JPH04280931A - Manufacfture of sintered ore - Google Patents

Manufacfture of sintered ore

Info

Publication number
JPH04280931A
JPH04280931A JP6375491A JP6375491A JPH04280931A JP H04280931 A JPH04280931 A JP H04280931A JP 6375491 A JP6375491 A JP 6375491A JP 6375491 A JP6375491 A JP 6375491A JP H04280931 A JPH04280931 A JP H04280931A
Authority
JP
Japan
Prior art keywords
ore
sintering
cao
raw material
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6375491A
Other languages
Japanese (ja)
Inventor
Yutaka Sasa
豊 佐々
Katsuhiro Tanaka
勝博 田中
Morihiro Hasegawa
長谷川 守弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP6375491A priority Critical patent/JPH04280931A/en
Publication of JPH04280931A publication Critical patent/JPH04280931A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To sufficiently increase strength of sintered one even if a fine powdery iron ore is used as sintering raw material. CONSTITUTION:In the case of sintering a granular material prepared by forming a stuck powder layer of fine powdery ore obtd. by blending powdery CaO source around the core of a coarse grain raw material as a part or the whole of sintering raw material, the blending ratio (mass%) of the powdery CaO source blended in the stuck powder layer is controlled in the range of the following inequality (1) based on the information of the max. burning temp.(T deg.C). A<=CaO (mass%) <=B... (1) Wherein, A and B in the inequality (1) are values decided as the following condition, i.e., in the case of T>=100 deg.C, A=0, and in the case of T<1300 deg.C, A=0.02T+26, and in any range of T, B=-0.0204T+33.5.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は,銑鉄製造における高炉
装入原料の焼結鉱を製造するに際し,造粒時に添加する
粉状CaO源の量を適切に制御することにより,微粉鉱
石を多量に使用しても焼結鉱の通気性と焼結鉱歩留りの
改善により,焼結鉱の生産性向上を可能にする焼結鉱の
製造方法に関するものである。
[Industrial Application Field] The present invention aims to produce a large amount of fine ore by appropriately controlling the amount of powdered CaO source added during granulation when producing sintered ore as a raw material for blast furnace charging in pig iron production. The present invention relates to a method for producing sintered ore that enables improved productivity of sintered ore by improving the permeability of the sintered ore and the yield of sintered ore even when used in industrial applications.

【0002】0002

【従来の技術】近年,鉄鉱石原料は微粉鉱石が増加する
傾向にあるが,これの多量使用は,焼結時の通気性なら
びに歩留りの悪化を招き問題となる。しかしながら,微
粉鉱石は,一般にSiO2等の脈石成分が少ないために
,これを多量配合すれば,焼結鉱の高品質化が可能にな
るなどの利点も有している。したがって,多量配合の際
の問題点, 即ち焼結時の通気性を改善するために,従
来より, 微粉鉱石と一部の粗粒鉱石とを予め造粒し,
微粉鉱石を擬似粒子化した後に,他の焼結主原料と混合
・造粒し焼結機へ装入する原料処理方法が数多く提案さ
れている。例えば特公昭60−17811号公報にはこ
の種の焼結用ミニペレットの造粒方法が示され,また特
開昭60−248827号公報にはこの種の焼結原料の
事前処理方法が記載されている。
BACKGROUND OF THE INVENTION In recent years, the use of fine ore as a raw material for iron ore has been increasing, but the use of large amounts of fine ore poses a problem as it deteriorates air permeability and yield during sintering. However, since fine ore generally has a small amount of gangue components such as SiO2, it also has the advantage that by blending a large amount of this, it is possible to improve the quality of sintered ore. Therefore, in order to improve air permeability during sintering, which is a problem when mixing a large amount, conventionally, fine ore and some coarse ore are granulated in advance.
Many raw material processing methods have been proposed in which fine ore is turned into pseudo-particles, mixed with other main sintering raw materials, granulated, and charged into a sintering machine. For example, Japanese Patent Publication No. 60-17811 discloses a method for granulating mini-pellets for sintering, and Japanese Patent Application Laid-open No. 60-248827 describes a method for pre-treatment of sintering raw materials. ing.

【0003】0003

【発明が解決しようとする課題】前述の従来法は微粉鉱
石を効率よく擬似粒子化し,焼結時の通気性を改善し,
焼結時間の短縮あるいは焼結速度を増大させ,もって焼
結鉱の生産性の向上を図ることを狙いとしたものであり
, 焼結鉱生産性の向上に対して極めて重要な要因であ
る焼結鉱強度については満足すべき値が得られる方法と
はいい難い。したがって, さらなる生産性の向上を図
るには,焼結鉱強度の向上のための新たな手段を講じる
必要がある。本発明はこの課題の解決を目的としたもの
であり, 微粉鉱石の増加にともなう焼結ベッドの通気
性の低下を改善するだけでなく冷間強度を向上させる方
法を提供しようとするものである。
[Problem to be solved by the invention] The above-mentioned conventional method efficiently turns fine ore into pseudo-particles, improves air permeability during sintering, and
The aim is to shorten the sintering time or increase the sintering rate, thereby improving the productivity of sintered ore. Regarding the concretion strength, it is difficult to say that this method can provide a satisfactory value. Therefore, in order to further improve productivity, it is necessary to take new measures to improve the strength of sintered ore. The present invention aims to solve this problem, and aims to provide a method that not only improves the decrease in air permeability of the sintering bed due to an increase in the amount of fine ore, but also improves the cold strength. .

【0004】0004

【課題を解決するための手段】前記の目的を達成せんと
する本発明の要旨とするところは,粗粒原料の核の周囲
に粉状CaO源配合微粉鉱石の付着粉層を形成させてな
る造粒物を,焼結原料の一部または全部として焼結する
にさいし,付着粉層に配合する粉状CaO源の配合割合
(mass%)を焼成時の最高焼成温度 (T℃)の情
報に基づき,下式(1)の範囲に調整することを特徴と
する。 A≦CaO(mass%)≦B  ・・(1)ただし,
(1)式におけるAとBは, Tが1300℃以上のとき, A=0,Tが1300℃
未満とき, A=−0.02T+26Tがどの範囲でも
,B=−0.0204T+33.5で定められる値であ
る。ここで粗粒原料としては,返鉱または1mm以上の
粒度が60%以上を占める焼結用粉鉱石,微粉鉱石とし
ては0.25mm未満の粒度が90%以上を占める鉄鉱
石を意味し,粉状CaO源は生石灰, 消石灰または石
灰石からなる。
[Means for Solving the Problems] The gist of the present invention, which aims to achieve the above object, is to form an adhered powder layer of fine ore containing a powdery CaO source around the core of a coarse raw material. When sintering the granules as part or all of the sintering raw material, information on the blending ratio (mass%) of the powdered CaO source to be blended into the adhering powder layer and the maximum sintering temperature (T°C) during sintering. It is characterized by adjusting to the range of the following formula (1) based on the following. A≦CaO (mass%)≦B (1) However,
A and B in equation (1) are as follows: When T is 1300℃ or higher, A=0, T is 1300℃
When the value is less than 1, the value is determined by B=-0.0204T+33.5, regardless of the range of A=-0.02T+26T. Here, coarse grain raw material refers to return ore or fine ore for sintering in which 60% or more has a particle size of 1 mm or more, and fine ore refers to iron ore in which 90% or more has a particle size of less than 0.25 mm. CaO sources consist of quicklime, slaked lime, or limestone.

【0005】〔作用〕本発明者らは,該課題を解決すべ
く種々の試験研究を行ったところ, 焼結鉱の歩留り並
びに冷間強度は予備造粒工程で得られた造粒物 (以下
, 予備造粒物と記す) の焼成後の強度に支配される
こと,さらに焼成予備造粒物の強度は,付着粉層におけ
る微粉鉱石同志の結合強度と強い相関を有することを知
った。
[Operation] The present inventors conducted various tests and studies to solve the problem, and found that the yield and cold strength of sintered ore were determined by the granules obtained in the preliminary granulation process (hereinafter referred to as It was found that the strength of the fired pre-granules (hereinafter referred to as pre-granules) is controlled by the strength after firing, and that the strength of the fired pre-granules has a strong correlation with the bonding strength of the fine ore particles in the adhering powder layer.

【0006】そこで, 微粉鉱石同志の結合強度につい
て, 予備造粒物の付着粉層の見掛密度と同程度の密度
を有したブリケットを作成し基礎試験を行った。
[0006] Therefore, a basic test was conducted on the bonding strength between fine ore particles by preparing briquettes having a density comparable to the apparent density of the adhering powder layer of the preliminary granulation.

【0007】図1は,該ブリケットにおいて微粉鉱石へ
のCaO添加割合と焼成温度が焼成後の強度に及ぼす関
係を示したものである。図中の○印は所望する強度を有
することを示し,×印は所望する強度に満たないことを
示している。試験条件は次のとおりである。 CaO源:CaOの標準試薬粉 微粉鉄鉱石:平均粒度が0.05mmのヘマタイト鉱石
ブリケットの形状と成形体の見掛密度:5mmφ×5m
m, 2500〜3000kg/m3  焼成品の所望強度の評価法:ペレットの圧潰強度試験焼
成条件:大気中において昇温速度 650℃/min,
 1000℃以上の保持時間2min,冷却速度 20
5℃/min,
FIG. 1 shows the relationship between the CaO addition ratio to the fine ore and the firing temperature on the strength after firing in the briquettes. The ○ mark in the figure indicates that the desired strength is present, and the x mark indicates that the desired strength is not achieved. The test conditions are as follows. CaO source: CaO standard reagent powder Fine powder Iron ore: Hematite ore with an average particle size of 0.05 mm Briquette shape and compact density: 5 mmφ x 5 m
m, 2500-3000 kg/m3 Evaluation method for desired strength of fired product: Pellet crushing strength test Firing conditions: Temperature increase rate 650°C/min in air,
Holding time over 1000℃ 2 min, cooling rate 20
5℃/min,

【0008】図1の結果から明らかなよ
うに,焼成温度1200℃ではCaOとFe2O3とが
反応せず,したがって融液が生成しないためにCaO割
合を増大しても所望する強度を得ることはできなかった
。焼成温度1250℃ではCaO添加割合1〜8%,1
300℃では同0〜7%,1350℃では同0〜6%で
所望する強度を有するものが得られた。
[0008] As is clear from the results shown in Fig. 1, CaO and Fe2O3 do not react at a firing temperature of 1200°C, and therefore no melt is produced, so even if the CaO ratio is increased, the desired strength cannot be obtained. There wasn't. At a firing temperature of 1250°C, the CaO addition rate is 1 to 8%, 1
The desired strength was obtained at 0 to 7% at 300°C and 0 to 6% at 1350°C.

【0009】図2は,焼成温度を1250℃の一定とし
,CaO添加割合を変えて前記と同様の試験を行った場
合の強度との関係を示したものである。図2の結果から
,強度はCaO添加割合の増加に伴い高くなるが,或る
CaO割合でピーク値をもちそれ以上CaO添加割合を
多くしても低下する傾向を示すことがわかる。このよう
な現象が現れた原因としては,CaO添加割合の増大に
伴い, 微粉鉱石中のFe2O3とCaOが反応してカ
ルシウムフエライト (以下CFと記す) を生成し,
微粉鉱石同志がCFを介した結合状態となって強度が増
大するが,あまりCaO添加割合が増加すると,CFの
増大に伴ってブリケットの強度を低下させる要因となる
気孔の量も増加するようになり, 気孔量が一定量以上
になるとCF生成による強度増大の効果よりも気孔の存
在による強度低下の効果が上回る結果となり, 焼結強
度の低下を招いたものと考えられる。このことから,C
aO添加割合の下限値は微粉鉱石同志の結合力により決
定され, 上限値は気孔量により規制されることになる
FIG. 2 shows the relationship with strength when the same test as above was conducted with the firing temperature kept constant at 1250° C. and the CaO addition ratio varied. From the results shown in FIG. 2, it can be seen that the strength increases as the CaO addition ratio increases, but it has a peak value at a certain CaO ratio and tends to decrease even if the CaO addition ratio is increased beyond that point. The reason for this phenomenon is that as the CaO addition rate increases, Fe2O3 in the fine ore reacts with CaO to produce calcium ferrite (hereinafter referred to as CF).
Fine ore particles become bonded to each other through CF, increasing their strength. However, if the CaO addition ratio increases too much, the amount of pores, which causes a decrease in the strength of the briquettes, increases as the CF increases. Therefore, when the amount of pores exceeds a certain amount, the strength-reducing effect due to the presence of pores exceeds the strength-increasing effect due to CF formation, which is thought to have led to a decrease in sintering strength. From this, C
The lower limit of the aO addition rate is determined by the bonding strength between fine ore particles, and the upper limit is regulated by the amount of pores.

【0010】以上の知見事実をもとに,予備造粒物の付
着粉層が所望する強度を有するためのCaO添加割合の
範囲を焼成温度を変数として調べたところ,前記(1)
 式の範囲にCaO添加割合を調整すれば,満足する結
果を得ることができることを知った。すなわち,CaO
 (mass%) 下限値については,焼成最高温度 
(T) ≧1300℃のときには0,焼成最高温度 (
T) <1300℃のときには〔−0.02T+26〕
の式で計算される値とし,他方, CaO (mass%) 上限値については,焼成最高
温度 (T) に基いて〔−0.0204T+33.5
〕の式で計算される値とすればよいことがわかった。
[0010] Based on the above knowledge and facts, we investigated the range of CaO addition ratio in order for the adhering powder layer of the pre-granulated product to have the desired strength, using the firing temperature as a variable, and found that (1)
It was found that satisfactory results could be obtained by adjusting the CaO addition ratio within the range of the formula. That is, CaO
(mass%) For the lower limit, the maximum firing temperature
(T) 0 when ≧1300℃, maximum firing temperature (
T) When <1300℃ [-0.02T+26]
On the other hand, the upper limit of CaO (mass%) is calculated using the formula [-0.0204T+33.5] based on the maximum firing temperature (T).
] It was found that the value calculated using the formula can be used.

【0011】なお,焼成最高温度は実際の焼結機でのそ
れを意味する。焼結機での焼成温度はコークス原単位や
焼結ベッドの通気性等によって変わる。したがって,こ
れらコークス原単位や焼結ベッドの通気性等を制御因子
として焼成最高温度を当該予備造粒品のCaO源配合割
合の条件に適合するように調節すればよい。或いは,当
該調整された予備造粒物を実際に焼結機に供するさいの
焼結最高温度を予め経験値として把握しておいてもよい
。すなわち実際の操業においては,当該予備造粒物を用
いて焼結しようとするさいに,そのコークス原単位や焼
結ベッドの通気性等の条件から最高焼成温度はどの程度
になるかを予め既知情報として入手しておき,この最高
焼成温度の既知情報から(1)式に従って付着層中のC
aO源の配合量を適正に調整してもよい。実操業におけ
る焼成温度の測定は,焼結パレットのサイドウオールか
らベッドに温度計を差し込むなど種々の方法によって測
定できる。
[0011] The maximum sintering temperature means the temperature in an actual sintering machine. The firing temperature in the sintering machine varies depending on the coke consumption rate and the permeability of the sintering bed. Therefore, the maximum firing temperature may be adjusted to suit the conditions of the CaO source blending ratio of the pre-granulated product by using these coke consumption units, air permeability of the sintering bed, etc. as controlling factors. Alternatively, the maximum sintering temperature when the adjusted pre-granulated material is actually submitted to a sintering machine may be known in advance as an empirical value. In other words, in actual operation, when attempting to sinter using the pre-granulated material, it is necessary to know in advance what the maximum sintering temperature will be based on conditions such as the coke consumption rate and the permeability of the sintering bed. From this known information on the maximum firing temperature, calculate C in the adhesion layer according to equation (1).
The amount of the aO source may be adjusted appropriately. Firing temperature during actual operation can be measured by various methods, such as inserting a thermometer into the bed from the sidewall of the sintering pallet.

【0012】0012

【実施例】表1に本発明の実施例と比較例の配合条件を
示した。表示のように予備造粒原料は,返鉱,微粉鉱石
およびCaO源である粉状生石灰からなる。返鉱は粗粒
原料であり擬似粒子の核となる。微粉鉱石と生石灰は擬
似粒子の付着粉となる。表2に返鉱と微粉鉱石の粒度構
成を,また表3にそれらの化学組成を示した。
[Example] Table 1 shows the compounding conditions of Examples of the present invention and Comparative Examples. As shown, the pre-granulation raw material consists of return ore, fine ore, and powdered quicklime which is a CaO source. Return ore is a coarse raw material and serves as the nucleus of pseudo particles. Fine ore and quicklime become adhesion powder of pseudo particles. Table 2 shows the particle size composition of the return ore and fine ore, and Table 3 shows their chemical composition.

【0013】予備造粒工程では,微粉鉱石,返鉱と生石
灰をドラム型造粒機に入れ,予備造粒水分7.5%で造
粒した。その後他の焼結用原料 (主原料) と予備造
粒物とをドラム型造粒機に入れ, 造粒水分6.5%で
混合・造粒した。予備造粒原料以外の焼結主原料には豪
州産粉鉱石と南米産粉鉱石を使用し,副原料として蛇紋
岩,珪石粉と石灰石粉を通常の範囲で用いた。
In the pre-granulation step, fine ore, return ore and quicklime were placed in a drum type granulator and granulated with a pre-granulation moisture content of 7.5%. Thereafter, other sintering raw materials (main raw materials) and pre-granulated material were placed in a drum-type granulator, mixed and granulated at a granulation moisture content of 6.5%. Powder ore from Australia and ore from South America were used as the main sintering raw materials other than the pre-granulation raw materials, and serpentinite, silica powder and limestone powder were used within the usual range as auxiliary raw materials.

【0014】表1における実施例と比較例のコークス添
加割合は最高焼成温度が約1250℃になるように調整
した。この最高焼成温度では(1)式に従うCaO添加
割合の適切な範囲は1≦CaO (mass%) ≦8
となる。実施例ではこの適切な範囲内において図2を参
考にしてCaO添加割合は微粉鉱石に対し約3.3%と
した。これは全焼結原料に対し約0.5%である。他方
, 比較例1はCaO添加割合が下限値より低い場合,
比較例2は上限値より高い場合である。
[0014] The coke addition ratio in the Examples and Comparative Examples shown in Table 1 was adjusted so that the maximum calcination temperature was about 1250°C. At this maximum firing temperature, the appropriate range of CaO addition ratio according to equation (1) is 1≦CaO (mass%)≦8
becomes. In the example, within this appropriate range, with reference to FIG. 2, the CaO addition ratio was set to about 3.3% based on the fine ore. This is approximately 0.5% based on the total sintered raw material. On the other hand, in Comparative Example 1, when the CaO addition ratio is lower than the lower limit,
Comparative Example 2 is a case where the value is higher than the upper limit.

【0015】[0015]

【表1】[Table 1]

【0016】[0016]

【表2】[Table 2]

【0017】[0017]

【表3】[Table 3]

【0018】これらの焼結原料を製銑部会法に準拠して
焼結鍋試験に供した。得られた焼結鉱の品質の評価は,
焼結時間,落下強度,JIS還元率(RI)ならびに還
元粉化指数(RDI) で行った。表4に焼結鍋試験の
結果を示した。
These sintered raw materials were subjected to a sintering pot test in accordance with the Pigmaking Committee Law. The quality of the obtained sintered ore was evaluated as follows:
Sintering time, drop strength, JIS reduction rate (RI), and reduction pulverization index (RDI) were measured. Table 4 shows the results of the sintering pot test.

【0019】[0019]

【表4】[Table 4]

【0020】表4に見られるように,本発明法を適用し
た実施例は,比較例に比べて焼結時間は同程度であった
が落下強度(冷間強度)は高く,よって生産率が高くな
る結果となった。また,還元性状は,いずれの条件にお
いても大差は認められなかった。
As shown in Table 4, the sintering time was about the same in the examples to which the method of the present invention was applied compared to the comparative examples, but the drop strength (cold strength) was higher, so the production rate was lower. This resulted in a higher price. Furthermore, no significant difference was observed in the reduction properties under any conditions.

【0021】[0021]

【発明の効果】以上のように,微粉状の鉄鉱石を予備造
粒するさいに,焼成温度情報を基に予備造粒時に添加す
る粉状CaO源の添加割合を調整することで焼結鉱強度
を向上させることができ,微粉鉄鉱石を用いる焼結法の
生産率を高めることができる。
[Effects of the Invention] As described above, when pre-granulating fine powdered iron ore, the ratio of the powdered CaO source added at the time of pre-granulation can be adjusted based on the calcination temperature information. The strength can be improved, and the production rate of the sintering method using fine iron ore can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  所望強度のブリケットを得るための焼成温
度とCaO添加割合の関係を示した図である。
FIG. 1 is a diagram showing the relationship between the firing temperature and the CaO addition ratio for obtaining briquettes with desired strength.

【図2】  焼成温度1250℃において焼結強度に及
ぼすCaO添加割合の影響を示した図である。
FIG. 2 is a diagram showing the influence of CaO addition ratio on sintering strength at a firing temperature of 1250°C.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  粗粒原料の核の周囲に,粉状CaO源
を配合した微粉鉱石の付着粉層を形成させてなる造粒物
を,焼結原料の一部または全部として焼結するにさいし
,付着粉層に配合する粉状CaO源の配合割合(mas
s%)を焼成時の最高焼成温度 (T℃)の情報に基づ
き,下式(1)の範囲に制御することを特徴とする焼結
鉱の製造方法, A≦CaO(mass%)≦B  ・・(1)ただし,
(1)式におけるAとBは, Tが1300℃以上のとき, A=0,Tが1300℃
未満とき, A=−0.02T+26Tがどの範囲でも
,B=−0.0204T+33.5で定められる値であ
る。
[Claim 1] A granulated material formed by forming an adhered powder layer of fine ore mixed with a powdered CaO source around the core of a coarse-grained raw material is used for sintering as part or all of the sintering raw material. The blending ratio (mas
A method for producing sintered ore, characterized in that A≦CaO (mass%)≦B is controlled in the range of the following formula (1) based on information on the maximum calcination temperature (T°C) during calcination. ...(1) However,
A and B in equation (1) are as follows: When T is 1300℃ or higher, A=0, T is 1300℃
When the value is less than 1, the value is determined by B=-0.0204T+33.5, regardless of the range of A=-0.02T+26T.
【請求項2】  粗粒原料は返鉱または1mm以上の粒
度が60%以上を占める焼結用粉鉱石,微粉鉱石は0.
25mm未満の粒度が90%以上を占める鉄鉱石,そし
て粉状CaO源は生石灰, 消石灰または石灰石である
請求項1に記載の焼結鉱の製造方法。
2. The coarse raw material is return ore or fine ore for sintering in which the particle size of 1 mm or more accounts for 60% or more, and the fine ore is 0.
2. The method for producing sintered ore according to claim 1, wherein the iron ore has a particle size of 90% or more less than 25 mm, and the powdered CaO source is quicklime, slaked lime, or limestone.
JP6375491A 1991-03-06 1991-03-06 Manufacfture of sintered ore Withdrawn JPH04280931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6375491A JPH04280931A (en) 1991-03-06 1991-03-06 Manufacfture of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6375491A JPH04280931A (en) 1991-03-06 1991-03-06 Manufacfture of sintered ore

Publications (1)

Publication Number Publication Date
JPH04280931A true JPH04280931A (en) 1992-10-06

Family

ID=13238503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6375491A Withdrawn JPH04280931A (en) 1991-03-06 1991-03-06 Manufacfture of sintered ore

Country Status (1)

Country Link
JP (1) JPH04280931A (en)

Similar Documents

Publication Publication Date Title
AU2015297793B2 (en) Method for producing pellets and method for producing iron-nickel alloy
JP2010096592A (en) Evaluation method of blended iron ore for sintering
AU2013236700B2 (en) Method for adjusting precursor powder for sintered ore, and precursor powder for sintered ore
US4082539A (en) Method for the preliminary treatment of materials for sintering
EP3266884A1 (en) Quasiparticles for sintering and method of producing same
JP6369113B2 (en) Method for producing sintered ore
JP2009019224A (en) Method for manufacturing sintered ore
JPH04280931A (en) Manufacfture of sintered ore
JP2003096521A (en) Sintered ore blended with high alumina iron ore, and production method therefor
JP4231468B2 (en) Method for producing sintered ore
JP2002129246A (en) Method for producing sintered ore
JPH0778256B2 (en) Manufacturing method of mini pellet for sintering
JPH0645829B2 (en) Sintering raw material and method for producing sintered ore
JPS60248827A (en) Preliminary treatment of sintered raw material
JPH06226410A (en) Insulating material for molten steel
JPH06220549A (en) Pretreatment of raw material to be sintered
KR101590992B1 (en) A manufacturing method of body using by-products, the body and the binder
JPS5817813B2 (en) A method to improve productivity in the production of sintered ore using fine iron ore
JPH05311255A (en) Production of sintered ore
JPH07166248A (en) Production of burnt agglomerated ore
JPH09272925A (en) Production of sintered ore excellent in property at high temperature and cold strength
US4092406A (en) Ferro lime
JP2008088533A (en) Method for manufacturing sintered ore
JP2008196027A (en) Method for manufacturing sintered ore
JPH02107724A (en) Pretreatment of sintering material

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514