JPH04283220A - Sealing resin composition and semiconductor device sealed therewith - Google Patents
Sealing resin composition and semiconductor device sealed therewithInfo
- Publication number
- JPH04283220A JPH04283220A JP7253991A JP7253991A JPH04283220A JP H04283220 A JPH04283220 A JP H04283220A JP 7253991 A JP7253991 A JP 7253991A JP 7253991 A JP7253991 A JP 7253991A JP H04283220 A JPH04283220 A JP H04283220A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- resin composition
- butadiene
- epoxy
- methyl methacrylate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011342 resin composition Substances 0.000 title claims abstract description 20
- 238000007789 sealing Methods 0.000 title claims description 24
- 239000004065 semiconductor Substances 0.000 title claims description 24
- 239000000843 powder Substances 0.000 claims abstract description 27
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 20
- 239000003822 epoxy resin Substances 0.000 claims abstract description 19
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 19
- 229920003986 novolac Polymers 0.000 claims abstract description 15
- 239000002245 particle Substances 0.000 claims abstract description 14
- 239000005011 phenolic resin Substances 0.000 claims abstract description 13
- 229920006026 co-polymeric resin Polymers 0.000 claims abstract description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 8
- 239000001301 oxygen Substances 0.000 claims abstract description 8
- 239000011362 coarse particle Substances 0.000 claims abstract description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 17
- 238000005538 encapsulation Methods 0.000 claims description 8
- 239000010680 novolac-type phenolic resin Substances 0.000 claims description 7
- WWNGFHNQODFIEX-UHFFFAOYSA-N buta-1,3-diene;methyl 2-methylprop-2-enoate;styrene Chemical compound C=CC=C.COC(=O)C(C)=C.C=CC1=CC=CC=C1 WWNGFHNQODFIEX-UHFFFAOYSA-N 0.000 claims description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 abstract description 20
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 abstract description 20
- 229920005989 resin Polymers 0.000 abstract description 12
- 239000011347 resin Substances 0.000 abstract description 12
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 abstract description 10
- 238000002156 mixing Methods 0.000 abstract description 6
- 239000000203 mixture Substances 0.000 abstract description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 abstract description 6
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 abstract description 3
- 125000003700 epoxy group Chemical group 0.000 abstract description 3
- 229920001568 phenolic resin Polymers 0.000 abstract description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 abstract description 2
- 230000000717 retained effect Effects 0.000 abstract 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 16
- 239000012778 molding material Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 7
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 7
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- 230000017525 heat dissipation Effects 0.000 description 5
- 239000004593 Epoxy Substances 0.000 description 4
- 229910002026 crystalline silica Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000005350 fused silica glass Substances 0.000 description 4
- 239000006082 mold release agent Chemical class 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229930003836 cresol Natural products 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000004843 novolac epoxy resin Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 238000001721 transfer moulding Methods 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- QSSXJPIWXQTSIX-UHFFFAOYSA-N 1-bromo-2-methylbenzene Chemical compound CC1=CC=CC=C1Br QSSXJPIWXQTSIX-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 229910007277 Si3 N4 Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- -1 but among these Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000000113 cyclohexyl group Chemical class [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- CAYGQBVSOZLICD-UHFFFAOYSA-N hexabromobenzene Chemical compound BrC1=C(Br)C(Br)=C(Br)C(Br)=C1Br CAYGQBVSOZLICD-UHFFFAOYSA-N 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 125000005480 straight-chain fatty acid group Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、熱膨脹係数が小さく、
熱伝導率が大きく、耐湿性、成形性、耐金型摩耗性に優
れ、それらの特性バランスのよい封止用樹脂組成物及び
それによって封止された半導体封止装置に関する。[Industrial Application Field] The present invention has a small coefficient of thermal expansion,
The present invention relates to a sealing resin composition that has high thermal conductivity, excellent moisture resistance, moldability, and mold wear resistance, and has a good balance of these properties, and a semiconductor sealing device sealed with the same.
【0002】0002
【従来の技術】従来、ダイオード、トランジスタ、集積
回路等の電子部品を熱硬化性樹脂を用いて封止する方法
が行われてきた。この封止樹脂は、ガラス、金属、セラ
ミックを用いたハーメチックシール方式に比較して経済
的に有利なため、広く実用化されている。封止用樹脂と
しては、熱硬化性樹脂の中でも信頼性および価格の点か
らエポキシ樹脂が、最も一般的に用いられている。エポ
キシ樹脂には、酸無水物、芳香族アミン、ノボラック型
フェノール樹脂等の硬化剤が用いられるが、これらの中
でもノボラック型フェノール樹脂を硬化剤としたエポキ
シ樹脂は、他の硬化剤を利用したものに比べて、成形性
、耐湿性に優れ、毒性がなく、かつ安価であるため、半
導体封止用樹脂として広く使用されている。また充填剤
としては、溶融シリカ粉末や結晶性シリカ粉末が前述の
硬化剤と共に最も一般的に使用されている。近年、半導
体部品の高密度化、大電力化に伴い熱放散性のよい、低
応力の半導体封止用樹脂が要望されてきた。2. Description of the Related Art Conventionally, electronic components such as diodes, transistors, and integrated circuits have been sealed using thermosetting resins. This sealing resin is economically advantageous compared to hermetic sealing methods using glass, metal, or ceramic, and is therefore widely put into practical use. Among thermosetting resins, epoxy resin is most commonly used as the sealing resin in terms of reliability and cost. Epoxy resins use curing agents such as acid anhydrides, aromatic amines, and novolac-type phenolic resins, but among these, epoxy resins that use novolac-type phenolic resins as curing agents are epoxy resins that use other curing agents. It is widely used as a resin for semiconductor encapsulation because it has excellent moldability and moisture resistance, is non-toxic, and is inexpensive. Further, as a filler, fused silica powder and crystalline silica powder are most commonly used together with the above-mentioned curing agent. In recent years, with the increasing density and power consumption of semiconductor components, there has been a demand for low-stress semiconductor encapsulation resins with good heat dissipation properties.
【0003】0003
【発明が解決しようとする課題】しかしながら、ノボラ
ック型フェノール樹脂を硬化剤としたエポキシ樹脂と、
溶融シリカ粉末とからなる樹脂組成物は、熱膨脹係数が
小さく、耐湿性がよく、また温寒サイクル試験によるボ
ンディングワイヤのオープン、樹脂クラック、ペレット
クラック等に優れているという特徴を有するものの、熱
伝導率が小さいために熱放散が悪く、消費電力の大きい
パワー半導体では、その機能が果せなくなる欠点がある
。一方、ノボラック型フェノール樹脂を硬化剤としたエ
ポキシ樹脂と、結晶性シリカ粉末とからなる樹脂組成物
は、結晶性シリカ粉末の配合割合を上げると熱伝導率が
大きくなって、熱放散も良好となるが、熱膨脹係数が大
きく、また耐湿性に対する信頼性も悪くなる欠点がある
。更に、この樹脂組成物から得られる封止品は機械的特
性や成形性が低下し、また成形時に金型の摩耗が大きい
という欠点があった。従って、シリカ粉末を用いる封止
樹脂組成物の高熱伝導化にはおのずから限界があった。[Problems to be Solved by the Invention] However, epoxy resins using novolac type phenolic resin as a curing agent,
Resin compositions made of fused silica powder have a small coefficient of thermal expansion, good moisture resistance, and are excellent in preventing bonding wire opens, resin cracks, pellet cracks, etc. in hot and cold cycle tests, but they have poor thermal conductivity. Power semiconductors with low heat dissipation and high power consumption have the disadvantage that they cannot perform their functions. On the other hand, in a resin composition consisting of an epoxy resin using a novolak type phenol resin as a curing agent and crystalline silica powder, increasing the blending ratio of crystalline silica powder increases the thermal conductivity and improves heat dissipation. However, it has the drawbacks of a large coefficient of thermal expansion and poor reliability in moisture resistance. Furthermore, the sealed products obtained from this resin composition have poor mechanical properties and moldability, and also have the drawbacks of large mold wear during molding. Therefore, there is a natural limit to the ability to increase the thermal conductivity of a sealing resin composition using silica powder.
【0004】本発明の目的は、上記の欠点を解消するた
めになされたもので、耐湿性、成形性、特に薄肉部の充
填性、耐金型摩耗性に優れ、熱膨脹係数が小さく、熱伝
導率、熱放散性がよく、それらの特性バランスのとれた
信頼性の高い封止用樹脂組成物及び半導体封止装置を提
供することにある。The object of the present invention was to solve the above-mentioned drawbacks, and it has excellent moisture resistance, moldability, especially filling properties of thin-walled parts, and mold abrasion resistance, has a small coefficient of thermal expansion, and has high thermal conductivity. The object of the present invention is to provide a highly reliable sealing resin composition and a semiconductor sealing device that have good heat dissipation properties and well-balanced characteristics.
【0005】[0005]
【課題を解決するための手段】本発明者らは、上記の目
的を達成しようと鋭意研究を重ねた結果、特定の窒化ケ
イ素粉末を配合することによって、上記の目的を達成で
きることを見いだし、本発明を完成したものである。[Means for Solving the Problems] As a result of intensive research to achieve the above object, the present inventors discovered that the above object could be achieved by blending a specific silicon nitride powder, and the present inventors have made the present invention. It is a completed invention.
【0006】すなわち、本発明は、(A)エポキシ樹脂
、(B)ノボラック型フェノール樹脂、(C)メチルメ
タクリレート・ブタジエン・スチレン共重合樹脂および
(D)表面の酸素濃度が 0.5〜15重量%になるよ
うに加水分解をし、かつ 150メッシュ篩上の粗粒子
を除去した平均粒径10〜50μmの窒化ケイ素粉末を
必須成分とし、前記(D)の窒化ケイ素粉末が樹脂組成
物に対して25〜90重量%の割合に含有してなること
を特徴とする封止用樹脂組成物である。またこの封止用
樹脂組成物の硬化物で、半導体チップが封止されてなる
ことを特徴とする半導体封止装置である。That is, the present invention provides (A) an epoxy resin, (B) a novolac type phenol resin, (C) a methyl methacrylate/butadiene/styrene copolymer resin, and (D) a surface oxygen concentration of 0.5 to 15% by weight. %, and silicon nitride powder with an average particle size of 10 to 50 μm from which coarse particles on a 150 mesh sieve have been removed is an essential component, and the silicon nitride powder of (D) is This is a sealing resin composition characterized in that it contains 25 to 90% by weight. The present invention is also a semiconductor sealing device characterized in that a semiconductor chip is sealed with a cured product of this sealing resin composition.
【0007】本発明に用いる(A)エポキシ樹脂として
は、その分子中にエポキシ基を少なくとも 2個有する
化合物であるかぎり、分子構造、分子量等に特に制限は
なく、一般に使用されているものを広く包含することが
できる。例えばビスフェノール型の芳香族系、シクロヘ
キサン誘導体等の脂環族系、さらに次の一般式で示され
るエポキシノボラック系等のエポキシ樹脂が挙げられる
。The epoxy resin (A) used in the present invention is not particularly limited in molecular structure, molecular weight, etc., as long as it is a compound having at least two epoxy groups in its molecule, and commonly used epoxy resins can be used. can be included. Examples include aromatic resins such as bisphenol type, alicyclic resins such as cyclohexane derivatives, and epoxy resins such as epoxy novolak resins represented by the following general formula.
【0008】[0008]
【化1】
(但し、式中R1 は水素原子、ハロゲン原子又はアル
キル基を、R2 は水素原子又はアルキル基を、nは
1以上の整数を表す)これらのエポキシ樹脂は単独又は
2種以上混合して用いる。[Chemical formula 1] (However, in the formula, R1 is a hydrogen atom, a halogen atom, or an alkyl group, R2 is a hydrogen atom or an alkyl group, and n is a hydrogen atom or an alkyl group.)
These epoxy resins (representing an integer of 1 or more) are used alone or in a mixture of two or more.
【0009】本発明に用いる(B)ノボラック型フェノ
ール樹脂としては、フェノール、アルキルフェノール等
のフェノール類とホルムアルデヒドあるいはパラホルム
アルデヒドを反応させて得られるノボラック型フェノー
ル樹脂、およびこれらの変性樹脂、例えばエポキシ化も
しくはブチル化ノボラック型フェノール樹脂等が挙げら
れ、これらは単独又は 2種以上混合して用いる。ノボ
ラック型フェノール樹脂の配合割合は、前記(A)エポ
キシ樹脂のエポキシ基(a)と(B)ノボラック型フェ
ノール樹脂のフェノール性水酸基(b)とのモル比[(
a)/(b)]が0.1〜10の範囲内であることが望
ましい。モル比が 0.1未満もしくは10を超えると
耐湿性、成形作業性、及び硬化物の電気特性が悪くなり
、いずれの場合も好ましくない。The novolak type phenol resin (B) used in the present invention includes a novolak type phenol resin obtained by reacting phenols such as phenol and alkylphenol with formaldehyde or paraformaldehyde, and modified resins of these, such as epoxidized or Examples include butylated novolac type phenolic resins, which may be used alone or in combination of two or more. The blending ratio of the novolak type phenolic resin is determined by the molar ratio of the epoxy group (a) of the epoxy resin (A) to the phenolic hydroxyl group (b) of the novolak type phenol resin (B) [(
a)/(b)] is preferably within the range of 0.1 to 10. If the molar ratio is less than 0.1 or more than 10, the moisture resistance, molding workability, and electrical properties of the cured product will deteriorate, and either case is unfavorable.
【0010】本発明に用いる(C)メチルメタクリレー
ト・ブタジエン・スチレン共重合樹脂としては、メチル
メタクリレートとブタジエンとスチレンとの共重合体で
あればよく、各モノマーの組成比率に限定されるもので
はない。メチルメタクリレート・ブタジエン・スチレン
共重合樹脂の配合割合は、樹脂組成物に対して 0.1
〜10重量%の範囲で、より好ましくは 1.0〜5.
0重量%の範囲で含有することが望ましい。その割合が
0.1重量%未満では低弾性化の効果はなく、また1
0重量%を超えると成形性が悪く好ましくない。また、
メチルメタクリレート・ブタジエン・スチレン共重合樹
脂は、ノボラック型フェノール樹脂中均一に分散してお
くことが好ましい。The methyl methacrylate/butadiene/styrene copolymer resin (C) used in the present invention may be a copolymer of methyl methacrylate, butadiene, and styrene, and is not limited to the composition ratio of each monomer. . The blending ratio of methyl methacrylate/butadiene/styrene copolymer resin is 0.1 to the resin composition.
-10% by weight, more preferably 1.0-5.
It is desirable that the content be in the range of 0% by weight. If the proportion is less than 0.1% by weight, there is no effect of lowering the elasticity;
If it exceeds 0% by weight, moldability is poor and undesirable. Also,
It is preferable that the methyl methacrylate/butadiene/styrene copolymer resin is uniformly dispersed in the novolac type phenol resin.
【0011】本発明に用いる(D)窒化ケイ素粉末は、
150メッシュ篩上の粗粒分を除去したもので、平均
粒径が10〜50μmであるものである。平均粒径が1
0μm未満又は50μmを超えると流動性、作業性に問
題が生じ好ましくない。特に粒径が 150メッシュ篩
上の粗径のある場合は、成形時にワイヤーゲート詰りや
ワイヤー流れ、金型摩耗等が生じることがあり好ましく
ない。また細径にすぎると比表面積が増加して充填性が
悪くなり好ましくない。また、窒化ケイ素の表面を加水
分解によってSiO2 層を形成し、そのSi O2
層による表面の酸素濃度が 0.5〜15%の範囲とす
ることが望ましい。酸素濃度が 0.5%未満では耐金
型摩耗性に効果なく、耐湿性が悪くなる。また15%を
超えると熱伝導率、熱放散性が低下し好ましくない。加
水分解をする窒化ケイ素としては三方晶系(α−Si3
N4 )或いは六方晶系(β−Si3 N4 )等が
挙げられ、これらは単独又は 2種以上混合して使用す
ることができる。窒化ケイ素粉末の配合割合は、樹脂組
成物に対して25〜90重量%の割合に含有させる。
その割合が25重量%未満では熱膨脹係数が大きくなる
とともに熱伝導率が小さくなって好ましくない。また9
0重量%を超えるとかさばりが大きくなるとともに、成
形性が悪く実用に適さない。The silicon nitride powder (D) used in the present invention is:
The coarse particles on the 150 mesh sieve are removed, and the average particle size is 10 to 50 μm. Average particle size is 1
If it is less than 0 μm or more than 50 μm, problems may occur in fluidity and workability, which is not preferable. In particular, if the particle size is as coarse as a 150 mesh sieve, it is not preferable because it may cause wire gate clogging, wire flow, mold wear, etc. during molding. On the other hand, if the diameter is too small, the specific surface area will increase and filling properties will deteriorate, which is not preferable. In addition, a SiO2 layer is formed on the surface of silicon nitride by hydrolysis, and the SiO2
It is desirable that the oxygen concentration at the surface of the layer is in the range of 0.5 to 15%. If the oxygen concentration is less than 0.5%, it has no effect on mold wear resistance and moisture resistance deteriorates. Moreover, if it exceeds 15%, the thermal conductivity and heat dissipation properties decrease, which is not preferable. Silicon nitride that undergoes hydrolysis is trigonal (α-Si3
N4) or hexagonal system (β-Si3N4), and these can be used alone or in a mixture of two or more types. The blending ratio of silicon nitride powder is 25 to 90% by weight based on the resin composition. If the proportion is less than 25% by weight, the coefficient of thermal expansion will increase and the thermal conductivity will decrease, which is not preferable. Also 9
If it exceeds 0% by weight, the bulk will increase and the moldability will be poor, making it unsuitable for practical use.
【0012】本発明の封止用樹脂組成物はエポキシ樹脂
、ノボラック型フェノール樹脂、メチルメタクリレート
・ブタジエン・スチレン共重合樹脂および特定の窒化ケ
イ素粉末を必須成分とするが、本発明の目的に反しない
限度において、また必要に応じ、例えば天然ワックス類
、合成ワックス類、直鎖脂肪酸の金属塩、酸アミド類、
エステル類、パラフィン類などの離型剤、塩素化パラフ
ィン、ブロムトルエン、ヘキサブロムベンゼン、三酸化
アンチモンなどの難燃剤、カーボンブラック、ベンガラ
などの着色剤、種々の硬化剤等を適宜、添加配合するこ
とができる。The sealing resin composition of the present invention contains an epoxy resin, a novolac type phenol resin, a methyl methacrylate/butadiene/styrene copolymer resin, and a specific silicon nitride powder as essential components, but this does not contradict the purpose of the present invention. Within limits and if necessary, for example natural waxes, synthetic waxes, metal salts of straight chain fatty acids, acid amides,
Mold release agents such as esters and paraffins, flame retardants such as chlorinated paraffin, bromotoluene, hexabromobenzene, and antimony trioxide, colorants such as carbon black and red iron oxide, and various hardening agents are added and blended as appropriate. be able to.
【0013】本発明の封止用樹脂組成物を成形材料とし
て調製する場合の一般的な方法としては、エポキシ樹脂
、ノボラック型フェノール樹脂、メチルメタクリレート
・ブタジエン・スチレン共重合樹脂、特定の窒化ケイ素
粉末、その他を所定の組成比に選択した原料成分をミキ
サー等によって十分均一に混合した後、さらに熱ロール
による溶融混合処理、又はニーダ等による混合処理を行
い、次いで冷却固化させ、適当な大きさに粉砕して成形
材料とすることができる。こうして得られた成形材料は
、半導体装置をはじめとする電子部品あるいは電気部品
の封止、被覆、絶縁等に適用すれば優れた特性と信頼性
を付与させることができる。[0013] A general method for preparing the sealing resin composition of the present invention as a molding material includes epoxy resin, novolac type phenol resin, methyl methacrylate/butadiene/styrene copolymer resin, and specific silicon nitride powder. , and others in a predetermined composition ratio are sufficiently uniformly mixed using a mixer, etc., and then melted and mixed using heated rolls or mixed using a kneader, etc., and then cooled and solidified to an appropriate size. It can be crushed into a molding material. The molding material thus obtained can provide excellent properties and reliability when applied to sealing, covering, insulating, etc. electronic or electrical components such as semiconductor devices.
【0014】本発明の半導体封止装置は、上記の封止用
樹脂組成物を用いて、半導体チップを封止することによ
り容易に製造することができる。封止を行う半導体チッ
プとしては、例えば集積回路、大規模集積回路、トラン
ジスタ、サイリスタ、ダイオード等で特に限定されるも
のではない。封止の最も一般的な方法としては、低圧ト
ランスファー成形法があるが、射出成形、圧縮成形、注
型等による封止も可能である。封止用樹脂組成物は封止
の際に加熱して硬化させ、最終的にはこの組成物の硬化
物によって封止された半導体封止装置が得られる。加熱
による硬化は 150℃以上に加熱して硬化させること
が望ましい。The semiconductor encapsulation device of the present invention can be easily manufactured by encapsulating a semiconductor chip using the above-mentioned encapsulation resin composition. The semiconductor chip to be sealed may be, for example, an integrated circuit, a large-scale integrated circuit, a transistor, a thyristor, a diode, etc., but is not particularly limited. The most common method for sealing is low-pressure transfer molding, but sealing by injection molding, compression molding, casting, etc. is also possible. The sealing resin composition is heated and cured during sealing, and a semiconductor sealing device sealed with a cured product of this composition is finally obtained. For curing by heating, it is desirable to heat the material to 150° C. or higher.
【0015】[0015]
【実施例】本発明を実施例によって具体的に説明するが
、本発明は以下の実施例に限定されるものではない。
実施例および比較例において、「%」とあるのは「重量
%」を意味する。[Examples] The present invention will be specifically explained by examples, but the present invention is not limited to the following examples. In Examples and Comparative Examples, "%" means "% by weight".
【0016】実施例1
クレゾールノボラックエポキシ樹脂(エポキシ当量 2
15)16%に、ノボラック型フェノール樹脂(フェノ
ール当量 107) 8%、六方晶型窒化ケイ素粉末(
150メッシュ篩上を除いた平均粒径17μm、表面
酸素濃度 7%)71%、メチルメタクリレート・ブタ
ジエン・スチレン共重合樹脂 2%、および離型剤等
3.0%を常温で混合し、さらに90〜95℃で混練し
てこれを冷却粉砕して成形材料を製造した。Example 1 Cresol novolac epoxy resin (epoxy equivalent weight 2
15) 16%, novolac type phenolic resin (phenol equivalent: 107) 8%, hexagonal silicon nitride powder (
Average particle size excluding the 150 mesh sieve: 17 μm, surface oxygen concentration: 71%, methyl methacrylate/butadiene/styrene copolymer resin: 2%, mold release agent, etc.
3.0% were mixed at room temperature, further kneaded at 90 to 95°C, cooled and ground to produce a molding material.
【0017】実施例2
実施例1において、六方晶型窒化ケイ素粉末の替わりに
、六方晶型窒化ケイ素粉末( 150メッシュ篩上を除
いた平均粒径17μm、表面酸素濃度7%)31%と結
晶性シリカ粉末(平均粒径38μm)40%の混合粉末
を用いた以外は、すべて実施例1と同一にして成形材料
を製造した。Example 2 In Example 1, instead of the hexagonal silicon nitride powder, 31% hexagonal silicon nitride powder (average particle size 17 μm excluding the surface on a 150 mesh sieve, surface oxygen concentration 7%) and crystals were used. A molding material was produced in the same manner as in Example 1 except that 40% mixed powder of silica powder (average particle size 38 μm) was used.
【0018】比較例1
クレゾールノボラックエポキシ樹脂(エポキシ当量 2
15)16%に、ノボラック型フェノール樹脂(フェノ
ール当量 107) 8%、メチルメタクリレート・ブ
タジエン・スチレン共重合樹脂 2.0%、溶融シリカ
粉末(平均粒径35μm)71%、および離型剤等 3
.0%を加え、実施例1と同様にして成形材料を製造し
た。Comparative Example 1 Cresol novolak epoxy resin (epoxy equivalent: 2
15) 16%, novolak type phenol resin (phenol equivalent: 107) 8%, methyl methacrylate-butadiene-styrene copolymer resin 2.0%, fused silica powder (average particle size 35 μm) 71%, and mold release agent, etc. 3
.. A molding material was produced in the same manner as in Example 1 with the addition of 0%.
【0019】比較例2
比較例1において、溶融シリカ粉末の替わりに結晶性シ
リカ粉末(平均粒径28μm)を用いた以外はすべて比
較例1と同一にして成形材料を製造した。Comparative Example 2 A molding material was produced in the same manner as in Comparative Example 1 except that crystalline silica powder (average particle size 28 μm) was used instead of fused silica powder.
【0020】比較例3
クレゾールノボラックエポキシ樹脂(エポキシ当量 2
15)18%に、ノボラック型フェノール樹脂(フェノ
ール当量 107) 9%、六方晶型窒化ケイ素粉末(
150メッシュ篩上を除いた平均粒径17μm)70
%、および離型剤等 3%を加え、比較例1と同様にし
て成形材料を製造した。Comparative Example 3 Cresol novolac epoxy resin (epoxy equivalent: 2
15) 18%, novolac type phenolic resin (phenol equivalent: 107) 9%, hexagonal silicon nitride powder (
Average particle size (excluding those on a 150 mesh sieve: 17 μm) 70
A molding material was produced in the same manner as in Comparative Example 1, adding 3% of mold release agent and the like.
【0021】比較例4
比較例3において、六方晶型窒化ケイ素粉末の替わりに
、六方晶型窒化ケイ素粉末(60メッシュ通過の平均粒
径60μm)を用いた以外は、すべて比較例3と同一に
して成形材料を製造した。Comparative Example 4 Everything was the same as in Comparative Example 3 except that hexagonal silicon nitride powder (average particle size passing through 60 mesh 60 μm) was used instead of hexagonal silicon nitride powder. A molding material was produced.
【0022】実施例1〜2及び比較例1〜4で製造した
成形材料を用いて半導体チップを封止し 170℃で加
熱硬化させて半導体封止装置を製造した。成形材料及び
半導体封止装置について諸試験を行ったので、その結果
を表1に示した。本発明は熱的特性がよく、耐湿性、成
形性に優れており、本発明の効果が確認された。[0022] Semiconductor chips were sealed using the molding materials produced in Examples 1 to 2 and Comparative Examples 1 to 4 and cured by heating at 170°C to produce semiconductor sealing devices. Various tests were conducted on the molding material and the semiconductor sealing device, and the results are shown in Table 1. The present invention has good thermal properties, moisture resistance, and moldability, and the effects of the present invention were confirmed.
【0023】[0023]
【表1】
*1 :JIS−K−6911により測定した、*2
:半導体封止装置を、迅速熱伝導計(昭和電工社製、商
品名QTM−MD)を用いて室温で測定した、*3 :
120キャビティ取り16ピンP金型を用いて、成形
材料を 170℃で 3分間トランスファー成形し、充
填性を評価した、 ○…良好、 ×印…不良、*4
:成形材料を用いて、 2本のアルミニウム配線を有
する半導体チップを 170℃で 3分間の条件でトラ
ンスファー成形した後、さらに 8時間エイジングさせ
た。この半導体封止装置 100個について 120℃
の高圧水蒸気中で耐湿試験を行い、アルミニウム腐食に
よる50%断線(不良発生)の起こる時間を評価した、
*5 :成形材料をプレヒートし、径0.5 mmの硬
質クロムメッキ材料流動穴を設けた金型により、 17
5℃でトランスファー成形を行う。穴径が 5%摩耗し
た時のショット数によって評価した。[Table 1] *1: Measured according to JIS-K-6911, *2
: The semiconductor encapsulation device was measured at room temperature using a rapid thermal conductivity meter (manufactured by Showa Denko, trade name QTM-MD). *3:
Using a 16-pin P mold with 120 cavities, the molding material was transfer-molded at 170°C for 3 minutes, and the filling properties were evaluated: ○...good, × mark...poor, *4
: Using the molding material, a semiconductor chip having two aluminum wirings was transfer molded at 170° C. for 3 minutes, and then aged for an additional 8 hours. 120℃ for 100 pieces of this semiconductor sealing equipment
A moisture resistance test was conducted in high-pressure steam to evaluate the time required for 50% wire breakage (defect occurrence) due to aluminum corrosion. Due to the mold, 17
Transfer molding is performed at 5°C. The evaluation was based on the number of shots when the hole diameter was worn down by 5%.
【0024】[0024]
【発明の効果】以上の説明および第1表から明らかなよ
うに、本発明の封止用樹脂組成物及び半導体封止装置に
よれば、封止材の熱的特性、耐湿性、成形性、特に薄肉
部の充填性、耐金型摩耗性に優れるとともに弾性率も低
く、しかもそれら特性間のバランスがよく、信頼性の高
い半導体封止装置が得られる。Effects of the Invention As is clear from the above explanation and Table 1, the encapsulating resin composition and semiconductor encapsulating device of the present invention improve the thermal properties, moisture resistance, moldability, and In particular, it is possible to obtain a highly reliable semiconductor encapsulation device that has excellent filling properties in thin-walled portions and mold wear resistance, and has a low elastic modulus, and has a good balance between these properties.
Claims (2)
ク型フェノール樹脂、(C)メチルメタクリレート・ブ
タジエン・スチレン共重合樹脂および(D)表面の酸素
濃度が 0.5〜15重量%になるように加水分解をし
、かつ 150メッシュ篩上の粗粒子を除去した平均粒
径10〜50μmの窒化ケイ素粉末を必須成分とし、前
記(D)の窒化ケイ素粉末が樹脂組成物に対して25〜
90重量%の割合に含有してなることを特徴とする封止
用樹脂組成物。Claim 1: (A) epoxy resin, (B) novolac type phenolic resin, (C) methyl methacrylate-butadiene-styrene copolymer resin, and (D) surface oxygen concentration of 0.5 to 15% by weight. An essential component is silicon nitride powder with an average particle size of 10 to 50 μm, which has been hydrolyzed and coarse particles on a 150 mesh sieve have been removed.
A sealing resin composition characterized by containing 90% by weight of the resin composition.
ク型フェノール樹脂、(C)メチルメタクリレート・ブ
タジエン・スチレン共重合樹脂および(D)表面の酸素
濃度が 0.5〜15重量%になるように加水分解をし
、かつ 150メッシュ篩上の粗粒子を除去した平均粒
径10〜50μmの窒化ケイ素粉末を必須成分とし、前
記(D)の窒化ケイ素粉末が樹脂組成物に対して25〜
90重量%の割合に含有してなる封止用樹脂組成物の硬
化物で、半導体チップが封止されてなることを特徴とす
る半導体封止装置。2. (A) epoxy resin, (B) novolac type phenol resin, (C) methyl methacrylate-butadiene-styrene copolymer resin, and (D) surface oxygen concentration of 0.5 to 15% by weight. An essential component is silicon nitride powder having an average particle size of 10 to 50 μm, which has been hydrolyzed and coarse particles on a 150 mesh sieve have been removed.
A semiconductor encapsulation device characterized in that a semiconductor chip is encapsulated with a cured product of a encapsulation resin composition containing 90% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7253991A JPH04283220A (en) | 1991-03-12 | 1991-03-12 | Sealing resin composition and semiconductor device sealed therewith |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7253991A JPH04283220A (en) | 1991-03-12 | 1991-03-12 | Sealing resin composition and semiconductor device sealed therewith |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04283220A true JPH04283220A (en) | 1992-10-08 |
Family
ID=13492261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7253991A Pending JPH04283220A (en) | 1991-03-12 | 1991-03-12 | Sealing resin composition and semiconductor device sealed therewith |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04283220A (en) |
-
1991
- 1991-03-12 JP JP7253991A patent/JPH04283220A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05239321A (en) | Epoxy resin composition and semiconductor-sealing arrangement | |
JPH05247181A (en) | Epoxy resin composition and semiconductor sealing device | |
JPS61101522A (en) | Sealing resin composition | |
JPS6222825A (en) | Sealing resin composition | |
JPH0366151A (en) | Semiconductor device | |
JPH04283220A (en) | Sealing resin composition and semiconductor device sealed therewith | |
JPH05247182A (en) | Epoxy resin composition and semiconductor sealing device | |
JPH0343445A (en) | Sealing resin composition and its sealed semiconductor device | |
JPH04283221A (en) | Sealing resin composition and semiconductor device sealed therewith | |
JP2862928B2 (en) | Sealing resin composition and semiconductor sealing device | |
JPH05239190A (en) | Epoxy resin composition and sealed semiconductor device | |
JPS61101523A (en) | Sealing resin composition | |
JPH01146948A (en) | Sealing resin composition | |
JP2857441B2 (en) | Sealing resin composition and semiconductor sealing device | |
JPH03205444A (en) | Sealing resin composition and semiconductor sealing apparatus | |
JPH03142956A (en) | Resin sealed type semiconductor device | |
JPS61101524A (en) | Sealing resin composition | |
JPH11323088A (en) | Epoxy resin composition and sealed semiconductor therewith | |
JPH05230181A (en) | Epoxy resin composition and semiconductor-sealed device | |
JP2000186214A (en) | Resin composition for encapsulation and semiconductor system | |
JPH0753671A (en) | Epoxy resin composition and sealed semiconductor device | |
JPH09176286A (en) | Epoxy resin composition and resin-sealed semiconductor device | |
JPH07126348A (en) | Epoxy resin composition and sealed semiconductor device | |
JPH05230188A (en) | Epoxy resin composition and device for sealing semiconductor | |
JPH09188803A (en) | Epoxy resin composition and sealed semiconductor device |