JPH04280868A - Production of carbonized molding of coal-based pitch - Google Patents

Production of carbonized molding of coal-based pitch

Info

Publication number
JPH04280868A
JPH04280868A JP3062408A JP6240891A JPH04280868A JP H04280868 A JPH04280868 A JP H04280868A JP 3062408 A JP3062408 A JP 3062408A JP 6240891 A JP6240891 A JP 6240891A JP H04280868 A JPH04280868 A JP H04280868A
Authority
JP
Japan
Prior art keywords
pitch
oxygen
coal
based pitch
carbonized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3062408A
Other languages
Japanese (ja)
Inventor
Kunimasa Takahashi
高橋 邦昌
Takashi Kameda
隆 亀田
Hiroyuki Kakiuchi
博行 垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP3062408A priority Critical patent/JPH04280868A/en
Publication of JPH04280868A publication Critical patent/JPH04280868A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To thoroughly dissolve problems in production of a carbonized molding using a coal-based pitch material as the raw material, i.e., very severe problems obstructive in producing a large-sized molding, e.g. occurrence of cracks and deformation on the carbonized molding with high incidence. CONSTITUTION:The surface of a raw molding composed of a coal-based pitch is substantially prevented from contact with oxygen during carbonization reaction to inhibit the formation of the oxidized pitch. Oxidation of the raw molding is inhibited by covering the raw molding with a petroleum-based pitch powder.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、石炭系ピッチ炭素化成
形体の製法に関する。さらに詳しくは、ひび割れや変形
等が抑止された炭素化成形体の製法に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a carbonized coal-based pitch compact. More specifically, the present invention relates to a method for producing a carbonized molded body that is prevented from cracking, deformation, etc.

【0002】0002

【従来の技術】近年、特殊炭素材料分野で要求されてい
る「高密度」、「高強度」、「微粒フィラー」、「大型
製品」、「高純度」、「高電気伝導度」、「加工し易さ
」等の物性を同時に満たす炭素化成形材の製造方法につ
いて、種々検討がなされている。特に、石炭系ピッチを
種々の熱処理や化学処理で変成したピッチと微粉砕コー
クスとの複合粉体や、メソフェーズマイクロビースで代
表される微粒自己焼結性粉体をプレス成形して生成形体
とし、これを充填材中に埋設して炭素化し、さらに黒鉛
化することにより、従来の低軟化点石炭ピッチと大粒径
コークス混練物の押し出し成形品の炭素化及び黒鉛化製
品には認められない特性を、炭素化成形体に賦与する努
力がなされてきた。その結果、30cm角程度の黒鉛ブ
ロックで「高密度」、「高強度」及び「微粒フィラー」
を同時に達成する製品や、「微粒フィラー」、「高電気
伝導度」及び「加工し易さ」を同時に達成する製品が開
発上市されている。
[Prior Art] In recent years, the field of special carbon materials has required "high density", "high strength", "fine filler", "large size products", "high purity", "high electrical conductivity", and "processing". Various studies have been conducted on methods for producing carbonized molded materials that simultaneously satisfy physical properties such as "ease of molding." In particular, composite powders of coal-based pitch modified by various heat treatments and chemical treatments and finely pulverized coke, and fine self-sintering powders such as mesophase microbeads are press-molded into formed bodies. By embedding this in a filler, carbonizing it, and then graphitizing it, we have created properties that are not found in carbonized and graphitized products of conventional extrusion molded products of low-softening point coal pitch and large-particle coke kneading. Efforts have been made to impart this to carbonized molded bodies. As a result, a graphite block of approximately 30 cm square has "high density", "high strength", and "fine filler".
Products that simultaneously achieve these requirements, as well as products that simultaneously achieve "fine filler,""high electrical conductivity," and "ease of processing" have been developed and put on the market.

【0003】しかし、多くのメーカーが開発競争を繰り
広げている石炭ピッチ系の新規な黒鉛製品にも、以下の
共通問題が存在することが既上市製品のカタログから容
易に推測される。即ち、■  低軟化点ピッチ押し出し
法では、数トンに達する大型製品が安定的に製造される
のに対して、熱処理や化学処理された石炭系ピッチを利
用した製品は大型ブロックの製造が極めて困難である為
、加工製品の形状制約やブロック利用効率低下をもたら
し、市場拡大が制約されること、および■  「高密度
」、「高強度」、「微粒フィラー」、「高電気伝導度」
、「加工し易さ」という要求性能を同時に達成する製品
が作れない為、従来法で作ったピッチ再含浸製品との区
別性が小さくなり、価格競争力が低いこと、である。
[0003] However, it can be easily inferred from catalogs of already marketed products that the following common problems exist even in the new coal pitch-based graphite products for which many manufacturers are competing to develop them. In other words, ■ With the low softening point pitch extrusion method, large products weighing several tons can be stably produced, whereas it is extremely difficult to produce large blocks of products using heat-treated or chemically treated coal-based pitch. This results in shape constraints on processed products and a decline in block usage efficiency, which limits market expansion.
Since it is not possible to create a product that simultaneously achieves the required performance of "ease of processing," the product is less distinguishable from pitch re-impregnated products made using conventional methods, and its price competitiveness is low.

【0004】大型製品の製造が困難な理由は、生成形体
の炭素化時のひび割れ、亀裂及び発泡による製品破損で
あり、破損原因は微粒フィラーが高密度充填されて細孔
が小さくなった生成形体において、微粒フィラーを強く
結合するために大量に使用されるピッチ及び混練時の粘
度調整のために添加される重質油から発生する大量のガ
ス成分を、工業的に許容される炭素化時間内では到底抜
き切れ無いことにあるとされている。この論旨を信ずる
ならば、上記特性を具備した大型製品を可能にする道は
無いことになる。
[0004] The reason why it is difficult to manufacture large products is that product damage occurs due to cracks, fissures, and foaming during carbonization of the formed product, and the cause of damage is due to the formed product having small pores due to high density filling of fine particles. In this process, a large amount of gas components generated from the pitch used in large quantities to strongly bind the fine filler and the heavy oil added to adjust the viscosity during kneading are removed within an industrially acceptable carbonization time. It is said that this is something that cannot be completely eliminated. If we believe this thesis, there is no way to make large products with the above characteristics possible.

【0005】本発明者らは、ガス抜き速度が直接の原因
であったとしても、細孔径以外の支配因子によってガス
抜き速度が抑制されている可能性を探る目的で種々の観
点から石炭系ピッチの物性を洗い直し基礎的なデータを
取り直してみた。また、石炭ピッチの酸化が成形体の炭
素化時不良率増に関与していることを開示した技術があ
る(特開昭58−21747号公報)。しかし、この方
法においては、酸素の効果は生成形体全域に及ぶとの概
念で、対策が考えられている。更には、不良率の低減策
であり、熱処理ピッチの大型品で、ほぼ100%発生す
る亀裂、大きな反り、発泡、等の抜本対策については何
も論じていない。
[0005] The present inventors investigated the possibility that the degassing rate is suppressed by a controlling factor other than the pore diameter, even if the degassing rate is the direct cause. I reconsidered the physical properties of the material and recollected the basic data. Furthermore, there is a technique that discloses that oxidation of coal pitch is involved in an increase in the defective rate during carbonization of molded bodies (Japanese Patent Laid-Open No. 58-21747). However, in this method, countermeasures are considered based on the concept that the effect of oxygen extends over the entire area of the formed form. Furthermore, it is a measure to reduce the defective rate, and nothing is discussed about drastic measures against cracks, large warpage, foaming, etc., which occur almost 100% of the time in large heat-treated pitch products.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、炭素
材料工業で常用されているコールタールピッチをバイン
ダーとする生成形体を、コークス及び/または黒鉛粒を
主成分とする充填材中に埋設あるいは不活性ガスで非酸
化雰囲気を構築した後に炭素化装置炉加熱源として燃焼
ガスや電気エネルギーを用いて炭素化成形体を製造する
方法において、従来炭素化が極めて困難とされてきた微
粒フィラーからなる緻密質大型生成形体を再現性良く安
定して炭素化できる技術を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to embed a formed body using coal tar pitch, which is commonly used in the carbon material industry, as a binder in a filler mainly composed of coke and/or graphite particles. Alternatively, in a method of producing a carbonized compact using combustion gas or electrical energy as a carbonization equipment furnace heating source after creating a non-oxidizing atmosphere with an inert gas, it is made of fine filler, which has traditionally been considered extremely difficult to carbonize. The object of the present invention is to provide a technology that can stably carbonize dense, large-sized formed bodies with good reproducibility.

【0007】[0007]

【課題を解決するための手段】(基礎となる着想)本発
明者らは、石炭系ピッチを材料として、特に大型の炭素
化成形体の製造技術を開発すべく鋭意検討したところ、
次のような種々の知見を得た。 (1)  石炭系ピッチの種々の雰囲気での炭素化パタ
ーンを調べる目的で、一般用中ピッチの空気中での変化
を示差熱重量分析法(JIS  K2439)で測定し
たところ、350℃迄の間で発熱と重量増加が認められ
た。熱処理を経た10mgの微粉砕ピッチは、アルミ容
器から一部はみ出したカルメラ焼きの砂糖のような、薄
く堅いドームを形成していた。一方高純度窒素雰囲気で
同様に処理したところ、微粉砕ピッチは容器内に塊とし
て存在していた。炭素化収率は空気中処理品で大きくな
ることが確認された。即ち中ピッチは空気中で酸化され
ると、堅くてガス透過率の極めて小さい膜状炭素化物を
生成し、非酸化雰囲気焼成に比べて炭素化率が向上する
特性を有することが判った。
[Means for Solving the Problems] (Basic idea) The present inventors have conducted intensive studies to develop a manufacturing technology for particularly large carbonized molded bodies using coal-based pitch as a material.
The following various findings were obtained. (1) In order to investigate the carbonization patterns of coal-based pitch in various atmospheres, we measured the changes in general medium pitch in air using differential thermogravimetric analysis (JIS K2439), and found that up to 350°C Heat generation and weight increase were observed. The 10 mg of finely ground pitch that had undergone heat treatment had formed a thin, hard dome similar to Carmela baked sugar that partially protruded from the aluminum container. On the other hand, when the same treatment was carried out in a high-purity nitrogen atmosphere, the finely pulverized pitch was present in the container as a lump. It was confirmed that the carbonization yield was higher for products treated in air. That is, it has been found that when medium pitch is oxidized in air, it produces a film-like carbonized product that is hard and has an extremely low gas permeability, and has the property of improving the carbonization rate compared to firing in a non-oxidizing atmosphere.

【0008】(2)  石炭系コークスや黒鉛等の充填
材の空気中500℃迄の変化を、示差熱重量分析法(D
TG)で測定したところ、該充填材は重量変化を全く起
こさず、吸発熱変化もほとんど認められないことが確認
された。即ち、常用される充填材は、この温度域では中
ピッチで見られる酸素取り込み反応(炭素繊維製造での
不融化反応)を起こさず、自燃性も呈しない酸素分子に
不活性な材料で有ることがわかった。また、この温度領
域では炭素化雰囲気系に存在したり、外部から漏れ込ん
でくる酸素は、充填材の空隙を縫って炭素化雰囲気系を
自由に移動できることが判明した。従って、埋設された
生成形体が酸素吸収を起こすと、生成形体表面と炭素化
雰囲気系全体との間に発生する酸素分圧差を駆動力に、
炭素化雰囲気の酸素が生成形体近傍に集中する事態を充
填材は何等抑止できないことがわかった。
(2) Differential thermogravimetric analysis (D
When measured by TG), it was confirmed that the filler did not cause any weight change and almost no change in heat absorption or heat absorption was observed. In other words, the commonly used fillers are materials that are inert to oxygen molecules and do not cause the oxygen uptake reaction (infusibility reaction in carbon fiber manufacturing) seen in medium pitches in this temperature range and do not exhibit self-combustibility. I understand. It has also been found that in this temperature range, oxygen present in the carbonization atmosphere system or leaking in from the outside can freely move through the carbonization atmosphere system through the gaps in the filler. Therefore, when the buried formed body absorbs oxygen, the oxygen partial pressure difference generated between the surface of the formed body and the entire carbonization atmosphere system is used as a driving force.
It was found that the filler could not prevent the concentration of oxygen in the carbonization atmosphere near the formed bodies.

【0009】(3)  中ピッチ及び中ピッチを窒素ガ
ス流通雰囲気下440℃で3時間熱処理して得た熱処理
ピッチを粉砕し、熱風循環式乾燥機中10℃/時間の昇
温速度で300℃まで昇温後5時間保持して得た酸化ピ
ッチを、QMAS測定に供した。アルゴンガス流通下1
000℃まで5℃/分で昇温し、各種ガスの発生パター
ンを観察し、その絶対量を定量したところ、熱処理ピッ
チが発生する水、一酸化炭素、二酸化炭素から算出され
る酸素の量は、中ピッチのそれの2倍に達する事実、即
ち石炭ピッチは熱処理によって酸素との反応性を著しく
高めることが見出された。
(3) The heat-treated pitch obtained by heat-treating medium pitch and medium pitch at 440°C for 3 hours in a nitrogen gas flowing atmosphere is pulverized and heated to 300°C at a heating rate of 10°C/hour in a hot air circulation dryer. The oxidized pitch obtained by raising the temperature to 5 hours and holding it for 5 hours was subjected to QMAS measurement. Argon gas flow bottom 1
The temperature was raised at 5°C/min to 000°C, the generation patterns of various gases were observed, and their absolute amounts were quantified.The amount of oxygen calculated from the water, carbon monoxide, and carbon dioxide generated by the heat-treated pitch It has been found that the reactivity of coal pitch with oxygen is significantly increased by heat treatment, reaching twice that of medium pitch.

【0010】このことから、熱処理石炭ピッチをバイン
ダー成分とする生成形体を非熱処理石炭ピッチと同じ炭
素化雰囲気で炭素化する場合には、上記(1),(2)
の知見と合わせ考えると、以下のような好ましくない事
態を生起させることが予測されるのである。自己焼結成
分を持つ熱処理及び/または化学処理石炭系ピッチ微粉
砕粉体及び/または微粒フィラーと熱処理石炭ピッチの
混合物(フィラー表面をピッチで被覆した状態を含む)
からなる微粒粉体を加圧成形し、得られた内外面共に緻
密な成形体を炭素化反応に供すると、常用低融点ピッチ
と異なり酸素取り込み反応が活発になる温度域までピッ
チは軟化溶融しないため、酸素が成形体の内部まで侵入
した状態で酸素取り込み反応が始まる。
[0010] From this, when a formed body containing heat-treated coal pitch as a binder component is carbonized in the same carbonization atmosphere as non-heat-treated coal pitch, the above (1) and (2)
When considered together with the knowledge of Heat-treated and/or chemically treated coal-based pitch finely pulverized powder having self-sintering components and/or a mixture of fine filler and heat-treated coal pitch (including a state in which the filler surface is coated with pitch)
When a fine-grained powder consisting of is pressure-molded and the resulting molded body, which is dense on both the inner and outer surfaces, is subjected to a carbonization reaction, unlike ordinary low-melting pitch, the pitch does not soften and melt up to the temperature range where the oxygen uptake reaction becomes active. Therefore, the oxygen uptake reaction begins in a state where oxygen has penetrated into the inside of the molded article.

【0011】酸素取り込み反応が活発になると、表面層
が高温の為どんどん反応が進み、内部は酸素到達量が相
対的に小さく、反応は進まない。内奥部では、成形時に
取り込まれた酸素しか反応に関与しない。粘結成分の溶
融温度まで成形体温度が上昇しても、外表面は炭素繊維
でいう不融化が進み、もはや軟化溶融状態には入れない
。さらに、酸化の飽和域に達し、酸素は更に内部のピッ
チに供給される。不融化が進んでいない内部では、軟化
溶融しながら酸素取り込み反応を継続する。微粒フィラ
ーで構成される生成形体では粒子間隔も小さい為、軟化
溶融ピッチは薄い膜を形成し、膜全体が酸素取込み反応
を受けることになる。
When the oxygen uptake reaction becomes active, the reaction progresses rapidly because the surface layer is at a high temperature, while the amount of oxygen reaching the interior is relatively small and the reaction does not proceed. Deep inside, only oxygen taken in during molding participates in the reaction. Even if the temperature of the molded body rises to the melting temperature of the viscous component, the outer surface becomes infusible in the sense of carbon fibers and is no longer in a softened and molten state. Furthermore, the saturation region of oxidation is reached and oxygen is further supplied to the inner pitch. In the interior where infusibility has not progressed, the oxygen uptake reaction continues while softening and melting. In the formed form composed of fine filler particles, the particle spacing is small, so the softened and melted pitch forms a thin film, and the entire film undergoes an oxygen uptake reaction.

【0012】ちなみに、軟化点を有する熱処理ピッチを
容器に入れ、非酸化雰囲気で一旦溶融固化した表面が気
孔のない滑らかな、各種厚みのピッチフィルムを300
℃で片面からの空気中酸化に供したところ、約50μm
厚み迄は酸素化(不融化)が進むが、それ以上の厚みで
は炭素化時に溶融する部分が多くなるので、軟化溶融ピ
ッチで酸化膜が形成されると、その部分から奥への酸化
は抑止される。酸化進行度は成形体中の粉体充填密度の
バラツキ、粒子径分布のバラツキ、外部環境差即ち、焼
成設備の充填材の充填方法、生成形体の充填状況、酸素
漏れ込みの不均一性など種々の要因によって支配される
ので、成形体の一定部位で停止することなく表面から内
部に向けて、バラバラに分布していることになる。
Incidentally, heat-treated pitch having a softening point is placed in a container, and once melted and solidified in a non-oxidizing atmosphere, pitch films of various thicknesses with a smooth surface without pores are prepared.
When subjected to air oxidation from one side at
Oxygenation (infusibility) progresses up to the thickness, but if the thickness is greater than that, more parts will melt during carbonization, so if an oxide film is formed on the softened and melted pitch, oxidation from that part deeper will be inhibited. be done. The degree of oxidation progress is affected by various factors such as variations in the powder packing density in the compact, variations in the particle size distribution, differences in the external environment, ie, the method of filling the filler in the firing equipment, the filling condition of the produced compact, and non-uniformity of oxygen leakage. Therefore, it is distributed randomly from the surface to the inside without stopping at a certain part of the molded body.

【0013】さらに、内部になれば、常用黒鉛材生成形
体に比べて極めて小さい細孔内を酸素が拡散せねばなら
ないために、酸素取込み温度及びその時の酸素分圧も全
て異なるので、ピッチの酸素化合物も−COOH,−C
HO,−OH,−C−O−C−,=C=O,などの各種
官能基の主たる選択が、成形体の部位毎に大きく異なる
こと、即ち、炭素化していく段階での分解温度と残炭分
の架橋度が異なることが容易に推測されるのである。こ
のことは、炭素化収縮反応を起こす温度とその収縮量が
、酸素取り込み反応が終えた成形体においては、まった
くバラバラの状態になっていることを意味する。
Furthermore, since oxygen has to diffuse inside the pores, which are extremely small compared to the conventional graphite material, the oxygen intake temperature and the oxygen partial pressure at that time are all different, so the oxygen in the pitch The compound also -COOH, -C
The main selection of various functional groups such as HO, -OH, -C-O-C-, =C=O, etc. differs greatly depending on the part of the molded product, that is, the decomposition temperature at the stage of carbonization and It can be easily inferred that the degree of crosslinking of the residual carbon content is different. This means that the temperature at which the carbonization shrinkage reaction occurs and the amount of shrinkage are completely different in the molded article after the oxygen uptake reaction.

【0014】従って、揮発分、キノリン不溶分、成形圧
力、粒径分布、β成分等の因子の制御かつ昇温速度をゆ
っくりすることで、成形体の均一加熱とガス抜き量加減
によって生成形体の均一収縮を図る努力が、従来ピッチ
よりも早い酸化速度と微細フィラーによる最密充填及び
ピッチ溶融軟化温度の上昇という従来予測されなかった
因子の追加によって、全て水泡に帰せられる状況になる
。更に成形体の下半分のみを本発明の素材で被覆して炭
素化に供すると、上半分の収縮量が下半分よりも少さく
、上面に大きな深い亀裂が走ることが見出された。この
ことは酸化が進むと、非酸化ピッチよりも収縮率が低く
なることを意味する。従って、従来法で微細フィラーに
よる生成形体を炭素化反応に供すると、内部の非酸化ピ
ッチと外表面部の酸化ピッチとの炭素化収縮率が異なり
、状況に応じて酸化深度の異なる酸化ピッチ間でも収縮
率が異なるので、巨大な応力発生によって炭素化成形体
に大きな亀裂を発生させることとなる。
Therefore, by controlling factors such as volatile content, quinoline insoluble content, molding pressure, particle size distribution, and β component, and by slowing down the temperature increase rate, uniform heating of the molded body and adjustment of the amount of degassing can improve the shape of the formed body. Efforts to achieve uniform shrinkage result in a situation where the entire pitch is attributable to blisters due to the addition of previously unforeseen factors such as faster oxidation rate than conventional pitch, close packing due to fine fillers, and increased pitch melting and softening temperature. Furthermore, it was found that when only the lower half of the molded body was coated with the material of the present invention and subjected to carbonization, the amount of shrinkage of the upper half was smaller than that of the lower half, and large deep cracks ran along the upper surface. This means that as oxidation progresses, the shrinkage rate becomes lower than that of non-oxidized pitch. Therefore, when a formed body formed by fine filler is subjected to a carbonization reaction using the conventional method, the carbonization shrinkage rate differs between the non-oxidized pitch inside and the oxidized pitch on the outer surface, and depending on the situation, the oxidized pitch with different oxidation depth However, since the shrinkage rates are different, a huge stress will be generated, which will cause large cracks in the carbonized molded body.

【0015】(発明の具体的説明)本発明で用いられる
石炭系ピッチは、軟化点が80℃以上の熱処理履歴を有
し、炭素化反応時に自己焼結性を呈するものである。例
えば、アスファルト減圧残渣油、エチレンヘビーエンド
油、接触分解デカント油、ピッチコークス、生コークス
などを出発原料として得られる。該ピッチは、設備内で
溶融軟化して、充填材を固着しない程度にできるだけ温
和な熱処理または化学処理されていることが好ましい。 また、該ピッチは、コークスとして酸素活性を失うまで
に至らぬ程度に熱処理を受け、側鎖、ナフテン環を保有
し、高次重合体化されているものが、酸素との反応性を
高める上で有効である。
(Detailed Description of the Invention) The coal-based pitch used in the present invention has a history of heat treatment with a softening point of 80° C. or higher, and exhibits self-sintering properties during the carbonization reaction. For example, asphalt vacuum residue oil, ethylene heavy end oil, catalytic cracking decant oil, pitch coke, raw coke, etc. can be obtained as starting materials. It is preferable that the pitch is melted and softened in the equipment and subjected to as mild a heat treatment or chemical treatment as possible to the extent that the filler does not stick. In addition, the pitch is heat-treated to a degree that does not cause it to lose its oxygen activity as coke, and has side chains and naphthene rings, and is highly polymerized, which increases its reactivity with oxygen. is valid.

【0016】本発明は、メソカーボンマイクロビーズで
代表される熱処理石炭系ピッチ単独粉体の炭素化に極め
て有効なばかりでなく、該石炭系ピッチと黒鉛質炭素、
炭素質炭素、セラミックス、金属、金属化合物からなる
群から選ばれた少なくとも一種類の骨材成分との混合物
から構成される生成形体の炭素化に本発明は極めて有効
である。黒鉛質炭素とは、天然黒鉛、人造黒鉛、気相成
長黒鉛、黒鉛化繊維、膨張黒鉛等であり、天然鱗片黒鉛
からグラッシーカーボンの黒鉛化品まで広範囲に亙る結
晶性の差や各種不純物含有量は問わず、骨材としての大
きさ(数mmからサブミクロン迄)や形状も任意に設定
することができる。
The present invention is not only extremely effective for carbonizing heat-treated coal-based pitch single powder represented by mesocarbon microbeads, but also for carbonizing the coal-based pitch and graphitic carbon,
The present invention is extremely effective for carbonizing a formed body composed of a mixture with at least one aggregate component selected from the group consisting of carbonaceous carbon, ceramics, metals, and metal compounds. Graphitic carbon refers to natural graphite, artificial graphite, vapor-grown graphite, graphitized fiber, expanded graphite, etc., and there are wide differences in crystallinity and content of various impurities, from natural flake graphite to graphitized glassy carbon. Regardless of the size, the size (from several mm to submicron) and shape of the aggregate can be set arbitrarily.

【0017】炭素質炭素とは、石炭系、石油系のコーク
ス、カーボンブラック、グラッシーカーボン、炭素繊維
、メソカーボンマイクロビーズなどを挙げることができ
る。セラミックスとは、炭化硅素、炭化硼素、窒化硅素
、窒化硼素、窒化アルミニウム、炭化チタン、炭化タン
グステン、炭化ジルコニウム、硼化チタン、硼化ジルコ
ニウム、窒化ジルコニウム、窒化チタン、炭化タンタル
、炭化ニオビウム、炭化鉄、炭化タンタル、炭化ウラン
、などを挙げることができ、粒径、形状に制約のないこ
とは前記と同じである。金属とは、タングステン、鉄、
コバルト、ニオブ、ニッケル、アルミニウム、カドミウ
ム、シリコーン、チタン、ジルコン、マンガン、クロム
、銅、金、銀、硼素プラチナ、亜鉛、すず、鉛などを挙
げることができる。金属化合物とは、上記金属群から選
ばれた少なくとも1個の金属酸化物とりん酸塩、硫酸塩
及びその組み合わせになる化合物、例えばシリカ、アル
ミナ、を総称する。さらに、ナトリウム、カリウム、ア
ルミニウム、バリウム、ストロンチウムなどの酸化物、
りん酸塩、硫酸塩を挙げることができる。さらには各種
ガラス、陶磁器、耐火物(例として硅石レンガ、粘土質
レンガ、ろう石レンガ、クロムレンガ、フオルステナイ
トレンガ、クロムマグネシアレンガ、ドロマイトレンガ
)、粘土を挙げることができる。
Examples of carbonaceous carbon include coal-based and petroleum-based coke, carbon black, glassy carbon, carbon fibers, mesocarbon microbeads, and the like. Ceramics include silicon carbide, boron carbide, silicon nitride, boron nitride, aluminum nitride, titanium carbide, tungsten carbide, zirconium carbide, titanium boride, zirconium boride, zirconium nitride, titanium nitride, tantalum carbide, niobium carbide, iron carbide. , tantalum carbide, uranium carbide, etc., and as mentioned above, there are no restrictions on particle size or shape. Metals include tungsten, iron,
Examples include cobalt, niobium, nickel, aluminum, cadmium, silicone, titanium, zircon, manganese, chromium, copper, gold, silver, boron platinum, zinc, tin, and lead. The metal compound is a general term for compounds consisting of at least one metal oxide selected from the above metal group, phosphates, sulfates, and combinations thereof, such as silica and alumina. In addition, oxides such as sodium, potassium, aluminum, barium, and strontium,
Examples include phosphates and sulfates. Further examples include various glasses, ceramics, refractories (for example, silica bricks, clay bricks, waxite bricks, chrome bricks, falstenite bricks, chrome-magnesia bricks, and dolomite bricks), and clay.

【0018】本発明の基本概念は、石炭系ピッチの炭素
化時に酸素取り込み反応を実質的に零にすること、もし
くは零にならないまでも、酸素と石炭系ピッチとの反応
により酸化ピッチが成形体の一部または局部に形成され
、そのために炭素化成形体がひび割れ、変形等の現象が
生じない程度以下に、酸素の取り込みを阻止することに
ある。この目的を達成するために、本発明では生成形体
を構成する石炭系ピッチの酸素取り込み反応パターンと
同じか、いくらか広い温度域で酸素取り込み反応をする
素材で生成形体表面を被覆して、炭素化温度が石炭系ピ
ッチの酸素との反応が酸素化合物を形成して酸化ピッチ
を作る温度域から酸化ピッチが一酸化炭素、二酸化炭素
、水などの分解生成物を放出し始め、酸素も炭素、水素
と反応して直接一酸化炭素、水などを形成分解する燃焼
温度域に到達する迄、成形体表面に酸素が供給されるこ
とを実質的に零におさえる手法を採用している。
The basic concept of the present invention is to reduce the oxygen uptake reaction to substantially zero during carbonization of coal-based pitch, or, if not to reduce it to zero, to form oxidized pitch into a compact by the reaction between oxygen and coal-based pitch. The purpose is to prevent the incorporation of oxygen to a level that does not cause phenomena such as cracking and deformation of the carbonized molded product. In order to achieve this objective, in the present invention, the surface of the formed body is coated with a material that undergoes an oxygen uptake reaction pattern in the same or somewhat broader temperature range as the oxygen uptake reaction pattern of the coal-based pitch that constitutes the formed form, and carbonized. From the temperature range where the reaction of coal-based pitch with oxygen forms oxygen compounds to produce oxidized pitch, oxidized pitch begins to release decomposition products such as carbon monoxide, carbon dioxide, and water; A method is adopted in which the supply of oxygen to the surface of the compact is kept to virtually zero until the combustion temperature range is reached, where it directly reacts with carbon monoxide, water, etc. and decomposes.

【0019】従って、生成形体表面を被覆する素材は、
石炭系ピッチの酸素取り込み挙動に合わせて、その酸素
との反応性が選択される必要がある。本発明によれば、
本発明で用いる石炭系ピッチの示差熱重量分析を空気流
通下で行い、発熱及び重量変化パターンを測定し、生成
形体の保護材として用いたいとする素材のDTGを比較
して、重量増をともなう発熱開始温度がピッチより低い
か同等であり、かつ重量増が重量減に移行する温度がピ
ッチより高いか同等であれば、保護材に適用可という、
至って簡便な評価方法により、素材の選定を可能にした
[0019] Therefore, the material covering the surface of the formed body is
The reactivity with oxygen needs to be selected according to the oxygen uptake behavior of the coal-based pitch. According to the invention,
Differential thermogravimetric analysis of the coal-based pitch used in the present invention is performed under air circulation, the heat generation and weight change patterns are measured, and the DTG of the material that is desired to be used as a protective material for the formed form is compared to determine whether the weight increases. If the temperature at which heat generation starts is lower than or equal to the pitch, and the temperature at which weight increase changes to weight loss is higher than or equal to the pitch, it can be applied to protective materials.
We have made it possible to select materials using an extremely simple evaluation method.

【0020】この条件を満たす素材としては、石油系ピ
ッチ含有組成物を挙げることができる。石油系ピッチ含
有組成物とは、ピッチの出発物質が原油を蒸留して得ら
れるアスファルト留分や減圧残油、ナフサ熱分解の残油
留分であるエチレンヘビーエンド油、接触分解残油等か
ら選ばれた少なくとも1種類の組成物である。ナフタレ
ンを強酸中重縮合して得られる不融化反応性に富むピッ
チなども含まれる。一般的に、上記満たす石油系ピッチ
が酸化反応速度の早さという面で適しているが、石炭系
ピッチ特に、生成形体に用いた石炭系ピッチの粉体も充
分に有効である。また木屑、紙、砂糖、石炭、なども適
している。これら被覆素材は単独で用いてもよいが、被
覆素材としての機能を有さないコークスや黒鉛、硅砂、
コンクリートなどに適当量混合してのち生成形体表面の
保護の働きをもたせることもできる。
[0020] As a material that satisfies this condition, petroleum-based pitch-containing compositions can be mentioned. A petroleum-based pitch-containing composition is one in which the starting material for pitch is asphalt fraction or vacuum residue obtained by distilling crude oil, ethylene heavy end oil which is a residue fraction of naphtha thermal cracking, catalytic cracking residue, etc. at least one selected composition. It also includes pitches with high infusibility reactivity obtained by polycondensing naphthalene in strong acids. In general, petroleum-based pitch that satisfies the above conditions is suitable in terms of its fast oxidation reaction rate, but coal-based pitch, particularly coal-based pitch powder used in the formed form, is also sufficiently effective. Also suitable are wood chips, paper, sugar, coal, etc. These coating materials may be used alone, but coke, graphite, silica sand, etc., which do not have the function of coating materials,
It can also be used to protect the surface of a formed body by mixing an appropriate amount with concrete or the like.

【0021】金属粒子も同様の役割を担うことが可能で
あるが、炭素化温度を1000℃〜1300℃迄とるよ
うな条件下では酸化還元反応中に、特に炭化中発生する
水素ガスや一酸化炭素で還元されると溶融凝集する素材
が多く、繰り返し使用が難しくなることはもとより、凝
集体の炭化成形体への融着内部浸透などの障害を起こす
ために、好ましい素材ではない。炭化物を形成する素材
は成形体に融着することもなく(酸化ピッチ経由の炭化
の為溶融状態を経由しないためと考えられる)コークス
中に含まれても別段分離操作をせずコークスを繰り返し
利用できる利点がある。該素材の酸素反応性を充分に利
用する為に、該素材は微粉砕してできるだけ表面積を大
きくした上で被覆材とすることが好ましい。
[0021] Metal particles can play a similar role, but under conditions where the carbonization temperature is 1000°C to 1300°C, they can be used to reduce hydrogen gas and monoxide generated during oxidation-reduction reactions, especially during carbonization. Many materials melt and agglomerate when reduced with carbon, which not only makes repeated use difficult, but also causes problems such as the agglomerates melting and penetrating into the carbonized molded body, so it is not a preferable material. The material that forms carbide does not fuse to the compact (possibly because it does not go through the molten state due to carbonization via oxidized pitch), and even if it is included in coke, the coke can be used repeatedly without separate separation. There are advantages that can be achieved. In order to fully utilize the oxygen reactivity of the material, it is preferable to pulverize the material to increase the surface area as much as possible and then use it as a coating material.

【0022】該素材の使用量は炭素化炉の構造、充填材
の大きさ、生成形体の大きさや形状及び炉詰め状況等に
支配される量であり、生成形体の重量当りいくらとの設
定はできない。例えば生成形体が凹凸の多い複雑な形状
をした表面積の大きいものであると、その外表面を保護
する為に多くの量が必要となる。また大きな炉に小さな
成形体を詰める場合には炭素化雰囲気の酸素供給能から
考えて生成形体表面にかなり厚い保護層を形成する必要
がある。炭化時に充填材が大量に燃えてしまうような炉
では外部からの酸素の漏れ込み対応ができない場合もあ
るので、このような場合にはステンレス容器などで外部
との連絡を遮断した雰囲気で保護層の形成をはかる必要
がある。逆に大きな単純形状の成形体では表面積/重量
比が小さい為、相対的に該素材の使用量は減る。本発明
では炉充填材には、何等制約をおかないセメント粉、砂
、コークス、黒鉛など常用されている充填材ならば皆使
用できる。但し、炭素化反応中に炉詰め機能が大きく変
動して、保護素材と生成形体との被覆状態が破れて、生
成形体が充填材層にむき出しになることがないように炉
詰めがなされていることが必要である。
[0022] The amount of the material to be used is determined by the structure of the carbonization furnace, the size of the filler, the size and shape of the formed bodies, the furnace packing conditions, etc., and the amount per weight of the formed bodies is determined. Can not. For example, if the formed body has a complex shape with many irregularities and a large surface area, a large amount will be required to protect the outer surface. Furthermore, when packing small compacts into a large furnace, it is necessary to form a fairly thick protective layer on the surface of the compacts, considering the oxygen supply capacity of the carbonization atmosphere. In furnaces where a large amount of filler material is burned during carbonization, it may not be possible to prevent oxygen from leaking in from the outside. It is necessary to measure the formation of On the other hand, in the case of a large, simple shaped molded article, the surface area/weight ratio is small, so the amount of the material used is relatively reduced. In the present invention, all commonly used fillers such as cement powder, sand, coke, and graphite can be used as the furnace filler without any restrictions. However, the furnace packing is done in such a way that the furnace filling function does not change significantly during the carbonization reaction, and the coating between the protective material and the formed body is broken, and the formed body is not exposed to the filler layer. It is necessary.

【0023】[0023]

【発明の効果】上記のように、本発明によれば、良好な
性状の石炭系ピッチを材料とする大型炭素化成形体を製
造することが可能となり、本発明の工業的意義は極めて
大である。本発明の方法によれば、黒皮成分もないきれ
いな炭素成形体が得られ、硬質素電導度が黒鉛結晶化度
が従来品になく良好になるという予測されなかった効果
もあらわれる。
[Effects of the Invention] As described above, according to the present invention, it is possible to produce a large carbonized molded body made of coal-based pitch with good properties, and the industrial significance of the present invention is extremely large. . According to the method of the present invention, a clean carbon molded body with no black scale components can be obtained, and the unexpected effect that hard element conductivity and graphite crystallinity are improved compared to conventional products also appears.

【0024】本発明の方法によって、酸素と粘結剤ピッ
チとの酸素化物生成反応が生成形体の局部に集中するこ
とによって発生する、炭素成形体の修復不可能な亀裂や
、膨みを完全に抑制することができる。しかしながら、
本発明の方法を採用したとしても、成形時の圧力が不均
等であると、生成形体圧密化度の差によって生起する収
縮量不均質化による割れの発生や、ピッチ自体の収縮特
性値である揮発分、キノリン不溶分、トルエン不溶分、
β成分等の指標で代表される物性値が不均一であること
による非酸化ピッチ自体の不等収縮割れの発生等が認め
られるので、これらを充分に注意する必要がある。 以下に、本発明の内容をより詳細に開示する目的で実施
例、比較例を記載する。
[0024] The method of the present invention completely eliminates irreparable cracks and bulges in carbon molded bodies, which are caused by the oxygenate-forming reaction between oxygen and binder pitch being concentrated in localized areas of the formed body. Can be suppressed. however,
Even if the method of the present invention is adopted, if the pressure during molding is uneven, cracks may occur due to non-uniform shrinkage caused by differences in the degree of compaction of the formed compact, or the shrinkage characteristic value of the pitch itself may be affected. volatile matter, quinoline insoluble matter, toluene insoluble matter,
Since uneven shrinkage cracking of the non-oxidized pitch itself is observed due to non-uniformity of physical property values represented by indicators such as β component, it is necessary to pay sufficient attention to these. Examples and comparative examples will be described below for the purpose of disclosing the contents of the present invention in more detail.

【実施例】【Example】

【0025】[実施例1]JIS規格K2439中ピッ
チ(大阪ガス製;熱ピッチ)を窒素流通下440℃で4
時間熱処理して熱処理ピッチを得た。平均粒径10μm
の粉体に微粉砕し、1.5トン/cm2の成形圧力で、
直径35mm、厚み20mmの生成形体を得た。該生成
形体5個を、ステンレススチール(縦28cm、横40
cm、深さ9cm)容器内に、石炭コークス粒(1〜2
mm径)を1cm敷き、そのうえに、エチレンヘビーエ
ンドピッチ(三菱油化製)を430℃で3時間熱処理し
て得た平均径10μmの石油系ピッチ粉を、3mm厚み
で生成形体を充分に余裕をもっておける広さに敷いた。 焼成床上に生成形体を相互に約3mm離して設置し、そ
の成形体の表面を3mm厚みまで該エチレンヘビーエン
ドピッチで被覆した。  ついで、これを石炭コークス
粒で2cm厚みまで埋没し、蓋をした上で内容積150
lのマッフル炉に入れて、容器の過度の酸化劣化を防ぐ
為にマッフル炉内上部から窒素ガスを毎分200ml送
入しつつ炭素化反応に供した。 昇温速度15℃/時間、最高温度1000℃、1000
℃保持時間2時間で炭素化反応をおこない炉冷後、炭素
化成形体をとり出した。得られた炭素化成形体は、5個
とも表面層の黒皮発生はなく、全体亀裂の発生も認めら
れなかった。2個の成形体からの切出し品の曲げ強度は
平均1450kg/cm2であった。
[Example 1] JIS standard K2439 medium pitch (manufactured by Osaka Gas; thermal pitch) was heated at 440°C under nitrogen flow.
A heat treated pitch was obtained by heat treatment for a period of time. Average particle size 10μm
Finely pulverized into a powder of 1.5 tons/cm2 molding pressure,
A formed body with a diameter of 35 mm and a thickness of 20 mm was obtained. The five generated shapes were made of stainless steel (height 28cm, width 40cm).
cm, depth 9cm) in a container with coal coke grains (1~2
On top of that, petroleum-based pitch powder with an average diameter of 10 μm obtained by heat-treating ethylene heavy end pitch (manufactured by Mitsubishi Yuka) at 430°C for 3 hours was spread to a thickness of 3 mm with sufficient margin to form the formed shape. I laid it out as wide as I could. The formed bodies were placed on a firing bed at a distance of about 3 mm from each other, and the surfaces of the formed bodies were coated with the ethylene heavy end pitch to a thickness of 3 mm. Next, this was buried with coal coke grains to a thickness of 2 cm, and the inner volume was 150 with a lid on.
The container was placed in a muffle furnace of 100 ml, and subjected to a carbonization reaction while nitrogen gas was fed at 200 ml per minute from the upper part of the muffle furnace to prevent excessive oxidative deterioration of the container. Heating rate 15℃/hour, maximum temperature 1000℃, 1000℃
The carbonization reaction was carried out with a holding time of 2 hours at °C, and after cooling in the furnace, the carbonized molded body was taken out. All five of the obtained carbonized molded bodies had no black spots on the surface layer, and no cracks were observed throughout. The bending strength of the cut pieces from the two molded bodies was 1450 kg/cm2 on average.

【0026】[比較例1]エチレンヘビーエンドピッチ
で成形体表面を被覆する操作を省いた他は実施例1と同
じ方法で炭素化反応を行った。得られた5個の炭素化成
形体には表面1〜3mmの厚みで黒皮が生成し、全て、
剥離、亀裂が発生していた。また、外周部の成形密度が
金型の構造(4分割外子の接合部)上、成形体密度が他
より低くなる部分(バリ発生による)から成形体内部に
約10mmの黒色変化部分が突出し、それを起点に内部
に大きな亀裂の発生が認められ、全部の成形体が次の黒
鉛化に供することはできなかった。
[Comparative Example 1] A carbonization reaction was carried out in the same manner as in Example 1, except that the operation of coating the surface of the molded product with ethylene heavy end pitch was omitted. A black crust with a thickness of 1 to 3 mm was formed on the surface of the five carbonized molded bodies obtained, and all of them were
Peeling and cracking had occurred. In addition, due to the structure of the mold (the joint of the four-part outer core), a blackened part of about 10 mm protrudes into the inside of the molded product from the part where the molded density at the outer periphery is lower than the other parts (due to burr generation). Starting from this, large cracks were observed to develop internally, and all of the compacts could not be subjected to the subsequent graphitization.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  石炭系ピッチまたはこれと骨材成分と
の混合物から構成される生成形体を充填材中に埋設する
か、もしくは不活性ガスで非酸化雰囲気を構築して炭素
化反応に供して、炭素化成形体を製造する方法において
、炭素化反応時に生成形体中の表面層と酸素との接触を
実質的に遮断し、成形体の一部または局部に酸化ピッチ
が形成されることを防止することにより炭素化成形体の
ひび割れ、変形等を抑止することを特徴とする炭素化成
形体の製法。
[Claim 1] A formed body composed of coal-based pitch or a mixture of it and an aggregate component is buried in a filler, or a non-oxidizing atmosphere is created with an inert gas and subjected to a carbonization reaction. , a method for producing a carbonized molded body, which substantially blocks contact between the surface layer of the formed body and oxygen during the carbonization reaction, and prevents the formation of oxidized pitch in a part or local part of the molded body. A method for producing a carbonized molded body, which is characterized by suppressing cracking, deformation, etc. of the carbonized molded body.
【請求項2】  生成形体の表面と酸素との接触の遮断
を、該石炭系ピッチと同じ温度以下で酸素と反応を開始
し、該石炭系ピッチが酸素含有化合物の形で取り込んだ
酸素を一酸化炭素や二酸化炭素の形で放出する温度と同
じ温度以上で取り込んだ酸素を一酸化炭素や二酸化炭素
の形で放出を開始する素材で生成形体の表面を被覆する
ことにより行う第1項記載の方法。
2. Contact between the surface of the formed body and oxygen is interrupted by starting a reaction with oxygen at a temperature equal to or lower than that of the coal-based pitch, and removing the oxygen taken up by the coal-based pitch in the form of an oxygen-containing compound. The method described in item 1 is carried out by coating the surface of the formed body with a material that starts releasing the absorbed oxygen in the form of carbon monoxide or carbon dioxide at a temperature equal to or higher than the temperature at which it is released in the form of carbon oxide or carbon dioxide. Method.
【請求項3】  素材が、炭素化反応雰囲気に存在する
酸素と該石炭系ピッチに優先して反応し、炭素化反応雰
囲気から生成形体の表面に到達する酸素の絶対量を該石
炭系ピッチの酸素含有化合物の生成に起因する炭素化成
形体のひび割れ、変形等を無視できる範囲まで減少させ
る役割を担うものである第2項記載の方法。
3. The material reacts preferentially with oxygen present in the carbonization reaction atmosphere and the coal-based pitch, and the absolute amount of oxygen that reaches the surface of the formed body from the carbonization reaction atmosphere is controlled by the coal-based pitch. 2. The method according to item 2, which serves to reduce cracking, deformation, etc. of the carbonized molded product due to the formation of oxygen-containing compounds to a negligible range.
【請求項4】  素材が、石油系ピッチ含有組成物であ
る第2項または第3項記載の方法。
4. The method according to claim 2 or 3, wherein the material is a petroleum pitch-containing composition.
JP3062408A 1991-03-05 1991-03-05 Production of carbonized molding of coal-based pitch Pending JPH04280868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3062408A JPH04280868A (en) 1991-03-05 1991-03-05 Production of carbonized molding of coal-based pitch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3062408A JPH04280868A (en) 1991-03-05 1991-03-05 Production of carbonized molding of coal-based pitch

Publications (1)

Publication Number Publication Date
JPH04280868A true JPH04280868A (en) 1992-10-06

Family

ID=13199288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3062408A Pending JPH04280868A (en) 1991-03-05 1991-03-05 Production of carbonized molding of coal-based pitch

Country Status (1)

Country Link
JP (1) JPH04280868A (en)

Similar Documents

Publication Publication Date Title
US8158053B2 (en) Refractory articles
AU2001282355A1 (en) Refractory articles
JP4430448B2 (en) Method for producing isotropic graphite material
JP3765840B2 (en) Carbon material manufacturing method
JP4311777B2 (en) Method for producing graphite material
JPS5829269B2 (en) Manufacturing method of carbonaceous bricks
JPS6141862B2 (en)
KR100973086B1 (en) Isotropic carbon material and manufacturing method thereof
JPS6311312B2 (en)
JPH04280868A (en) Production of carbonized molding of coal-based pitch
US4272062A (en) Blast furnace hearth
JP4388173B2 (en) Magnesia-carbonaceous unfired brick for lining of molten steel vacuum degassing equipment
JPH0699182B2 (en) Carbon-containing refractory
CN112094124A (en) Carbon source for refractory material and preparation method thereof
JP3616829B2 (en) Carbon-boron carbide sintered body, method for producing the same, and material using the sintered body
CA1046249A (en) Method for constructing a runner for metal melting furnace
JPH04104954A (en) Production of oxidation resistant high-density carbon material
JPH04265273A (en) Production of petroleum pitch-carbonized formed body
JP3094502B2 (en) Manufacturing method of carbon material
JPH1171619A (en) Manufacture of carbon-incorporated pellet and reduced iron
JPH0416545A (en) Oxidation resistance graphite granulation matter for refractory
JPH04240022A (en) Manufacture of graphite material for electric discharge machining electrode
JP2687214B2 (en) Carbon containing refractories
CN117776678A (en) Low-carbon magnesia carbon brick and preparation method thereof
JPS6340758A (en) Manufacture of phosphorous graphite blended refractories