JPH02199814A - Projection aligner - Google Patents

Projection aligner

Info

Publication number
JPH02199814A
JPH02199814A JP1017490A JP1749089A JPH02199814A JP H02199814 A JPH02199814 A JP H02199814A JP 1017490 A JP1017490 A JP 1017490A JP 1749089 A JP1749089 A JP 1749089A JP H02199814 A JPH02199814 A JP H02199814A
Authority
JP
Japan
Prior art keywords
chamber
air
optical path
projection
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1017490A
Other languages
Japanese (ja)
Other versions
JP2794587B2 (en
Inventor
Saburo Kamiya
三郎 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11945448&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH02199814(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP1017490A priority Critical patent/JP2794587B2/en
Publication of JPH02199814A publication Critical patent/JPH02199814A/en
Application granted granted Critical
Publication of JP2794587B2 publication Critical patent/JP2794587B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To eliminate a fluctuation of an image by a method wherein a space including an optical path of an exposure beam between a first object on which a pattern to be projected onto an object to be exposed has been formed and a second object as an object to be exposed is surrounded locally and its temperature is controlled separately from a chamber surrounding a whole aligner. CONSTITUTION:A whole aligner is mounted on a surface plate 8 which has been made vibrationproof by a vibrationproof base 9; it is installed inside a chamber 20. The air whose temperature has been adjusted by using a heat exchanger 21 is blown into the chamber 20 from a blowoff duct 23, and is evacuated from a return duct 23. Then, a chamber 33 which surrounds a space as an optical path, of an exposure beam between a projection lens 3 and a wafer 4 is installed; it surrounds also a space around a wafer stage including an optical path of an interferometer length-measuring instrument 10. Also a space including the optical path of the exposure beam between a reticle 2 and the projection lens 3 is surrounded by a chamber 34. The air, whose temperature has been adjusted, from a heat-exchange blower 30 is sent to the chambers 33, 34 by means of blast pipes 31, 32. Thereby, a fluctuation in a refractive index of the air in the space as the optical path of the exposure beam can be reduced to a minimum and a good alignment accuracy can be obtained.

Description

【発明の詳細な説明】 [a業上の利用分野] 本発明は、例えば半導体集積回路のように非常に微細な
パターンを形成する場合に用いられる投影露光装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a projection exposure apparatus used for forming extremely fine patterns, such as in semiconductor integrated circuits.

[従来の技術] 近年、半導体集積回路の集積度が高まるにつれて、レチ
クル上のパターンをウェハ上に投影転写する投影露光装
置も、高解像力の縮小投影レンズを搭載し、ウェハをス
テップ・アンド・リピート方式で移動させることにより
クエへの複数の露光領域に順次パターンを投影転写する
いわゆるステッパーが主流となっている。
[Prior Art] In recent years, as the degree of integration of semiconductor integrated circuits has increased, projection exposure equipment that projects and transfers the pattern on the reticle onto the wafer is also equipped with a high-resolution reduction projection lens, and the wafer can be moved step-and-repeat. The mainstream is a so-called stepper that sequentially projects and transfers a pattern onto a plurality of exposure areas on a square by moving the pattern in a sequential manner.

ステッパーには、投影レンズの解像力に見合フた重ね合
せ(ウェハ上の前工程で形成されたパターンとレチクル
の投影像の位置合せ)精度が要求される。一般には投影
レンズの最小解像線幅の175〜1/lOの重ね合せ精
度が必要とされている。したがって、例えば超LSI製
造用の0.8μm幅のパターンを解像するレンズに対し
ては0.08〜0.16μmの重ね合せ精度が必要であ
る。
The stepper is required to have an overlay (alignment of the pattern formed in the previous process on the wafer and the projected image of the reticle) accuracy commensurate with the resolving power of the projection lens. Generally, an overlay accuracy of 175 to 1/1O of the minimum resolution line width of the projection lens is required. Therefore, for example, a lens that resolves a 0.8 μm wide pattern for VLSI manufacturing requires an overlay accuracy of 0.08 to 0.16 μm.

このような高精度の重ね合せを実現するには装置各部の
温調が重要であり、従来は第4図に示すように装置全体
を温調チャンバ120内に設置して、チャンバ120内
の空気の温度を制御していた。第4図に於いて、レチク
ル102は照明光学系101によって照明され、レチク
ル102に形成されたパターンの像は投影レンズ103
によりウェハ104の投影レンズ103直下に位置する
露光領域に投影転写される。
In order to realize such highly accurate overlaying, temperature control of each part of the device is important. Conventionally, the entire device was installed in a temperature control chamber 120 as shown in FIG. 4, and the air inside the chamber 120 was controlled the temperature. In FIG. 4, a reticle 102 is illuminated by an illumination optical system 101, and an image of a pattern formed on the reticle 102 is projected onto a projection lens 103.
The image is projected and transferred onto the exposure area of the wafer 104 located directly below the projection lens 103.

ウェハ104はZステージ105によって上下方向(投
影レンズの光軸方向)に移動可能であるとともに、Xス
テージ106、Yステージ107によってX、Y方向(
投影レンズの光軸と直交する方向)に移動可能となって
いる。そして、ウェハ104のX、Y方向の位置は、レ
ーザ干渉計測長器110によってモニタされ、Xおよび
Yステージ106,107によって所定の位置に位置ぎ
めされる。また、ウェハ104は不図示の高さセンサに
よって表面の高さが検出され、Zステージによって高さ
調節される。
The wafer 104 can be moved in the vertical direction (in the direction of the optical axis of the projection lens) by a Z stage 105, and can be moved in the X and Y directions (in the direction of the optical axis of the projection lens) by an
It is possible to move in a direction perpendicular to the optical axis of the projection lens. The position of the wafer 104 in the X and Y directions is monitored by a laser interferometer 110, and is positioned at a predetermined position by the X and Y stages 106 and 107. Further, the surface height of the wafer 104 is detected by a height sensor (not shown), and the height is adjusted by a Z stage.

かかる装置全体は、防振台109によって防振された定
盤108の上に載置されて、温調チャンバ120内に設
置されている。この温調チャンバ120内には、熱交換
器121によって設定温度に調整された空気が吹き出し
ダクト122から送風され、送風された空気はリターン
ダクト123から排気される6図では明示されていない
が、吹き出しダクト122から送り出された空気はレチ
クル102周辺、投影レンズ103周辺およびウェハス
テージ(105,106,107)周辺にも流れている
The entire apparatus is mounted on a surface plate 108 that is vibration-isolated by a vibration-isolating table 109 and installed in a temperature-controlled chamber 120 . Inside this temperature control chamber 120, air whose temperature has been adjusted to a set temperature by a heat exchanger 121 is blown from a blow-off duct 122, and the blown air is exhausted from a return duct 123.Although not clearly shown in Fig. 6, The air sent out from the blow-off duct 122 also flows around the reticle 102, the projection lens 103, and the wafer stage (105, 106, 107).

[発明が解決しようとする課題] しかし、上記の如き従来の技術に於いては、装置全体を
一つのチャンバで取り囲んで一括して空調しているため
、各種電子部品や、モータ、レーザなどの熱源から発生
する熱の影響が大きく、レチクルとクエへ間の投影光学
系を含む空間の空気の屈折率の時間的、空間的な均一性
を保つことが困難であった。即ち、温度に依存して空気
の屈折率が変化するため、結像位置が播いたり、あるい
は像の歪みを生じ、重ね合せ精度を劣化させる大きな原
因の一つになっていた。
[Problem to be solved by the invention] However, in the conventional technology as described above, the entire device is surrounded by one chamber and air-conditioned at once, so various electronic parts, motors, lasers, etc. Due to the large influence of heat generated from the heat source, it has been difficult to maintain temporal and spatial uniformity in the refractive index of the air in the space between the reticle and the projection optical system, including the projection optical system. That is, since the refractive index of air changes depending on the temperature, the image formation position may be scattered or the image may be distorted, which is one of the major causes of deteriorating the overlay accuracy.

本発明はこの様な従来の問題点に鑑みてなされたもので
、露光光の光路となる空間の空気の屈折率変動を最小限
に押え、良好な重ね合せ精度を得ることのできる投影露
光装置を提供することを目的とするものである。
The present invention has been made in view of these conventional problems, and provides a projection exposure apparatus that can minimize the refractive index fluctuation of the air in the space that serves as the optical path of the exposure light and obtain good overlay accuracy. The purpose is to provide the following.

[課題を解決するための手段] 本発明においては、投影露光装置全体を取り囲む第1チ
ャンバの他に、投影光学系と露光対象である第2物体(
ウェハ)の間の露光光の光路を含む空間を取り囲む第2
チャンバを設け、第1チャンバと第2チャンバ内の空気
を別個に温度調節することにより、上記の課題を達成し
ている。
[Means for Solving the Problems] In the present invention, in addition to the first chamber surrounding the entire projection exposure apparatus, a projection optical system and a second object to be exposed (
a second space surrounding the space containing the optical path of the exposure light between the wafers);
The above object is achieved by providing a chamber and controlling the temperature of the air in the first chamber and the second chamber separately.

また、さらに第2物体(クエへ)に投影される所定のパ
ターンが形成された第1物体(レチクル)と投影光学系
の間の露光光の光路を含む空間を取り囲む第3チャンバ
を設け、第1のチャンバ内の空気と第2および第3チャ
ンバ内の空気を別個に温度調節するようにすれば、像の
揺らぎや歪を抑える上で、より望ましい。
Further, a third chamber is provided which surrounds a space including an optical path of exposure light between the first object (reticle) on which a predetermined pattern is formed to be projected onto the second object (reticle) and the projection optical system. It is more desirable to control the temperature of the air in the first chamber and the air in the second and third chambers separately in order to suppress image fluctuation and distortion.

[作 用] 投影される像の歪や揺らぎの大きな原因となるのは、露
光光の光路となる空間の空気の屈折率の変動であるので
、本発明では、露光装置全体を取り囲む第1チャンバの
他に、レチクルとクエへの間の露光光の光路を含む空間
を局部的に取り囲む第2及び第3チャンバを設け、第1
チャンバとは別個に温度制御を行なっている。即ち、こ
の第2及び第3チャンバの中には熱源が含まれず、かつ
容量も小さいので、チャンバ内の熱負荷が小さく、従っ
て非常に精度良く空気の温度制御を行なうことが可能で
ある。
[Function] A major cause of distortion and fluctuation of the projected image is the fluctuation in the refractive index of the air in the space that serves as the optical path of the exposure light. In addition, second and third chambers are provided which locally surround a space including the optical path of exposure light between the reticle and the square;
Temperature control is performed separately from the chamber. That is, since the second and third chambers do not include a heat source and have a small capacity, the heat load within the chambers is small, and therefore it is possible to control the temperature of the air with high precision.

かかる第2及び第3チャンバはなるべく容量が小さくな
るように設けることが好ましいが、第2チャンバの容量
があまり大きくならない範囲で、ウェハステージの位置
を検出する干渉計測長器の光路を含むステージ周辺の空
間を第2チャンバで囲むようにすれば、ウェハの位置検
出誤差が小さくなり、重ね合せ精度を向上させる上で有
利である。
It is preferable that the second and third chambers are provided so that the capacity is as small as possible, but as long as the capacity of the second chamber does not become too large, the area around the stage including the optical path of the interferometric length instrument that detects the position of the wafer stage. If the space is surrounded by the second chamber, the error in detecting the position of the wafer will be reduced, which is advantageous in improving the overlay accuracy.

なお、上記の第3チャンバについては、投影光学系によ
って縮小投影が行なわれる場合は必ずしも設ける必要は
ない、というのは、縮小投影光学系の縮小率をm倍とす
ると、レチクルと投影光学系間の空気の屈折率変動の影
響もm倍されるので、投影光学系とクエへ間の空間に比
べれば、レチクルと投影光学系間の空気の屈折率変動に
よる影響は小さいからである。
It should be noted that the third chamber described above does not necessarily need to be provided when reduction projection is performed by the projection optical system, because if the reduction ratio of the reduction projection optical system is m times, the distance between the reticle and the projection optical system is This is because the influence of the refractive index fluctuation of the air between the reticle and the projection optical system is smaller than the space between the projection optical system and the space, since the influence of the refractive index fluctuation of the air between the reticle and the projection optical system is also multiplied by m.

[実施例] 第1図は本発明実施例にかかる投影露光装置の構成図で
ある1図において、レチクル2は照明光学系1によって
照明され、レチクル2に形成されたパターンは投影レン
ズ3によりウェハ4の投影レンズ3直下に位置する露光
領域に投影転写される。
[Embodiment] FIG. 1 is a block diagram of a projection exposure apparatus according to an embodiment of the present invention. In FIG. 1, a reticle 2 is illuminated by an illumination optical system 1, and a pattern formed on the reticle 2 is projected onto a wafer by a projection lens 3. The image is projected and transferred to the exposure area located directly under the projection lens 3 of No. 4.

ウェハ4はZステージ5によって上下方向(投影レンズ
の光軸方向)に移動可能であるとともに、Xステージ6
、Yステージ7によってX、 Y方向(投影レンズの光
軸と直交する方向)に移動可能となっている。そして、
ウェハ4のX、Y方向の位置は、レーザ干渉計測長器1
0によってモニタされ、ウェハ4はXおよびYステージ
106107によって所定の位置に位置ぎめされる。
The wafer 4 can be moved vertically (in the direction of the optical axis of the projection lens) by a Z stage 5, and can also be moved by an X stage 6.
, Y stage 7 allows movement in the X and Y directions (directions perpendicular to the optical axis of the projection lens). and,
The position of the wafer 4 in the X and Y directions is determined by the laser interferometer 1.
0 and the wafer 4 is positioned in position by the X and Y stage 106107.

また、ウェハ104は不図示の高さセンサによって表面
の高さが検出され、Zステージによって高さ調節される
Further, the surface height of the wafer 104 is detected by a height sensor (not shown), and the height is adjusted by a Z stage.

かかる装置全体は、防振台9によって防振された定盤8
の上に載置されて、装置全体を取り囲む第1チャンバ2
0内に設置されている。この第1チャンバ20自体は従
来の露光装置に備えられているものと同様な構成をなし
、第1チャンバ20内には熱交換器21によって所定温
度に調整された空気が吹き出しダクト23から送風され
、送風された空気はリターンダクト23から排気される
ようになっている。なお、照明光学系1へ照明光を供給
する光源(ランプ等)は、第1チャンバ20の隔壁の外
に配置される。
The entire device consists of a surface plate 8 which is vibration-isolated by a vibration-isolating table 9.
a first chamber 2 placed above and surrounding the entire device;
It is set within 0. The first chamber 20 itself has a configuration similar to that provided in a conventional exposure apparatus, and air, which has been adjusted to a predetermined temperature by a heat exchanger 21, is blown into the first chamber 20 from a blowout duct 23. The blown air is exhausted from a return duct 23. Note that a light source (such as a lamp) that supplies illumination light to the illumination optical system 1 is arranged outside the partition wall of the first chamber 20.

本発明では、この第1チャンバ20の他に、投影レンズ
3と露光対象であるウェハ4の間の露光光の光路となる
空間を取り囲む第2チャンバ33を設けており、本実施
例ではこの第2チャンバ33によって干渉計測長器10
の光路を含むウェハステージ(2ステージ5.Xステー
ジ6、Yステージ7)の周辺の空間も取り囲んでいる。
In the present invention, in addition to the first chamber 20, a second chamber 33 is provided which surrounds a space that becomes the optical path of the exposure light between the projection lens 3 and the wafer 4 to be exposed. Interferometer 10 with two chambers 33
It also surrounds the space around the wafer stage (2 stages 5, X stage 6, Y stage 7) including the optical path.

ここで、熱源となる測長器10のレーザ光源11は第2
チャンバ33の外に設置されており、レーザ光はバイブ
12で覆われた導入光学系によって第2チャンバ33内
に導入されている。
Here, the laser light source 11 of the length measuring device 10 serving as a heat source is
It is installed outside the chamber 33, and the laser beam is introduced into the second chamber 33 by an introduction optical system covered with the vibrator 12.

また、この実施例においては、レチクル2と投影レンズ
3の間の露光光の光路を含む空間についても第3チャン
バ34によって取り囲んでいる。
Furthermore, in this embodiment, the space between the reticle 2 and the projection lens 3 that includes the optical path of the exposure light is also surrounded by the third chamber 34 .

そして、かかる第2および第3チャンバ33゜34には
、それぞれ送風バイブ31.32によって、熱交換・送
風機30から送り出された所定の温度に調節された空気
が送り込まれる。なお、第2及び第3チャンバ33.3
4の隔壁と投影レンズ3との間には投影レンズ3に送風
による振動が伝わらないようにように間隙が設けられて
いるが、さらにバイブ31.32は、熱交換・送風機3
0の振動を吸収できるような材質で構成されていること
が望ましい。
Then, air sent out from the heat exchanger/blower 30 and adjusted to a predetermined temperature is sent into the second and third chambers 33 and 34 by blower vibrators 31 and 32, respectively. Note that the second and third chambers 33.3
A gap is provided between the partition wall 4 and the projection lens 3 to prevent vibrations caused by air from being transmitted to the projection lens 3.
It is desirable that the material be made of a material that can absorb zero vibrations.

第2および第3温調チャンバ33.34に送風された空
気は、チャンバ隔壁に開けられた透孔(図示せず)から
流出するようになっており、チャンバ33.34内の圧
力が外側よりもわずかに高くなるように送風量を調整し
ておけば、空気が逆流することがない。もちろん帰還ダ
クトを設けて、熱交換・送風機30に空気を帰還させて
もよい、また、図示はしていないが、ウェハ4の出し入
れのためにチャンバ33には屏が設けられており、出し
入れの時だけ開閉する構造になっている。
The air blown into the second and third temperature control chambers 33.34 flows out through holes (not shown) made in the chamber partition walls, so that the pressure inside the chambers 33.34 increases from the outside. By adjusting the air flow rate so that the air flow is slightly higher, air will not flow backwards. Of course, a return duct may be provided to return air to the heat exchanger/blower 30. Although not shown, the chamber 33 is provided with a screen for loading and unloading the wafer 4. It has a structure that opens and closes only at certain times.

なお、上記に説明した実施例ではレチクル2と投影レン
ズ3の間に温調チャンバ34を設けているが、前述した
ように、投影レンズ3が縮小投影レンズである場合には
、レチクル2と投影レンズ3の間の空気の屈折率変動に
よる悪影響は小さくなるので必ずしも設ける必要はない
In the embodiment described above, the temperature control chamber 34 is provided between the reticle 2 and the projection lens 3, but as described above, when the projection lens 3 is a reduction projection lens, the reticle 2 and the projection It is not necessarily necessary to provide the lens 3 because the adverse effect of the refractive index fluctuation of the air between the lenses 3 is reduced.

次に、第2図は本発明にかかるチャンバの隔壁の例を示
す断面図であり、チャンバ33の隔壁は内側の金属板4
1と外側の板部材43の間に断熱材42を充填した構造
になっている。このようにすれば、チャンバの外部で発
生する熱の影響が少なく、金属板41に熱伝導率の高い
材質を選べばチャンバ内面全体が速やかにバイブ32か
ら送風される空気の温度とほぼ等しくなり、チャンバ内
の空気の温度を正確に制御できる。
Next, FIG. 2 is a sectional view showing an example of the partition wall of the chamber according to the present invention, and the partition wall of the chamber 33 is formed by the inner metal plate 4.
It has a structure in which a heat insulating material 42 is filled between 1 and an outer plate member 43. In this way, the influence of heat generated outside the chamber is reduced, and if a material with high thermal conductivity is selected for the metal plate 41, the temperature of the entire inner surface of the chamber quickly becomes almost equal to the temperature of the air blown from the vibrator 32. , the temperature of the air inside the chamber can be precisely controlled.

第3図は同じくチャンバ障壁の例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of the chamber barrier.

チャンバ33の隔壁の内側が金属板41、外側が板部材
43で構成されている点は第2図と同様であるが、第3
図の例では隔壁内が二層構造となっている0図において
隔壁の内面側の層には温度制御された流体を流すための
流体管路44が設けられており、流入口45から流体が
入り、流出口46から出る構造となっている。また、流
体管路44の外側には板部材43との間に断熱材42が
充填されている。
The inside of the partition wall of the chamber 33 is made up of a metal plate 41 and the outside is made up of a plate member 43, which is the same as in FIG.
In the example shown in the figure, the inside of the partition wall has a two-layer structure. In the example shown in FIG. It has a structure in which it enters and exits from an outlet 46. Further, a heat insulating material 42 is filled between the outer side of the fluid conduit 44 and the plate member 43.

かかる隔壁構造のチャンバを用いて、流体の温度がパイ
プ32から送風される空気の温度と一致するように温度
制御を行えば、チャンバ内の温度を、より均一に、かつ
正確に所定の温度に保つことができ、チャンバ内の空気
の屈折率分布の変動を非常に小さくすることができる。
By using a chamber with such a partition wall structure and controlling the temperature so that the temperature of the fluid matches the temperature of the air blown from the pipe 32, the temperature inside the chamber can be more uniformly and precisely maintained at a predetermined temperature. The variation in the refractive index distribution of the air inside the chamber can be kept very small.

[発明の効果] 以上の様に本発明は、露光対象に投影されるパターンが
形成された第1物体と露光対象である第2物体の間の露
光光の光路を含む空間を局部的に囲んで、露光装置全体
を囲むチャンバとは別個に温度制御したことにより、露
光光の光路となる空間の空気の屈折率の変動を非常に小
さくでき、投影される像の揺らぎや歪をほとんどなくす
ことができるという効果を有している。
[Effects of the Invention] As described above, the present invention locally surrounds a space including an optical path of exposure light between a first object on which a pattern to be projected onto an exposure object is formed and a second object that is an exposure object. By controlling the temperature separately from the chamber that surrounds the entire exposure device, fluctuations in the refractive index of the air in the space that forms the optical path of the exposure light can be minimized, and fluctuations and distortions in the projected image can be virtually eliminated. It has the effect of being able to.

即ち、かかる投影露光装置を集積回路の製造に用いれば
、クエへに形成されるパターンの重ね合せ精度が向上し
、より集積度の高い集積回路を歩留り良く製造すること
ができ、極めて有益である。
That is, if such a projection exposure apparatus is used in the manufacture of integrated circuits, the overlay accuracy of patterns formed on the squares can be improved, and integrated circuits with a higher degree of integration can be manufactured with high yield, which is extremely beneficial. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例にかかる投影露光装置の構成図、
第2図及び第3図はそれぞれ本発明にかかるチャンバの
隔壁部の構造を示す断面図、第4図は従来の装置の構成
図である。 [主要部分の符号の説明] 1・・・照射光学系 2・・・レチクル(第1物体) 3・・・投影レンズ 4・・・ウェハ(第2物体) 20・・・第1チャンバ 30・・・熱交換・送風機(温度調節手段)33・・・
第2チャンバ 34・・・第3チャンバ 代理人 弁理士 佐 藤 正 年 第2図 第3 図
FIG. 1 is a configuration diagram of a projection exposure apparatus according to an embodiment of the present invention;
FIGS. 2 and 3 are sectional views showing the structure of a partition wall of a chamber according to the present invention, and FIG. 4 is a configuration diagram of a conventional device. [Description of symbols of main parts] 1... Irradiation optical system 2... Reticle (first object) 3... Projection lens 4... Wafer (second object) 20... First chamber 30. ...Heat exchange/blower (temperature control means) 33...
Second chamber 34...Third chamber agent Patent attorney Masaru Sato Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)光源から射出された光を第1物体に照射すること
により、前記第1物体に形成されたパターンの像を投影
光学系を介して感光性の第2物体の所定の露光領域に投
影転写する投影露光装置において、 前記投影露光装置全体を取り囲む第1チャンバと、 前記投影光学系と前記第2物体の間の露光光の光路を含
む空間を取り囲む第2チャンバと、前記第1チャンバ内
の空気と前記第2チャンバ内の空気を別個に温度調節す
る温度調節手段とを備えたことを特徴する投影露光装置
(1) By irradiating a first object with light emitted from a light source, an image of the pattern formed on the first object is projected onto a predetermined exposure area of a photosensitive second object via a projection optical system. In a projection exposure apparatus for transferring, a first chamber surrounds the entire projection exposure apparatus; a second chamber surrounds a space including an optical path of exposure light between the projection optical system and the second object; 1. A projection exposure apparatus comprising a temperature adjusting means for separately adjusting the temperature of the air in the second chamber and the air in the second chamber.
(2)光源から射出された光を第1物体に照射すること
により、前記第1物体に形成されたパターンの像を投影
光学系を介して感光性の第2物体の所定の露光領域に投
影転写する投影露光装置において、 前記投影露光装置全体を取り囲む第1チャンバと、 前記投影光学系と前記第2物体の間の露光光の光路を含
む空間を取り囲む第2チャンバと、前記第1の物体と前
記投影光学系の間の露光光の光路を含む空間を取り囲む
第3チャンバと、前記第1チャンバ内の空気と、前記第
2及び第3チャンバ内の空気を別個に温度調節する温度
調節手段とを備えたことを特徴とする投影露光装置。
(2) By irradiating the first object with light emitted from a light source, the image of the pattern formed on the first object is projected onto a predetermined exposure area of the photosensitive second object via the projection optical system. In a projection exposure apparatus for transferring, a first chamber surrounding the entire projection exposure apparatus, a second chamber surrounding a space including an optical path of exposure light between the projection optical system and the second object, and the first object. and a third chamber surrounding a space including an optical path of exposure light between the projection optical system and the projection optical system; and temperature adjustment means for separately adjusting the temperature of the air in the first chamber and the air in the second and third chambers. A projection exposure apparatus comprising:
JP1017490A 1989-01-30 1989-01-30 Projection exposure equipment Expired - Fee Related JP2794587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1017490A JP2794587B2 (en) 1989-01-30 1989-01-30 Projection exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1017490A JP2794587B2 (en) 1989-01-30 1989-01-30 Projection exposure equipment

Publications (2)

Publication Number Publication Date
JPH02199814A true JPH02199814A (en) 1990-08-08
JP2794587B2 JP2794587B2 (en) 1998-09-10

Family

ID=11945448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1017490A Expired - Fee Related JP2794587B2 (en) 1989-01-30 1989-01-30 Projection exposure equipment

Country Status (1)

Country Link
JP (1) JP2794587B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992001198A1 (en) * 1990-07-10 1992-01-23 Tadahiro Ohmi Liquid cooled cooling device
EP0844532A2 (en) * 1996-11-25 1998-05-27 Nikon Corporation Exposure apparatus
US5875031A (en) * 1994-09-13 1999-02-23 Nikon Corporation Distance measuring device based on laser interference with a baffle structure member
WO1999012194A1 (en) * 1997-08-29 1999-03-11 Nikon Corporation Temperature adjusting method and aligner to which this method is applied
US6450288B1 (en) 1998-01-28 2002-09-17 Nikon Corporation Air-conditioning apparatus, partition and exposure apparatus
US6714278B2 (en) 1996-11-25 2004-03-30 Nikon Corporation Exposure apparatus
JP2006261273A (en) * 2005-03-16 2006-09-28 Canon Inc Chamber and exposure system using the same
US7126689B2 (en) 2000-02-15 2006-10-24 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US7391498B2 (en) * 2003-09-29 2008-06-24 Canon Kabushiki Kaisha Technique of suppressing influence of contamination of exposure atmosphere
CN105867074A (en) * 2016-06-13 2016-08-17 安徽德衍智控科技有限公司 Projection objective flexible leveling device and leveling method thereof
KR20160136440A (en) * 2014-04-30 2016-11-29 에이에스엠엘 네델란즈 비.브이. Lithographic apparatus and device manufacturing method
JP2021085911A (en) * 2019-11-25 2021-06-03 キヤノン株式会社 Exposure device and article production method
JP2021156535A (en) * 2020-03-27 2021-10-07 水戸工業株式会社 Air conditioner

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5555928A (en) * 1990-07-10 1996-09-17 Tadahiro Ohmi Liquid cooled cooling device
WO1992001198A1 (en) * 1990-07-10 1992-01-23 Tadahiro Ohmi Liquid cooled cooling device
US5875031A (en) * 1994-09-13 1999-02-23 Nikon Corporation Distance measuring device based on laser interference with a baffle structure member
US6714278B2 (en) 1996-11-25 2004-03-30 Nikon Corporation Exposure apparatus
KR19980042711A (en) * 1996-11-25 1998-08-17 요시다쇼이치로 Exposure device
EP0844532A3 (en) * 1996-11-25 1999-08-18 Nikon Corporation Exposure apparatus
EP0844532A2 (en) * 1996-11-25 1998-05-27 Nikon Corporation Exposure apparatus
WO1999012194A1 (en) * 1997-08-29 1999-03-11 Nikon Corporation Temperature adjusting method and aligner to which this method is applied
US6450288B1 (en) 1998-01-28 2002-09-17 Nikon Corporation Air-conditioning apparatus, partition and exposure apparatus
US7126689B2 (en) 2000-02-15 2006-10-24 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US7391498B2 (en) * 2003-09-29 2008-06-24 Canon Kabushiki Kaisha Technique of suppressing influence of contamination of exposure atmosphere
JP2006261273A (en) * 2005-03-16 2006-09-28 Canon Inc Chamber and exposure system using the same
KR20160136440A (en) * 2014-04-30 2016-11-29 에이에스엠엘 네델란즈 비.브이. Lithographic apparatus and device manufacturing method
JP2017515142A (en) * 2014-04-30 2017-06-08 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and device manufacturing method
US9921497B2 (en) 2014-04-30 2018-03-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN105867074A (en) * 2016-06-13 2016-08-17 安徽德衍智控科技有限公司 Projection objective flexible leveling device and leveling method thereof
JP2021085911A (en) * 2019-11-25 2021-06-03 キヤノン株式会社 Exposure device and article production method
JP2021156535A (en) * 2020-03-27 2021-10-07 水戸工業株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2794587B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
US5877843A (en) Exposure apparatus
US4989031A (en) Projection exposure apparatus
KR100885970B1 (en) Lithographic apparatus and device manufacturing method
US5550633A (en) Optical measuring apparatus having a partitioning wall for dividing gas flow in an environmental chamber
JP4673185B2 (en) Equipment and lithography equipment
KR101826100B1 (en) Lithographic apparatus
KR100665750B1 (en) Lithographic Apparatus and Device Manufacturing Method
EP0844532B1 (en) Exposure apparatus
JPH02199814A (en) Projection aligner
JP2010056545A (en) Exposure method, exposure apparatus, and device manufacturing method
US7391498B2 (en) Technique of suppressing influence of contamination of exposure atmosphere
US20040156026A1 (en) Exposure apparatus and exposure method
JPH0982626A (en) Projection exposure device
KR100700368B1 (en) Lithographic Apparatus and Device Manufacturing Method
JP2002190438A (en) Projection aligner
US10642166B2 (en) Patterning device cooling apparatus
TWI805683B (en) Apparatuses for incorporating a gas lock, methods for operating the same, and lithographic apparatuses
JPH09320927A (en) Projection aligner
JPH0922860A (en) Projection exposure device
JPH11312633A (en) Gas temperature adjusting device and aligner
JPH0480912A (en) Exposing device
JP6017630B1 (en) Reticle cooling system for lithographic apparatus
TW202305515A (en) Cooling hood for reticle
JPH07321005A (en) Projection aligner
JP2020177142A (en) Stage device, lithographic device and method of manufacturing article

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees