JPH0428237Y2 - - Google Patents

Info

Publication number
JPH0428237Y2
JPH0428237Y2 JP1981015613U JP1561381U JPH0428237Y2 JP H0428237 Y2 JPH0428237 Y2 JP H0428237Y2 JP 1981015613 U JP1981015613 U JP 1981015613U JP 1561381 U JP1561381 U JP 1561381U JP H0428237 Y2 JPH0428237 Y2 JP H0428237Y2
Authority
JP
Japan
Prior art keywords
thrust
current
windings
excitation
movable part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981015613U
Other languages
Japanese (ja)
Other versions
JPS57130597U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981015613U priority Critical patent/JPH0428237Y2/ja
Publication of JPS57130597U publication Critical patent/JPS57130597U/ja
Application granted granted Critical
Publication of JPH0428237Y2 publication Critical patent/JPH0428237Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Linear Motors (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【考案の詳細な説明】 本考案は、ブラシレスリニアモータの駆動装
置、特にブラシレスリニアモータに対して均一な
トルクを与えると共に簡易で経済的に構成したブ
ラシレスリニアモータの駆動装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a brushless linear motor drive device, and particularly to a brushless linear motor drive device that provides uniform torque to the brushless linear motor and is simple and economically constructed.

2相の巻線を有するブラシレスリニアモータの
推力−位置特性は第1図に示すように、周期的に
変化し1相と2相とでは1/4周期の位相差がある。
このため、例えば一定の方向に可動部を走行なら
しめる場合には、巻線電流を区間Tにおいては
正、区間T′においては負とするが如くの励磁態
様が用いられている。しかしながら、この場合第
2図に示すように1相、2相の合成推力Fにリツ
プルが生じて速度変動等の原因となるため、従来
ではリツプルの生じる位置において巻線電流の大
きさをリツプルの変化に対応して外部から強制的
に変化させるなどの低リツプル化対策を施してい
た。しかし、このような手段では巻線電流の変化
を記憶するためのROMおよび通電角に合わせて
巻線電流を変化させる乗算器などの高価な回路部
品を必要とし、経済的な面で問題があつた。
As shown in FIG. 1, the thrust-position characteristics of a brushless linear motor having two-phase windings change periodically, and there is a phase difference of 1/4 period between the first phase and the second phase.
For this reason, for example, when the movable part is made to travel in a fixed direction, an excitation mode is used in which the winding current is made positive in section T and negative in section T'. However, in this case, as shown in Figure 2, ripples occur in the combined thrust F of the 1st and 2nd phases, causing speed fluctuations, etc., so conventionally, the magnitude of the winding current at the location where the ripples occur is determined to compensate for the ripples. In response to changes, measures were taken to reduce ripple, such as forcing changes from the outside. However, this method requires expensive circuit components such as a ROM to store changes in the winding current and a multiplier to change the winding current according to the conduction angle, which poses an economical problem. Ta.

本考案はこのような欠点を除去するため、推力
リツプルの小さな区間を励磁単位として巻線に対
する励磁切換を行なうことにより、安価なデイジ
タルスイツチあるいはアナログスイツチを活用し
た駆動装置を提供することを目的としており、以
下詳細に説明する。
In order to eliminate such drawbacks, the present invention aims to provide a drive device that utilizes an inexpensive digital switch or analog switch by switching the excitation of the winding using a small section of thrust ripple as an excitation unit. This will be explained in detail below.

本考案における巻線の励磁態様を第3図に示
す。定速走行時において1励磁サイクルは例えば
T1,T2,T′1,T′2の順で変化し、T1,T2,T′1
T′2毎に異なる励磁状態をつくるようにされる。
各励磁状態の間隔は等しく推力−位置特性の周期
λの1/4の大きさを持ち、推力が零となる点P1
励磁サイクルの始まる点P2とは±λ/8の位相差を
有する。このようにした場合の各間隔における推
力リツプルは小さいものとなる。
FIG. 3 shows the excitation mode of the winding in the present invention. When running at a constant speed, one excitation cycle is, for example,
It changes in the order of T 1 , T 2 , T′ 1 , T′ 2 , T 1 , T 2 , T′ 1 ,
A different excitation state is created every T′ 2 .
The interval between each excitation state is equal to 1/4 of the period λ of the thrust-position characteristic, and there is a phase difference of ±λ/8 between the point P 1 where the thrust is zero and the point P 2 where the excitation cycle begins. have In this case, the thrust ripple at each interval becomes small.

ここに、各励磁状態としては、T1は1相巻線
に正の電流を流す区間、T2は2相巻線に正の電
流を流す区間、T3は1相巻線に負の電流を流す
区間、T4は2相巻線に負の電流を流す区間、の
如く、巻線の選択および電流の流れる極性によつ
て規定される。
Here, for each excitation state, T 1 is a section where a positive current flows through the 1-phase winding, T 2 is a section where a positive current flows through the 2-phase winding, and T 3 is a section where a negative current flows through the 1-phase winding. T4 is defined by the selection of windings and the polarity of the current, such as the period in which negative current is passed through the two-phase winding.

第4図は、このような巻線の励磁切換を具体化
し、かつ制御系からの駆動信号に従いブラシレス
リニアモータを駆動する本考案の実施例を示す。
図中A−1およびA−2はアナログスイツチ、C
は励磁状態を作り出す制御回路、AMP−1,
AMP−2はパワアンプ、D/Aはデイジタル−
アナログ変換器である。また、リニアモータ系に
おいて1は可動部、2は固定部、3は位置検出器
の可動部側部材、4は位置検出器の固定子側部材
を示す。可動部の走行にともない当該可動部側部
材3から出力した位置パルスS−1は制御回路C
において計数され、2進の位置信号としてサーボ
処理系に出力されると共に例えば第5図に示す如
く励磁切換信号φ1,φ2,φ′1,φ′2に変換される。
信号φ1およびφ2は位置パルスS−1の2×n(n
=1、2……)倍の周期をもち、信号φ1とφ2
では互いに逆の状態にある。また、信号φ′1およ
びφ′2はそれぞれ信号φ1,φ2と同一の位相をもち
かつ周期が2倍となるように設定されている。
FIG. 4 shows an embodiment of the present invention which embodies such excitation switching of the windings and drives a brushless linear motor according to a drive signal from a control system.
In the figure, A-1 and A-2 are analog switches, C
is a control circuit that creates an excitation state, AMP-1,
AMP-2 is a power amplifier, D/A is digital.
It is an analog converter. In the linear motor system, 1 is a movable part, 2 is a fixed part, 3 is a movable part side member of a position detector, and 4 is a stator side member of a position detector. As the movable part moves, the position pulse S-1 output from the movable part side member 3 is sent to the control circuit C.
The signals are counted and output as binary position signals to the servo processing system, and are also converted into excitation switching signals φ 1 , φ 2 , φ′ 1 , φ′ 2 as shown in FIG. 5, for example.
Signals φ 1 and φ 2 are 2×n(n
= 1, 2...), and the signals φ 1 and φ 2 are in opposite states. Furthermore, the signals φ' 1 and φ' 2 are set to have the same phase and twice the period as the signals φ 1 and φ 2 , respectively.

なお、制御回路Cは2進カウンタ、ラツチ回路
等の組合せで簡単に実現できる。第5図におい
て、φ1とφ1′はS−1を入力とする2進カウンタ
の出力であり、一方φ2とφ2′はそれぞれφ1,φ1
をラツチ回路でS−1の周期分遅延させればよ
い。これらφ1,φ2,φ1′,φ2′の周期条件、位相
条件の関係はS−1の周期より、一意に規定でき
る。ここに、位置検出器3の出力信号であるS−
1のパルス数は可動部の固定部基準点(基準点は
第3図の推力−位置特性の点p2)に対する距離
に対応するから、このパルス数をカウンタで数え
れば可動部の位置が求まり、位置に対応して変化
するφ1,φ2,φ1′,φ2′は求まる。またS−1を
計数する基準点としては第3図に示した点P2が
選ばれる。即ち、P2は安定点(推力=0となる
点)p1からλ/8(λ:推力特性の周期)ずれた
位置であり、これを基準として励磁切り換えを行
うと、励磁切り換えの区間T1,T2,T1′,T2
(区間はλ/4)では推力=一定となり、且つ推力
値は最大となる。P2は1相推力の安定点と2相
推力の安定点との中間点であり、2つの推力特性
の位相差はλ/4であるため励磁サイクルと推力−
位置特性の差は±λ/8となる。このような、安定
点間の中間点は周期λで存在するので、通常は端
部の中間点をP2とすればよい。
Note that the control circuit C can be easily realized by a combination of a binary counter, a latch circuit, etc. In FIG. 5, φ 1 and φ 1 ' are the outputs of a binary counter with S-1 as input, while φ 2 and φ 2 ' are φ 1 and φ 1 ', respectively.
may be delayed by a period of S-1 using a latch circuit. The relationship between the period conditions and phase conditions of these φ 1 , φ 2 , φ 1 ', and φ 2 ' can be uniquely defined from the period of S-1. Here, S- which is the output signal of the position detector 3
The number of pulses 1 corresponds to the distance of the movable part from the fixed part reference point (the reference point is point p2 of the thrust-position characteristic in Figure 3), so if this number of pulses is counted with a counter, the position of the movable part can be found, φ 1 , φ 2 , φ 1 ′, and φ 2 ′, which change depending on the position, are determined. Further, point P2 shown in FIG. 3 is selected as the reference point for counting S-1. That is, P2 is a position shifted by λ/8 (λ: period of thrust characteristic) from the stable point (point where thrust = 0) p1, and when excitation switching is performed based on this point, the excitation switching interval T 1 , T 2 , T 1 ′, T 2
(The section is λ/4), the thrust force is constant and the thrust value is maximum. P2 is the midpoint between the stable point of 1-phase thrust and the stable point of 2-phase thrust, and the phase difference between the two thrust characteristics is λ/4, so the excitation cycle and thrust -
The difference in positional characteristics is ±λ/8. Since such intermediate points between stable points exist with a period λ, it is usually sufficient to set the intermediate point between the ends as P2.

以上の4種類の信号により第3図に示したT1
T2,T′1,T′2の各状態を作る。すなわち、φ1
φ′1=1ではT1に、φ2=φ′2=1ではT2に、φ1
1、φ′1=0ではT′1に、φ2=1、φ′2=0ではT′
2
となるようにされる。φ1およびφ2が零の場合、
それぞれ1相巻線および2相巻線はOFF状態と
なる。
With the above four types of signals, T 1 ,
Create states T 2 , T′ 1 , and T′ 2 . That is, φ 1 =
When φ' 1 = 1, it becomes T 1 , when φ 2 = φ' 2 = 1, it becomes T 2 , and φ 1 =
1, T' 1 when φ' 1 = 0, T' when φ 2 = 1, φ' 2 = 0
2
It is made to be. If φ 1 and φ 2 are zero,
The 1-phase winding and the 2-phase winding are respectively in the OFF state.

このような関係を第4図について示すと、φ1
=1、φ2=1においてはアナログスイツチA−
1,A−2はON状態となり、そして該アナログ
スイツチA−1,A−2はφ′1=1、φ′2=1にお
いては変換器D/Aを介した駆動信号S−2をそ
のままの形で、またφ′1=0、φ′2=0においては
S−2の符号を反転してパワアンプ側に出力す
る。言うまでもなく、上記の機能を有するアナロ
グスイツチA−1,A−2はIC化した差動増幅
器を用いて容易に実現できる。
If such a relationship is shown in FIG. 4, φ 1
=1, φ 2 =1, analog switch A-
1 and A-2 are in the ON state, and the analog switches A-1 and A-2 directly receive the drive signal S-2 via the converter D/A when φ' 1 =1 and φ' 2 =1. When φ' 1 =0 and φ' 2 =0, the sign of S-2 is inverted and output to the power amplifier side. Needless to say, the analog switches A-1 and A-2 having the above-mentioned functions can be easily realized using an integrated circuit differential amplifier.

第4図図示の駆動回路を用いれば巻線の電流は
第6図図示のように流れる。第6図においてI1
1相巻線、I2は2相巻線の電流である。例えば負
荷の電流は推力定数の極性と逆向きに推力を発生
するため図中Fで示すような推力が生じ、可動部
は一方向に走行する。
If the drive circuit shown in FIG. 4 is used, the current in the winding will flow as shown in FIG. 6. In FIG. 6, I 1 is the current in the one-phase winding, and I 2 is the current in the two-phase winding. For example, the load current generates a thrust in the opposite direction to the polarity of the thrust constant, so a thrust as shown by F in the figure is generated, and the movable part moves in one direction.

第7図は、デイジタル素子による電子スイツチ
を用いた第2の実施例を示す。D−1,D−2は
デイジタルスイツチであり信号ψ1,ψ2,ψ′1,ψ′2
にもとづき駆動信号S−2の開閉および該信号S
−2の符号設定を行なう。信号ψ1,ψ2,ψ′1,ψ′2
の機能は前記した信号φ1,φ2,φ′1,φ′2の場合と
全く同一であるので具体的な説明については省略
する。
FIG. 7 shows a second embodiment using an electronic switch with digital elements. D-1 and D-2 are digital switches and output signals ψ 1 , ψ 2 , ψ′ 1 , ψ′ 2
Based on the opening/closing of the drive signal S-2 and the signal S
-2 sign setting. Signals ψ 1 , ψ 2 , ψ′ 1 , ψ′ 2
The functions of are exactly the same as those of the signals φ 1 , φ 2 , φ′ 1 , and φ′ 2 described above, so a detailed explanation will be omitted.

以上、説明したように本考案によれば、巻線の
励磁切換の回路が安価な回路部品により実現でき
るため、きわめて経済的にブラシレスリニアモー
タの駆動装置を提供することができる。
As described above, according to the present invention, the circuit for switching the excitation of the windings can be realized using inexpensive circuit components, so that a driving device for a brushless linear motor can be provided extremely economically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の励磁態様を説明する説明図、第
2図は巻線電流と推力との関係を示す説明図、第
3図は本考案における励磁状態を説明する説明
図、第4図は本考案の第1の実施例構成、第5図
は第1の実施例における励磁状態を規定する信号
を説明する説明図、第6図は第1の実施例におけ
る電流と推力との関係を示す説明図、第7図は本
考案の第2の実施例構成を示す。 T,T′,T1,T2,T′1,T′2……励磁状態、λ
……推力−位置特性のピツチ、1……可動部、2
……固定部、3……位置検出器の可動部、4……
位置検出器の固定部、AMP−1,AMP−2……
パワアンプ、A−1,A−2……アナログスイツ
チ、D/A……デイジタル−アナログ変換器、C
……制御回路、φ1,φ2,φ′1,φ′2,ψ1,ψ2,ψ
1
ψ′2……励磁状態を規定する信号、S−1……パ
ルス、S−2……駆動信号、D−1,D−2……
デイジタルスイツチ。
Fig. 1 is an explanatory diagram explaining the conventional excitation mode, Fig. 2 is an explanatory diagram showing the relationship between winding current and thrust, Fig. 3 is an explanatory diagram explaining the excitation state in the present invention, and Fig. 4 is an explanatory diagram explaining the excitation state in the present invention. The configuration of the first embodiment of the present invention, FIG. 5 is an explanatory diagram explaining the signals that define the excitation state in the first embodiment, and FIG. 6 shows the relationship between current and thrust in the first embodiment. The explanatory diagram, FIG. 7, shows the configuration of a second embodiment of the present invention. T, T′, T 1 , T 2 , T′ 1 , T′ 2 ...excitation state, λ
...Pitch of thrust-position characteristics, 1...Movable part, 2
...Fixed part, 3...Movable part of position detector, 4...
Fixed part of position detector, AMP-1, AMP-2...
Power amplifier, A-1, A-2...Analog switch, D/A...Digital-analog converter, C
...Control circuit, φ 1 , φ 2 , φ′ 1 , φ′ 2 , ψ 1 , ψ 2 , ψ
1 ,
ψ′ 2 ... Signal that defines the excitation state, S-1 ... Pulse, S-2 ... Drive signal, D-1, D-2 ...
Digital switch.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 平面上の一軸方向に配した永久磁石からなる界
磁を有する固定部と、2つの閉じた電気回路を独
立に形成し得る巻線を有する可動部と、可動部の
走行軸方向における位置情報に基づき巻線に対す
る電流を切替えるブラシレスリニアモータにおい
て、走行軸に関し周期的に変化する推力−位置特
性の1/4周期を単位として巻線の選択および電流
の極性を決める制御手段と、前記位置情報に基づ
き推力−位置特性の1周期において4つの異なる
励磁状態からなる励磁サイクルを作り出すスイツ
チング手段とをそなえ、上記巻線に対する電流の
切換えを上記制御手段と上記スイツチング手段と
によつて行ない、かつ励磁サイクルと推力−位置
特性との位相差を±1/8周期ずれするように設定
したことを特徴とするブラシレスリニアモータの
駆動装置。
A fixed part having a field made of permanent magnets arranged in a uniaxial direction on a plane, a movable part having windings that can independently form two closed electric circuits, and position information of the movable part in the running axis direction. In a brushless linear motor that switches the current to the windings based on the driving shaft, the control means determines the selection of the windings and the polarity of the current in units of 1/4 period of the thrust-position characteristic that periodically changes with respect to the traveling axis, and switching means for producing an excitation cycle consisting of four different excitation states in one period of the thrust-position characteristic based on the control means, switching means for switching the current to the winding by the control means and the switching means; A drive device for a brushless linear motor, characterized in that the phase difference between the and thrust-position characteristics is set to be shifted by ±1/8 cycle.
JP1981015613U 1981-02-06 1981-02-06 Expired JPH0428237Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981015613U JPH0428237Y2 (en) 1981-02-06 1981-02-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981015613U JPH0428237Y2 (en) 1981-02-06 1981-02-06

Publications (2)

Publication Number Publication Date
JPS57130597U JPS57130597U (en) 1982-08-14
JPH0428237Y2 true JPH0428237Y2 (en) 1992-07-08

Family

ID=29813607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981015613U Expired JPH0428237Y2 (en) 1981-02-06 1981-02-06

Country Status (1)

Country Link
JP (1) JPH0428237Y2 (en)

Also Published As

Publication number Publication date
JPS57130597U (en) 1982-08-14

Similar Documents

Publication Publication Date Title
US4507590A (en) Brushless DC motor
JP3325997B2 (en) Motor control device and control method
US5563980A (en) Brushless DC motor speed controller
US6885970B2 (en) Saliency-based position estimation in permanent magnet synchronous motors
JPS622882A (en) Control circuit for permanent magnet dc torque motor
JPH0428237Y2 (en)
KR100223885B1 (en) Motor speed control system of using chaos circuit
Huh et al. A torque control strategy of brushless DC motor with low resolution encoder
JPS6333395B2 (en)
JPH0739194A (en) Stepping motor driver
JP2552719B2 (en) Electric motor speed controller
KR940000642B1 (en) Variable reluctance type direct drive motor speed control device and method
RU1812599C (en) Brushless motor
JP3123066B2 (en) Drive circuit for brushless motor
Paramasivam et al. Implementation of digital controller for a 6/4 pole switched reluctance motor drive
JP2663601B2 (en) Brushless DC motor
SU1159146A1 (en) Digital closed electric drive
JPS6160676B2 (en)
JP2537882B2 (en) DC motor drive
JPS6111555B2 (en)
JPS6156717B2 (en)
HU200041B (en) Current converter driving unit
JPS5918591U (en) 3-phase DC brushless motor drive circuit
JPS5930639Y2 (en) Pulse motor drive circuit
JP2663602B2 (en) Brushless DC motor