable is made of only one optical fiber for receiving light, which is the same as the conventional one, and a fluorescent substance is provided at the end on the side of the flashlight detection section, and diagnostic light is applied to the fluorescent substance from outside the flashlight detection section. By providing a light guide hole for irradiation and a diagnostic signal comparator that compares the intensity of the electric signal obtained by converting the received fluorescent light into an electric signal with a predetermined intensity in the accident monitoring device, the optical cable is the same as the conventional one. Since only one optical fiber is required, in addition to the effect that the above-mentioned fault location can be always maintained in a normal state, an effect that a simple configuration and as a result an inexpensive failure location apparatus can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施例を示す故障点標定装置
の回路図及び断面図
FIG. 1 is a circuit diagram and a cross-sectional view of a fault point locating device showing a first embodiment of the present invention.

【図2】図1の一部を拡大した拡大断面図FIG. 2 is an enlarged sectional view showing a part of FIG. 1 in an enlarged manner;

【図3】この発明の第2の実施例を示す断面図FIG. 3 is a sectional view showing a second embodiment of the present invention.

【図4】この発明の第3の実施例を示す断面図FIG. 4 is a sectional view showing a third embodiment of the present invention.

【図5】この発明の第4の実施例を示す断面図FIG. 5 is a sectional view showing a fourth embodiment of the present invention.

【図6】図5のA−A矢視図FIG. 6 is a view taken in the direction of arrows AA in FIG. 5;

【図7】この発明の第5の実施例を示す断面図FIG. 7 is a sectional view showing a fifth embodiment of the present invention.

【図8】図7のB−B矢視図8 is a view taken in the direction of arrows BB in FIG. 7;

【図9】この発明の第6の実施例を示す故障点標定装置
の回路図及び断面図
FIG. 9 is a circuit diagram and a cross-sectional view of a fault locating device showing a sixth embodiment of the present invention.

【図10】従来のガス絶縁機器の故障点標定装置を示す
回路図及び断面図
FIG. 10 is a circuit diagram and a cross-sectional view showing a conventional fault locating device for gas-insulated equipment.

【符号の説明】[Explanation of symbols]

1 事故監視装置 1A 事故監視装置 1F 事故監視装置 11 受光部 12 増幅器 13 比較器 14 波形整形器 15 出力部 17 診断信号用比較器 18 診断光発光部 2 受光用光ファイバ 21 被覆 22 光ファイバ 2A 光ケーブル 21A 被覆 22A 受光用光ファイバ 23 受光診断光用光ファイバ 2B 光ケーブル 22B 受光用光ファイバ 23B 受光診断光用光ファイバ 2D 光ケーブル 21D 被覆 22D 受光用光ファイバ 23D 診断光受光用光ファイバ 24 診断光送光用光ファイバ 2F 光ケーブル 3 閃絡光検出部 3A 閃絡光検出部 3F 閃絡光検出部 31 光ファイバ端末部 32 導光ガラス 32B 導光ガラス 32C 導光ガラス 32E 導光ガラス 34 気密フランジ 34F 気密フランジ 35 蛍光物質 35B 蛍光物質 35C 蛍光物質 35F 蛍光物質 41 閃絡光 42 閃絡光 43 閃絡光 44 受光診断光 45 送光診断光 5 プリズム(反射部) 5E 反射面(反射部) 100 密封容器 Reference Signs List 1 accident monitoring device 1A accident monitoring device 1F accident monitoring device 11 light receiving section 12 amplifier 13 comparator 14 waveform shaper 15 output section 17 diagnostic signal comparator 18 diagnostic light emitting section 2 light receiving optical fiber 21 coating 22 optical fiber 2A optical cable 21A Coating 22A Receiving optical fiber 23 Receiving diagnostic optical fiber 2B Optical cable 22B Receiving optical fiber 23B Receiving diagnostic optical fiber 2D Optical cable 21D Coating 22D Receiving optical fiber 23D Diagnostic light receiving optical fiber 24 Diagnostic light transmitting Optical fiber 2F Optical cable 3 Flash light detection unit 3A Flash light detection unit 3F Flash light detection unit 31 Optical fiber terminal unit 32 Light guide glass 32B Light guide glass 32C Light guide glass 32E Light guide glass 34 Hermetic flange 34F Hermetic flange 35 Fluorescent substance 35B Fluorescent substance 3 Reference Signs List 5C Fluorescent material 35F Fluorescent material 41 Flash light 42 Flash light 43 Flash light 44 Reception diagnostic light 45 Light transmission diagnostic light 5 Prism (reflection part) 5E Reflection surface (reflection part) 100 Sealed container

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01R 31/08 H02B 13/065 H02H 5/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields investigated (Int. Cl. 6 , DB name) G01R 31/08 H02B 13/065 H02H 5/00

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガス絶縁機器の密封容器に設けこの容器内
で発生した閃絡光を導光ガラスを介して外部に導く閃絡
光検出部、この閃絡光検出部から出た閃絡光を故障点標
定装置まで導く受光用光ファイバ及びこの受光用光ファ
イバが導いた光を受光して電気信号に変換して故障点を
標定する事故監視装置からなるガス絶縁機器の故障点標
定装置において、前記受光用光ファイバとこの受光用光
ファイバに並列に設けた診断光送光用光ファイバとで光
ケーブルを構成し、前記事故監視装置に、送光診断光を
生成して前記診断光送光用光ファイバに入射する診断光
発光部及び電気信号に変換された受光診断光の有無を検
出する診断信号用比較器とを設け、前記光ケーブルの閃
絡光検出部側の先端に送光診断光が照射されて受光診断
光としての蛍光を発する蛍光物質を設けてなることを特
徴とするガス絶縁機器の故障点標定装置。
1. A flash light detecting section provided in a sealed container of a gas insulating device for guiding flash light generated in the container to the outside through a light guide glass, and flash light emitted from the flash light detecting section. A fault detection system for gas-insulated equipment consisting of a light receiving optical fiber that guides the light to the failure point locating device and an accident monitoring device that receives the light guided by the light receiving optical fiber and converts it into an electrical signal to locate the fault point An optical cable is configured by the light receiving optical fiber and the diagnostic light transmitting optical fiber provided in parallel with the light receiving optical fiber, and the accident monitoring device generates light transmitting diagnostic light to transmit the diagnostic light transmitting light. A diagnostic light emitting section incident on the optical fiber for use and a diagnostic signal comparator for detecting the presence or absence of the received diagnostic light converted into an electrical signal, and a light transmitting diagnostic light is provided at the end of the optical cable on the flash light detecting section side. Irradiates the fluorescent light as diagnostic light Gas insulated equipment failure point locating system characterized by comprising providing a fluorescent substance that.
【請求項2】蛍光物質を、受光用光ファイバと診断光伝
送用光ファイバとの先端にそれぞれ設けてなることを特
徴とする請求項1記載のガス絶縁機器の故障点標定装
置。
2. The apparatus according to claim 1, wherein the fluorescent substance is provided at the tip of the optical fiber for receiving light and the optical fiber for transmitting diagnostic light, respectively.
【請求項3】蛍光物質を、光ケーブルの端部に対向する
導光ガラスの面に設けてなることを特徴とする請求項1
記載のガス絶縁機器の故障点標定装置。
3. The light guide glass according to claim 1, wherein the fluorescent material is provided on a surface of the light guide glass facing an end of the optical cable.
Fault locating device for gas-insulated equipment as described in the above.
【請求項4】光ケーブルの端部に対向する導光ガラスの
面に設けた凹穴に蛍光物質を充填してなることを特徴と
する請求項3記載のガス絶縁機器の故障点標定装置。
4. The apparatus for locating a fault in a gas-insulated device according to claim 3, wherein a fluorescent substance is filled in a concave hole formed in the surface of the light guide glass facing the end of the optical cable.
【請求項5】光ケーブルに対向する導光ガラスの面に蛍
光物質を塗布してなることを特徴とする請求項3記載の
ガス絶縁機器の故障点標定装置。
5. The apparatus according to claim 3, wherein a fluorescent substance is applied to a surface of the light guide glass facing the optical cable.
【請求項6】ガス絶縁機器の密封容器に設けこの容器内
で発生した閃絡光を導光ガラスを介して外部に導く閃絡
光検出部、この閃絡光検出部から出た閃絡光を故障点標
定装置まで導く受光用光ファイバ及びこの受光用光ファ
イバが導いた光を受光して電気信号に変換して故障点を
標定する事故監視装置からなるガス絶縁機器の故障点標
定装置において、前記受光用光ファイバとこの受光用光
ファイバに並列に設けた診断光送光用光ファイバ及び診
断光受光用光ファイバとの3本の光ファイバで光ケーブ
ルを構成し、前記事故監視装置に、送光診断光を生成し
て前記診断光送光用光ファイバに入射する診断光発光部
及び電気信号に変換された受光診断光の有無を検出する
診断信号用比較器とを設け、前記光ケーブルの閃絡光検
出部側の先端に診断光送光用光ファイバから出射した送
光診断光を診断光受光用光ファイバに入射して受光診断
光とする反射部を設けてなることを特徴とするガス絶縁
機器の故障点標定装置。
6. A flashlight detecting section provided in a sealed container of a gas insulating device for guiding flashlight generated in the container to the outside via a light guide glass, and flashlight emitted from the flashlight detecting section. A fault detection system for gas-insulated equipment consisting of a light receiving optical fiber that guides the light to the failure point locating device and an accident monitoring device that receives the light guided by the light receiving optical fiber and converts it into an electrical signal to locate the fault point An optical cable is composed of three optical fibers, the optical fiber for receiving light and the optical fiber for transmitting diagnostic light and the optical fiber for receiving diagnostic light, which are provided in parallel with the optical fiber for receiving light, and the accident monitoring device includes: A diagnostic light emitting unit that generates light-transmitting diagnostic light and enters the diagnostic-light-transmitting optical fiber; and a diagnostic-signal comparator that detects the presence or absence of a received-light diagnostic light converted into an electric signal. Check the tip of the flash light detector Light transmission light fault point locating system of the gas-insulated apparatus, characterized in that formed by providing the reflective portion of the incident to the light receiving diagnostic light in the diagnostic light receiving optical fiber sending diagnostic light emitted from the optical fiber.
【請求項7】反射部が、光ケーブルの先端に設けたプリ
ズムからなることを特徴とする請求項6記載のガス絶縁
機器の故障点標定装置。
7. The apparatus according to claim 6, wherein the reflecting portion comprises a prism provided at a tip of the optical cable.
【請求項8】光ケーブルの先端に対向する導光ガラスの
面に凹部を設けこの凹部面を反射面として反射部を構成
してなることを特徴とする請求項6記載のガス絶縁機器
の故障点標定装置。
8. The gas-insulated equipment according to claim 6, wherein a concave portion is provided on the surface of the light guide glass facing the tip of the optical cable, and the concave portion is used as a reflective surface to constitute a reflecting portion. Orientation device.
【請求項9】ガス絶縁機器の密封容器に設けこの容器内
で発生した閃絡光を導光ガラスを介して外部に導く閃絡
光検出部、この閃絡光検出部から出た閃絡光を故障点標
定装置まで導く受光用光ファイバ及びこの受光用光ファ
イバが導いた光を受光して電気信号に変換して故障点を
標定する事故監視装置からなるガス絶縁機器の故障点標
定装置において、前記受光用光ファイバの閃絡光検出部
側の端部に蛍光物質を、この蛍光物質に前記閃絡光検出
部の外部から送光診断光を前記蛍光物質に照射する導光
孔をそれぞれ設け、事故監視装置に、前記蛍光物質が導
光孔から照射されて送光診断光によって受光診断光とし
ての蛍光を発光してこの受光診断光が前記受光用光ファ
イバを伝わって事故監視装置に達して電気信号に変換さ
れてその強度を所定の強度と比較する診断信号用比較器
を設けてなることを特徴とするガス絶縁機器の故障点標
定装置。
9. A flashlight detecting section provided in a sealed container of a gas insulating device for guiding flashlight generated in the container to the outside via a light guide glass, and flashlight emitted from the flashlight detecting section. A fault detection system for gas-insulated equipment consisting of a light receiving optical fiber that guides the light to the failure point locating device and an accident monitoring device that receives the light guided by the light receiving optical fiber and converts it into an electrical signal to locate the fault point A fluorescent substance at the end of the optical fiber for light reception on the side of the flashlight detector, and a light guide hole for irradiating the fluorescent substance with diagnostic light transmitted from outside the flashlight detector to the fluorescent substance. In the accident monitoring device, the fluorescent substance is radiated from the light guide hole and emits fluorescence as light reception diagnosis light by the light transmission diagnosis light, and the light reception diagnosis light propagates through the light receiving optical fiber to the accident monitoring device. And converted to an electrical signal to determine its strength. Gas insulated equipment failure point locating system characterized by comprising providing a diagnostic signal comparator which compares the intensity of.
JP3047066A 1991-03-13 1991-03-13 Fault locator for gas insulation equipment Expired - Fee Related JP2979678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3047066A JP2979678B2 (en) 1991-03-13 1991-03-13 Fault locator for gas insulation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3047066A JP2979678B2 (en) 1991-03-13 1991-03-13 Fault locator for gas insulation equipment

Publications (2)

Publication Number Publication Date
JPH04283669A JPH04283669A (en) 1992-10-08
JP2979678B2 true JP2979678B2 (en) 1999-11-15

Family

ID=12764786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3047066A Expired - Fee Related JP2979678B2 (en) 1991-03-13 1991-03-13 Fault locator for gas insulation equipment

Country Status (1)

Country Link
JP (1) JP2979678B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105988064B (en) * 2015-11-25 2019-02-15 国网辽宁省电力有限公司锦州供电公司 Can fault point menu and its to position of failure point positioning method

Also Published As

Publication number Publication date
JPH04283669A (en) 1992-10-08

Similar Documents

Publication Publication Date Title
KR960003646B1 (en) Optical fiber arrangement structure for locating electric faults in cables
US7142291B2 (en) Detection of partial discharge or arcing in wiring via fiber optics
JPS5873846A (en) Optical fiber sensor for detecting arc discharge
JP2000346705A (en) Arc light detector
JP2979678B2 (en) Fault locator for gas insulation equipment
CH681660A5 (en) Electrical discharger detector for sulphur hexa:fluoride enclosure
JP2000065887A (en) Fault locator for electric power equipment
JPH02269980A (en) Abnormality detecting device for power cable or its connection part
JPH03194479A (en) Fault position locating device for electric apparatus
JP2707823B2 (en) Failure monitoring device for electrical equipment
JPH0759221A (en) Abnormality detector for gas insulated power equipment
Gräf et al. Nonconventional partial discharge measurement using fiber optic sensor system for transmission systems and switchgear
JPH01177809A (en) Trouble point locating device for gas insulated apparatus
JPH04337480A (en) Failure monitor device for electric apparatus and its monitoring method
JPH0545403A (en) Discharge position detection device
JPH04121035A (en) Accident point spotting device
JP3102129B2 (en) Internal arc detector for gas insulation equipment
JPH065888A (en) Photodetector and failure monitoring system for electric equipment using the photodetector
JPH02232570A (en) Fault detector for power equipment
CN118067640A (en) Cable joint gas measurement device
JP2000208332A (en) Transformer monitoring device
JPH0851708A (en) Arc light detector for gas insulated electric equipment
JPH08146072A (en) High insulation type leak current detector
JPH11125653A (en) Internal arc detection device of gas insulation apparatus
JPS59206733A (en) Monitoring device of vacuum in vacuum apparatus used in connection to high potential

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees