JPH0428216A - Exposing device - Google Patents

Exposing device

Info

Publication number
JPH0428216A
JPH0428216A JP2133398A JP13339890A JPH0428216A JP H0428216 A JPH0428216 A JP H0428216A JP 2133398 A JP2133398 A JP 2133398A JP 13339890 A JP13339890 A JP 13339890A JP H0428216 A JPH0428216 A JP H0428216A
Authority
JP
Japan
Prior art keywords
pressure
gas
elements
gas chamber
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2133398A
Other languages
Japanese (ja)
Inventor
Takeo Sato
佐藤 健夫
Shinichiro Aoki
新一郎 青木
Masaki Yamamoto
正樹 山本
Yoshiyuki Sugiyama
杉山 吉幸
Yoshito Nakanishi
淑人 中西
Toshiyuki Iwazawa
岩澤 利幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2133398A priority Critical patent/JPH0428216A/en
Publication of JPH0428216A publication Critical patent/JPH0428216A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To obtain sufficient stability in exposure which is not subjected to the influence of the pressure of external environment and change of temperature by a method wherein pressure and temperature controlled gas is allowed to flow in the gaseous chamber located between optical elements. CONSTITUTION:The gaseous chamber 6 located between optical elements 4a and 4b and a pressure tank 7 are communicated with each other by an air-feeding tube 8, and they have equal pressure. The pressure of the gaseous chamber 6 between the elements 4a and 4b is adjusted so as to be maintained at a fixed value at all times by controlling the state of opening of an air-feeding valve 14 and an air exhaust valve 17 by a controller 18 based on the signal sent from a pressure gauge 9. Also, the temperature of the nitrogen gas streaming into the gaseous chamber 6, located between the tank 7 and the elements 4a and 4b, is adjusted by a heat exchanger 13, the nitrogen gas is exhausted by passing the surface of the elements 4a and 4b, and the elements 4a and 4b are cooled down. Also, the use of liquid nitrogen can be made possible by using nitrogen gas, the variation of humidity due to the mixture of dust and the like and the absorption of moisture in the air can be prevented, and the temperature on the surface of the elements 4a and 4b can be maintained constant.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体等の微細パターンを投影露光するため
に用いる露光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an exposure apparatus used for projection exposure of fine patterns on semiconductors and the like.

従来の技術 従来、投影光学系を用いた半導体の露光装置においては
、露光中の周辺環境の気温や気圧の変化により投影光学
系の焦点距離が変動し、フォーカス位置や投影倍率が変
化し、安定なプロセス維持が困難なことが知られている
。この問題を解決するための従来の露光装置として、特
開昭60136746号公報に記載されている構成が知
られている。
Conventional technology Conventionally, in semiconductor exposure equipment using a projection optical system, the focal length of the projection optical system fluctuates due to changes in the temperature and atmospheric pressure of the surrounding environment during exposure, and the focus position and projection magnification change, resulting in stability. It is known that maintaining a proper process is difficult. As a conventional exposure apparatus for solving this problem, a configuration described in Japanese Patent Laid-Open No. 60136746 is known.

以下、同面を参照しながら−J二層従来例の露光装置に
ついて説明する。
Hereinafter, a -J two-layer conventional exposure apparatus will be described with reference to the same drawing.

第3図は従来例における露光装置を示す構成しIである
。第3図において、投影レンズ101は照明光学系10
2により均一照明されたマスクM上のパターンを、ウェ
ハステージ103上に載置されたウェハW上に縮小投影
する。投影レンス101中において、レンズ(図示省略
)間の空気室J、K、L、Mが連通部104によって連
通され、大気から遮断され、パイプ105を介して圧力
制御器106に連通されている。圧力制御器106には
フィルタ107を通して加圧空気供給器108から定常
的に一定圧力の空気が供給され、必要に応じて排気装置
109により排気される。一方、任意の空気室Jの側面
にはその内部圧力を検出する圧カセンザ110が設けら
れ、その出力信号が演算器111に送られる。−力演算
器111には計測器112から大気圧の測定値が入力さ
れる。
FIG. 3 shows a configuration I of a conventional exposure apparatus. In FIG. 3, the projection lens 101 is the illumination optical system 10.
2, the pattern on the mask M uniformly illuminated is projected in a reduced size onto the wafer W placed on the wafer stage 103. In the projection lens 101, air chambers J, K, L, and M between the lenses (not shown) are communicated with each other by a communication portion 104, are isolated from the atmosphere, and communicated with a pressure controller 106 via a pipe 105. Air at a constant pressure is constantly supplied to the pressure controller 106 from a pressurized air supply device 108 through a filter 107, and is exhausted by an exhaust device 109 as necessary. On the other hand, a pressure sensor 110 is provided on the side surface of any air chamber J to detect its internal pressure, and its output signal is sent to a computing unit 111. - A measured value of atmospheric pressure is inputted to the force calculator 111 from the measuring device 112.

そして、演算器111は計測器 112からの入力信号
により大気圧の基準状態に対する変動量を算出し、これ
に必要な圧力制御量に相当する圧力制御信号を圧力制御
器106へ送出する。圧力制御器106は演算器111
からの信号に応じて加圧空気供給器】08からの空気流
入量および排気装置109への流出量を適宜変更し、空
気室J、K、■7、M内の圧力を変化させる。このよう
な一連の動作により大気圧変動の経時変化に応じて空気
室J、K、L、Mの圧力を制御し、投影レンズ101の
倍率と結像面とを常に一定状態に保つことができる。
Then, the computing unit 111 calculates the amount of change in atmospheric pressure with respect to the reference state based on the input signal from the measuring device 112, and sends a pressure control signal corresponding to the amount of pressure control necessary for this to the pressure controller 106. The pressure controller 106 is a computing unit 111
In response to signals from the pressurized air supply device 08, the amount of air flowing in and the amount of air flowing out to the exhaust device 109 are changed as appropriate, and the pressure in the air chambers J, K, 7, and M is changed. Through this series of operations, the pressures in the air chambers J, K, L, and M can be controlled in accordance with changes in atmospheric pressure over time, and the magnification and imaging plane of the projection lens 101 can always be kept constant. .

発明が解決しようとする課題 しかし、以上のような従来例の構成では、露光光のエネ
ルギーの一部はレンズにより吸収され、レンズ自体の温
度上昇となり、これが外部の圧力温度変化と同様に倍率
、結像位置の変化を引き起こす。このため、」二層のよ
うに単にレンズ間の圧力を所定圧に保つだけではなく、
レンズ自体の温度上昇を防止する必要がある。また、特
定のレンズ間だけの圧力調整で結像位置、倍率を調整す
ることができない場合には、ウェハの投影レンズに対す
る高さ方向の位置を調整する必要があるが、変化させる
パラメータが多く、実際的ではない。
Problems to be Solved by the Invention However, in the configuration of the conventional example described above, a part of the energy of the exposure light is absorbed by the lens, causing a temperature rise in the lens itself. This causes a change in the imaging position. For this reason, it does not simply maintain the pressure between the lenses at a predetermined pressure as in the case of a double layer.
It is necessary to prevent the temperature of the lens itself from rising. In addition, if the imaging position and magnification cannot be adjusted by adjusting the pressure between specific lenses, it is necessary to adjust the height position of the wafer relative to the projection lens, but there are many parameters to change. Not practical.

また、レンズ間隔中の空気室J、に、L、Mの気体が加
圧空気供給器108で作った圧縮空気であるため、フィ
ルター07を通ずとは言え、ごみの混入が避けられず、
湿度の調整も必要であるなどの課題があった。
In addition, since the gases L and M are compressed air produced by the pressurized air supply device 108 in the air chamber J between the lenses, it is inevitable that dust will enter the air chamber J, even though it passes through the filter 07.
There were issues such as the need to adjust humidity.

註 本発明は、上記のような従来技術の情理を解決するもの
であり、光学エレメント間の圧力制御を容易に行うこと
ができて外部環境の気温、気圧の変動の影響を防止する
ことができ、したがって、露光時の安定性を図ることが
できるようにした露光装置を提供することを目的とする
ものである。
Note: The present invention solves the problems of the prior art as described above, and can easily control the pressure between optical elements and prevent the influence of changes in temperature and atmospheric pressure in the external environment. Therefore, it is an object of the present invention to provide an exposure apparatus that can improve stability during exposure.

課題を解決するための手段 上記目的を達成するための本発明の技術的解決手段は、
マスク上のパターンをウェハ上に投影露光するだめの投
影光学系内の光学エレメント間のうち、少なくとも1箇
所に形成された気体室と、この気体室に気体を流入させ
、この気体室から気体を流出さセる手段と、上記流入さ
せる気体の圧力と温度を調整する手段とを備えたもので
ある。
Means for Solving the Problems The technical solution of the present invention for achieving the above object is as follows:
A gas chamber is formed between at least one optical element in a projection optical system for projecting and exposing a pattern on a mask onto a wafer, and a gas is caused to flow into this gas chamber, and the gas is discharged from this gas chamber. It is equipped with means for controlling the outflow, and means for adjusting the pressure and temperature of the gas flowing in.

そして、上記気体室から排気ポンプで気体を排気するこ
とができ、また、上記気体室の圧力を」二層投影光学系
の外部圧力より高く保持して上記気体室から気体を流出
させるように構成することができる。また、」二層温度
調整手段として熱交換手段を用いることができる。
The gas chamber is configured to be able to exhaust gas from the gas chamber with an exhaust pump, and to maintain the pressure in the gas chamber higher than the external pressure of the two-layer projection optical system to cause the gas to flow out from the gas chamber. can do. Furthermore, heat exchange means can be used as the two-layer temperature adjustment means.

また、すべての光学エレメント間に気体室を形成し、各
気体室の気体圧が外部圧力にかかわらず、常に一定値に
保持し、結像位置の変動について上記ウェハの上記投影
光学系に対する距離の調整により補償することができる
In addition, gas chambers are formed between all optical elements, and the gas pressure in each gas chamber is always maintained at a constant value regardless of external pressure. It can be compensated for by adjustment.

また、上記気体として窒素ガスを用いるのが好ましい。Further, it is preferable to use nitrogen gas as the gas.

作用 本発明は、上記構成により、温度制御した気体が光学エ
レメント表面を流れるので、露光中の光学エレメントを
冷却することができると共に、上記気体の圧力を調整す
ることにより、光学エレメント間の気体室の圧力を外部
環境の変動に対応して調整し、その影響を光学ニレメン
1−を受けるのを防止することができる。
According to the present invention, with the above structure, the temperature-controlled gas flows over the surface of the optical element, so that the optical element during exposure can be cooled, and by adjusting the pressure of the gas, the gas chamber between the optical elements can be cooled. It is possible to adjust the pressure in response to changes in the external environment and prevent the optical element 1- from being affected by the changes in the external environment.

実施例 以下、本発明の実施例について図面を参照しながら説明
する。
EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings.

まず、本発明の第1の実施例について説明する。第1図
は本発明の第1の実施例における露光装置を示す全体の
概略構成図である。
First, a first embodiment of the present invention will be described. FIG. 1 is an overall schematic diagram showing an exposure apparatus according to a first embodiment of the present invention.

第1図において、1は投影レンズ、2はマスクMを均一
照明する照明光学系、3はウェハWを載置するウェハス
テージであり、投影レンズ1は照明光学系2により均一
照明されたマスクM上のパターンをウェハW上に縮小投
影する。投影レンズ1中において、レンズで成る少なく
とも1組の光学エレメント4a、4bがハウジング5に
支持され、光学ニレメン)4a、4b間に気体室6が形
成されている。7は圧力タンクであり、光学ニレメンl
−4a、4b間の気体室6に給気管8を介して連通され
ている。9は圧力タンク7の圧力をモニターする圧力計
、10は圧力タンク7に窒素(N2)ガスを流入させる
ための液体窒素ボンへ等からなる高圧窒素供給源、11
は高圧窒素供給a10から流出する窒素ガス中のごみを
除去するフィルタ、12は高圧窒素供給源10から圧力
タンク7へ流入させる窒素ガスの相い圧力調整を行うレ
ギュレタ、13は圧力クンク6へ流入さゼる窒素ガスの
温度を一定とするだめの熱交換器、14は圧力タンク7
へ流入する窒素ガスの流量を調整する給気弁、15は光
学エレメント4a、4b間の気体室6に一端が連通され
た排気管、16は排気管の他側に連通された排気ポンプ
、17は気体室6と排気ポンプ16の間で排気管15の
途中に設けられ、気体室6から流出する窒素ガスの流量
を調整する排気弁、18はコントローラであり、圧力計
9からの信号により給気弁14と排気弁17を制御し、
圧力タンク7内の圧力が一定値となるように制御する。
In FIG. 1, 1 is a projection lens, 2 is an illumination optical system that uniformly illuminates a mask M, and 3 is a wafer stage on which a wafer W is placed. The upper pattern is reduced and projected onto the wafer W. In the projection lens 1, at least one pair of optical elements 4a, 4b consisting of lenses is supported by a housing 5, and a gas chamber 6 is formed between the optical elements 4a, 4b. 7 is a pressure tank, which is an optical tank
-4a and 4b are communicated with a gas chamber 6 via an air supply pipe 8. 9 is a pressure gauge for monitoring the pressure of the pressure tank 7; 10 is a high-pressure nitrogen supply source consisting of a liquid nitrogen cylinder for flowing nitrogen (N2) gas into the pressure tank 7; 11
12 is a filter that removes dust from the nitrogen gas flowing out from the high-pressure nitrogen supply a 10; 12 is a regulator that adjusts the relative pressure of the nitrogen gas flowing from the high-pressure nitrogen supply source 10 into the pressure tank 7; and 13 is a regulator that flows into the pressure tank 6. A heat exchanger for keeping the temperature of the nitrogen gas constant; 14 is a pressure tank 7;
15 is an exhaust pipe whose one end communicates with the gas chamber 6 between the optical elements 4a and 4b; 16 is an exhaust pump connected to the other side of the exhaust pipe; 17 18 is an exhaust valve provided in the middle of the exhaust pipe 15 between the gas chamber 6 and the exhaust pump 16 to adjust the flow rate of nitrogen gas flowing out from the gas chamber 6; controls the air valve 14 and the exhaust valve 17;
The pressure inside the pressure tank 7 is controlled to be a constant value.

以−]二のような構成において、以下、その動作につい
て説明する。
The operation of the configuration shown in [2] above will be explained below.

光学ニレメン)4a、4b間の気体室6と圧力クンク7
は給気管8によって連通されており、互いの圧力は等し
い。そして、光学エレメント4a、4b間の気体室6、
すなわち、圧力タンク7内の圧力は、この圧力変動をモ
ニターしている圧力計9からの信号によりコントローラ
18が給気弁14と排気弁17の開放状態を制御するこ
とにより、常に一定値となるように調整する。ずなわち
、給気弁14と排気弁17の開放量を圧力タンク7への
窒素ガスの流入量と圧力タンク7からの窒素ガスの流出
量が等しくなるように設定した場合には、圧力タンク7
および光学エレメント4a4b間の気体室6を窒素ガス
が流れるだけであり、その圧力は一定に保たれる。また
、極値として排気弁17を完全に閉め、給気弁14を開
くことにより、圧力タンク7および光学エレメント4a
4b間の気体室6の圧力は、レギュレータ12により調
整された窒素ガス圧と等しくなり、これとは逆に、排気
弁17を開き、給気弁14を完全に閉しることにより、
圧力タンク6および光学エレメント4a、4b間の気体
室6は排気ポンプ16が到達し得る真空となる。そこで
、これらの中間に圧力設定範囲を設け、圧力計9からの
信号をもとにコントローラ18が給気弁14と排気弁1
7を差動制御することにより、外部環境の変動に対して
光学ニレメンt−4a、4b間の気体室6を所望の一定
圧とすることが可能となる。また、圧力タンク7および
光学ニレメン1−4a、4b間の気体室6内に流入する
窒素ガスは流入径路中に設りられた熱交換器13で調温
され、光学エレメント4a、4bの表面を通過して排出
され、光学ニレメン)4a、4bが冷却される。また、
上記のように窒素ガスを用いることにより、供給源にお
いて液体窒素を用いることが可能となり、ごみ等の混入
、大気中の水分の吸収による湿度の変化を生じるごとが
なく、良好に光学ニレメン)4a、4bの表面の温度を
一定にすることができる。したがって、光学エレメント
4a、4bの冷却と、その間の気体室6の圧力の調整を
独立に行うことにより外部環境変動の影響を防止するこ
とができ、露光の安定性を図ることができる。
Optical Niremen) Gas chamber 6 and pressure chamber 7 between 4a and 4b
are communicated by an air supply pipe 8, and their pressures are equal. and a gas chamber 6 between the optical elements 4a and 4b;
That is, the pressure inside the pressure tank 7 is always kept at a constant value by the controller 18 controlling the open states of the air supply valve 14 and the exhaust valve 17 based on the signal from the pressure gauge 9 that monitors this pressure fluctuation. Adjust as follows. That is, if the opening amounts of the air supply valve 14 and the exhaust valve 17 are set so that the amount of nitrogen gas flowing into the pressure tank 7 is equal to the amount of nitrogen gas flowing out from the pressure tank 7, the pressure tank 7
Only nitrogen gas flows through the gas chamber 6 between the optical elements 4a and 4b, and its pressure is kept constant. In addition, as an extreme value, by completely closing the exhaust valve 17 and opening the air supply valve 14, the pressure tank 7 and the optical element 4a
The pressure in the gas chamber 6 between 4b becomes equal to the nitrogen gas pressure regulated by the regulator 12, and on the contrary, by opening the exhaust valve 17 and completely closing the air supply valve 14,
The gas chamber 6 between the pressure tank 6 and the optical elements 4a, 4b becomes a vacuum that can be reached by the exhaust pump 16. Therefore, a pressure setting range is set between these, and the controller 18 adjusts the air supply valve 14 and exhaust valve 1 based on the signal from the pressure gauge 9.
By differentially controlling 7, it becomes possible to maintain a desired constant pressure in the gas chamber 6 between the optical elements t-4a and t-4b against changes in the external environment. Further, the temperature of the nitrogen gas flowing into the gas chamber 6 between the pressure tank 7 and the optical elements 1-4a, 4b is controlled by a heat exchanger 13 installed in the inflow path, and the surface of the optical elements 4a, 4b is heated. The optical fibers 4a and 4b are cooled. Also,
By using nitrogen gas as described above, it is possible to use liquid nitrogen at the supply source, and there is no possibility of contamination with dust or humidity changes due to absorption of moisture in the atmosphere, resulting in good optical performance.4a , 4b can be kept constant. Therefore, by independently cooling the optical elements 4a and 4b and adjusting the pressure in the gas chamber 6 between them, it is possible to prevent the influence of external environment fluctuations, and to improve the stability of exposure.

なお、給気弁14、排気弁17にはマスプロメータ等も
適用可能である。
Note that a mass prometer or the like can also be applied to the air supply valve 14 and the exhaust valve 17.

次に、本発明の第2の実施例について説明する。第2図
は本発明の第2の実施例におiJる露光装置を示す全体
の概略構成図である。
Next, a second embodiment of the present invention will be described. FIG. 2 is an overall schematic diagram showing an exposure apparatus according to a second embodiment of the present invention.

本実施例においては、上記第1の実施例とは排気ポンプ
16を備えていない点で異なるのめであり、その他の構
成は同様である。
The present embodiment differs from the first embodiment in that the exhaust pump 16 is not provided, and the other configurations are the same.

以上のような構成において、以下、その動作について説
明する。
The operation of the above configuration will be described below.

圧力タンク7および光学エレメント4a、4b間の気体
室6が投影レンズ1の外部の大気圧より常に高い一定圧
(本実施例では、1010l3 )となるように、排気
弁17と給気弁14の開放度をコントローラ18により
制御する。このように気体室6の圧力を投影レンズ1の
外部の大気圧より高く設定しておくことにより、排気ポ
ンプがなくても、差圧により窒素ガスを気体室6を通過
するように流すことが可能となる。その他の動作につい
ては上記第1の動作と同様であるので、その説明を省略
する。
The exhaust valve 17 and the air supply valve 14 are controlled so that the pressure tank 7 and the gas chamber 6 between the optical elements 4a and 4b are at a constant pressure (in this example, 1010 l3) that is always higher than the atmospheric pressure outside the projection lens 1. The degree of opening is controlled by a controller 18. By setting the pressure in the gas chamber 6 higher than the atmospheric pressure outside the projection lens 1 in this way, nitrogen gas can be caused to flow through the gas chamber 6 due to the differential pressure even without an exhaust pump. It becomes possible. The other operations are the same as the first operation, so their explanation will be omitted.

なお、第1.第2の実施例共に、すべての光学エレメン
ト間の気体室に窒素ガスを通過するように流すと共に、
一定圧力となるように調整してもよい。また、投影レン
ス1の内部の光学ニレメンh4a、4b間の気体室6を
常に−・定圧とする制御を行っているので、倍率の変動
については、上記の投影レンズ1内の圧力が支配的であ
るので、影響を受iJないが、投影レンズ1とマスクM
およびウェハWとの間はそれぞれ大気圧の空気となって
いるため、大気圧が変動すると、焦点位置は変化する。
In addition, 1. In both the second embodiment, nitrogen gas is passed through the gas chamber between all the optical elements, and
The pressure may be adjusted to a constant pressure. In addition, since the gas chamber 6 between the optical elements h4a and 4b inside the projection lens 1 is controlled to always have a constant pressure, the pressure inside the projection lens 1 is dominant in the fluctuation of magnification. However, the projection lens 1 and mask M are not affected because of the
Since there is air at atmospheric pressure between the wafer and the wafer W, when the atmospheric pressure changes, the focal position changes.

そこで、焦点位置の変化については、実験で求めた大気
圧とフォーカスシフトの関係式より投影レンズ1に対し
、ウェハステージ3、ずなわぢ、ウェハWの高さ調整を
行い、露光を行うようδこずればよく、その調整はバラ
メークが少ないので、簡単である。
Therefore, regarding changes in the focal position, the heights of the wafer stage 3, Zunawaji, and wafer W are adjusted with respect to the projection lens 1 based on the relational expression between atmospheric pressure and focus shift determined experimentally, and δ is adjusted to perform exposure. There is no problem, and the adjustment is easy because there are few variations.

発明の効果 以ト述べたように本発明によれば、光学エレメント間の
気体室に温度制御した気体をフローさセることが可能と
なり、光学エレメントの温度」二昇を低減し、かつ光学
ニレメン(・間の圧力制菟口を容易に行うことができ、
外部環境の圧力、気温変化に影響されない、充分な露光
安定性を得ることができる。
Effects of the Invention As described above, according to the present invention, it is possible to flow a temperature-controlled gas into the gas chamber between the optical elements, thereby reducing the temperature increase of the optical elements and improving the temperature of the optical elements. (・You can easily control the pressure between the
Sufficient exposure stability can be obtained without being affected by changes in pressure or temperature in the external environment.

また、投影レンズに対し、ウェハの高さの調整を行い、
焦点位置の変化に対応させるようにすれば、パラメータ
が少ないので、その調整を簡単に行うことができる。
Also, adjust the height of the wafer with respect to the projection lens.
If it is made to correspond to changes in the focal position, the number of parameters is small, so the adjustment can be easily performed.

また、気体として窒素ガスを用いることにより、大気中
のごみや水分の混入を防止することができ、露光安定性
を更に一層向上させることができる。
Further, by using nitrogen gas as the gas, it is possible to prevent dust and moisture from entering the atmosphere, and the exposure stability can be further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例における露光装置を示す
全体の概略構成図、第2図は本発明の第2の実施例にお
ける露光装置を示す全体の概略構成図、第3図は従来例
におりる露光装置を示す全体の概略構成図である。 1・・・・投影レンズ、2・・・・・・照明光学系、3
・・・・・ウェハステージ、4a、4b・・・・・・光
学エレメント、6・・・・・・気体室、7・・・・・・
圧力タンク、8・・・・・・給気管、9・・・・・・圧
力側、10・・・・・・高圧窒素供給源、11・・・・
・フィルタ、12・・・・・・レギュレータ、13・・
・・・・熱交換器、14  ・給気弁、15・・・・・
・排気管、16・・・・・・排気ポンプ、 17・・・・・・排気弁、 18・・・・・・コントローラ。
FIG. 1 is an overall schematic configuration diagram showing an exposure apparatus in a first embodiment of the present invention, FIG. 2 is an overall schematic configuration diagram showing an exposure apparatus in a second embodiment of the invention, and FIG. 1 is an overall schematic configuration diagram showing a conventional exposure apparatus; FIG. 1... Projection lens, 2... Illumination optical system, 3
...Wafer stage, 4a, 4b...Optical element, 6...Gas chamber, 7...
Pressure tank, 8... Air supply pipe, 9... Pressure side, 10... High pressure nitrogen supply source, 11...
・Filter, 12...Regulator, 13...
...Heat exchanger, 14 ・Air supply valve, 15...
・Exhaust pipe, 16...exhaust pump, 17...exhaust valve, 18...controller.

Claims (5)

【特許請求の範囲】[Claims] (1)マスク上のパターンをウェハ上に投影露光するた
めの投影光学系内の光学エレメント間のうち、少なくと
も1箇所に形成された気体室と、この気体室に気体を流
入させ、この気体室から気体を流出させる手段と、上記
流入させる気体の圧力と温度を調整する手段とを備えた
露光装置。
(1) A gas chamber formed in at least one location between optical elements in a projection optical system for projecting and exposing a pattern on a mask onto a wafer; An exposure apparatus comprising: means for causing gas to flow out; and means for adjusting the pressure and temperature of the gas flowing in.
(2)光学エレメント間の気体室の圧力を投影光学系の
外部圧力より高く保持して上記気体室から気体を流出さ
せるように構成された請求項1記載の露光装置。
(2) The exposure apparatus according to claim 1, wherein the exposure apparatus is configured to maintain the pressure in the gas chamber between the optical elements higher than the external pressure of the projection optical system and to cause the gas to flow out from the gas chamber.
(3)温度調整手段が熱交換手段である請求項1または
2記載の露光装置。
(3) The exposure apparatus according to claim 1 or 2, wherein the temperature adjustment means is a heat exchange means.
(4)すべての光学エレメント間に気体室が形成され、
各気体室の気体圧が外部圧力にかかわらず、常に一定値
に保持され、結像位置の変動がウェハの投影光学系に対
する距離の調整により補償される請求項1ないし3のい
ずれかに記載の露光装置。
(4) a gas chamber is formed between all optical elements;
4. The method according to claim 1, wherein the gas pressure in each gas chamber is always maintained at a constant value regardless of external pressure, and fluctuations in the imaging position are compensated for by adjusting the distance of the wafer to the projection optical system. Exposure equipment.
(5)気体が窒素ガスである請求項1ないし4のいずれ
かに記載の露光装置。
(5) The exposure apparatus according to any one of claims 1 to 4, wherein the gas is nitrogen gas.
JP2133398A 1990-05-23 1990-05-23 Exposing device Pending JPH0428216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2133398A JPH0428216A (en) 1990-05-23 1990-05-23 Exposing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2133398A JPH0428216A (en) 1990-05-23 1990-05-23 Exposing device

Publications (1)

Publication Number Publication Date
JPH0428216A true JPH0428216A (en) 1992-01-30

Family

ID=15103816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2133398A Pending JPH0428216A (en) 1990-05-23 1990-05-23 Exposing device

Country Status (1)

Country Link
JP (1) JPH0428216A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030012297A (en) * 2001-07-31 2003-02-12 주식회사 하이닉스반도체 Temperature controlling apparatus of lens in the stepper facility manufacturing semiconductor devices
JP2006156632A (en) * 2004-11-29 2006-06-15 Nikon Corp Gas temperature control device, body tube, exposure device manufacturing method of device and gas temperature control method
US7304715B2 (en) 2004-08-13 2007-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2008252117A (en) * 1999-11-05 2008-10-16 Asml Netherlands Bv Lithographic device
CN107003499A (en) * 2014-12-01 2017-08-01 科磊股份有限公司 Device and method for providing the humidity-controlled environment for performing optical contact wherein

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008252117A (en) * 1999-11-05 2008-10-16 Asml Netherlands Bv Lithographic device
KR20030012297A (en) * 2001-07-31 2003-02-12 주식회사 하이닉스반도체 Temperature controlling apparatus of lens in the stepper facility manufacturing semiconductor devices
US7304715B2 (en) 2004-08-13 2007-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7804575B2 (en) 2004-08-13 2010-09-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method having liquid evaporation control
US10254663B2 (en) 2004-08-13 2019-04-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a heater
US10838310B2 (en) 2004-08-13 2020-11-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a heater
US11378893B2 (en) 2004-08-13 2022-07-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a heater
JP2006156632A (en) * 2004-11-29 2006-06-15 Nikon Corp Gas temperature control device, body tube, exposure device manufacturing method of device and gas temperature control method
CN107003499A (en) * 2014-12-01 2017-08-01 科磊股份有限公司 Device and method for providing the humidity-controlled environment for performing optical contact wherein
CN107003499B (en) * 2014-12-01 2022-04-15 科磊股份有限公司 Apparatus and method for providing a humidity controlled environment in which optical contact is performed

Similar Documents

Publication Publication Date Title
US4786947A (en) Projection exposure apparatus
JP3500619B2 (en) Projection exposure equipment
US6222610B1 (en) Exposure apparatus
US4690528A (en) Projection exposure apparatus
US7538852B2 (en) Exposure apparatus and device manufacturing method
JP6580209B2 (en) Lithographic apparatus
US9256141B2 (en) Exposure apparatus, device manufacturing method using same, and gas supply device
JPS60262421A (en) Method and device for projection and exposure
US7391498B2 (en) Technique of suppressing influence of contamination of exposure atmosphere
JPH05210049A (en) Method and device for correcting magnification of projecting lens
JPH0428216A (en) Exposing device
JPS6079357A (en) Projecting and exposing device
JPH02199814A (en) Projection aligner
KR100846439B1 (en) Method and apparatus for regulating refractive index variations of a lithographic tool
JPH11135429A (en) Temperature control method and aligner using the method
JPH09275070A (en) Aligner
JPS62181426A (en) Optical projection apparatus
JPH09298151A (en) Projection aligner
JP2010045300A (en) Exposure device
JPH0274024A (en) Projection optical system
JPH11154644A (en) Projecting aligner
JPH11154636A (en) Projecting aligner
JP2884687B2 (en) Projection optical device
JPS6269617A (en) Projection exposure device
JPH0616477B2 (en) Projection optics