JPH0428005A - Magneto-resistance effect head - Google Patents
Magneto-resistance effect headInfo
- Publication number
- JPH0428005A JPH0428005A JP13310590A JP13310590A JPH0428005A JP H0428005 A JPH0428005 A JP H0428005A JP 13310590 A JP13310590 A JP 13310590A JP 13310590 A JP13310590 A JP 13310590A JP H0428005 A JPH0428005 A JP H0428005A
- Authority
- JP
- Japan
- Prior art keywords
- soft magnetic
- amorphous soft
- film
- head
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000694 effects Effects 0.000 title abstract description 6
- 230000005291 magnetic effect Effects 0.000 claims abstract description 60
- 239000004020 conductor Substances 0.000 claims abstract description 16
- 230000005294 ferromagnetic effect Effects 0.000 claims description 4
- 238000005260 corrosion Methods 0.000 abstract description 14
- 230000007797 corrosion Effects 0.000 abstract description 14
- 239000000696 magnetic material Substances 0.000 abstract description 9
- 239000000463 material Substances 0.000 abstract description 5
- 238000010030 laminating Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 40
- 230000005415 magnetization Effects 0.000 description 11
- 238000000034 method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910000889 permalloy Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910015795 MoRh Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Magnetic Heads (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、磁気記憶媒体に書き込まれた磁気的情報を、
磁気抵抗効果を利用して読み出す強磁性磁気抵抗効果素
子(以下、MR素子と略記する)を具備した磁気抵抗効
果ヘッド(以下、MRヘッドと略記する)に関するもの
である。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for storing magnetic information written on a magnetic storage medium.
The present invention relates to a magnetoresistive head (hereinafter abbreviated as MR head) equipped with a ferromagnetic magnetoresistive element (hereinafter abbreviated as MR element) that performs readout using the magnetoresistive effect.
周知の如く、MR素子を、磁気記憶媒体に書き込まれた
磁気的情報に対して、線形応答性を呈する高効率の再生
専用磁気ヘッドとして使用する場合には、MR素子に流
すセンス電流IとMR素子の磁化Mの成す角度θ(以下
、バイアス角度と呼ぶ)を所定の値(望ましくは45度
)に設定するバイアス手段を具備しなければならない。As is well known, when an MR element is used as a highly efficient read-only magnetic head exhibiting linear response to magnetic information written on a magnetic storage medium, the sense current I and MR flowing through the MR element are A bias means must be provided for setting the angle θ (hereinafter referred to as bias angle) formed by the magnetization M of the element to a predetermined value (preferably 45 degrees).
上述のバイアス手段としては、種々の方法が開示されて
いるが、この中で実願昭59−048201号明細書に
開示されたMRヘッドにおいては、MRR子上に非磁性
導体層と非晶質軟磁性体層とを順次積層した構造により
良好なバイアス角度θが得られ、線形応答性に優れたM
Rヘッドが実現できることが示されている。即ち、第2
図に示したように、ガラス、フェライト等からなる表面
の滑らかな絶縁性基板(図示せず)上に、スパッタ法な
いしは蒸着法により、強磁性体薄膜からなるMRR子1
(例えば膜厚200〜500人のNiFe合金)を形成
し、MR素素子上上Ti、Mo、Cr、Ta。Various methods have been disclosed as the above-mentioned bias means, but among these, in the MR head disclosed in Utility Model Application No. 59-048201, a non-magnetic conductor layer and an amorphous material are provided on the MRR element. A good bias angle θ can be obtained due to the structure in which soft magnetic layers are sequentially laminated, and M with excellent linear response.
It has been shown that an R head can be realized. That is, the second
As shown in the figure, an MRR element 1 made of a ferromagnetic thin film is formed by sputtering or vapor deposition on an insulating substrate (not shown) with a smooth surface made of glass, ferrite, etc.
(For example, a NiFe alloy with a film thickness of 200 to 500 nm) is formed, and Ti, Mo, Cr, and Ta are deposited on the MR element.
W等の非磁性導体層2を同様の方法で形成し、更に非磁
性導体層2上に非晶質軟磁性体層5を同様な方法で形成
した構造を有するMRヘッドを開示している。ここで6
は、MRR子1.非磁性導体層2及び非晶質軟磁性体層
5の積層体に通電するための端子である。An MR head is disclosed which has a structure in which a non-magnetic conductor layer 2 made of W or the like is formed by a similar method, and an amorphous soft magnetic layer 5 is further formed on the non-magnetic conductor layer 2 by a similar method. here 6
is MRR child 1. This is a terminal for supplying electricity to the laminated body of the nonmagnetic conductor layer 2 and the amorphous soft magnetic layer 5.
この様なMRヘッドにおいては、端子6がら供給される
センス電流Iは、MR素子lのみならず非磁性導体層2
及び非晶質磁性体層5にも分流する。従って、この様な
構造においては、MR素子1及び非磁性導体層2に分流
したセンス電流Iにより、非晶質軟磁性体層5の面内を
通り且つセンス電流Iの方向と垂直方向の磁界が発生し
、この磁界により非晶質軟磁性体層5の磁化方向が回転
する。この為、非晶質軟磁性体層5における磁化は、非
晶質軟磁性体層5の周囲に前記磁化の方向とは逆方向の
磁界を生じ、その一部はMR素子1に印加される。In such an MR head, the sense current I supplied from the terminal 6 is applied not only to the MR element l but also to the nonmagnetic conductor layer 2.
The current is also shunted to the amorphous magnetic layer 5. Therefore, in such a structure, the sense current I divided into the MR element 1 and the nonmagnetic conductor layer 2 creates a magnetic field that passes within the plane of the amorphous soft magnetic layer 5 and in a direction perpendicular to the direction of the sense current I. is generated, and this magnetic field rotates the magnetization direction of the amorphous soft magnetic layer 5. Therefore, the magnetization in the amorphous soft magnetic layer 5 generates a magnetic field around the amorphous soft magnetic layer 5 in a direction opposite to the direction of the magnetization, a part of which is applied to the MR element 1. .
一方、非晶質軟磁性体層5及び非磁性導体層2に分流し
たセンス電流Iにより、MR素子lの面内を通りセンス
電流Iと垂直方向の磁界が生じ、この磁界の方向は前述
の非晶質軟磁性体層5の磁化によって発生する磁界の方
向と一致する。つまり、非晶質軟磁性体層5の磁化によ
っ〒発生する磁界とセンス電流Iによって生しる磁界が
、MR素子1にバイアス磁界として印加される。このバ
イアス磁界は、MR素子1の磁化をセンス電流Iに対し
て回転させ、MR素子のバイアス角度θを所定の値(理
想的には45度)とし、線形応答性に優れたMRヘッド
を実現する。On the other hand, the sense current I divided into the amorphous soft magnetic layer 5 and the nonmagnetic conductor layer 2 generates a magnetic field that passes within the plane of the MR element 1 in a direction perpendicular to the sense current I, and the direction of this magnetic field is as described above. This coincides with the direction of the magnetic field generated by the magnetization of the amorphous soft magnetic layer 5. That is, the magnetic field generated by the magnetization of the amorphous soft magnetic layer 5 and the magnetic field generated by the sense current I are applied to the MR element 1 as a bias magnetic field. This bias magnetic field rotates the magnetization of the MR element 1 with respect to the sense current I, sets the bias angle θ of the MR element to a predetermined value (ideally 45 degrees), and realizes an MR head with excellent linear response. do.
ところで、非晶質軟磁性体層としてはジャーナル・オプ
・アプライド・フィジシク誌第63巻4023頁に記載
されているように、Co Z rMo膜が公知例として
知られている。このCOZ r M 。By the way, as a known example of the amorphous soft magnetic material layer, a CoZrMo film is known as described in the Journal of Applied Physics, Vol. 63, p. 4023. This COZ r M.
膜は、抵抗変化率が通常MR素子lとして使用されるN
iFe膜の抵抗変化率の1 /100と極めて小さく、
逆に比抵抗はNiFe膜の約5.6倍と大きく、また異
方性磁界は40eとNiFe膜とほぼ同じであり、非晶
質軟磁性体層5として望ましい特性を有している。しか
も、磁歪定数は10−7のオーダーであり、磁気特性の
観点からみれば非晶質軟磁性体層の材料として理想的と
言えるものである。The film has a resistance change rate of N, which is usually used as an MR element.
The resistance change rate is extremely small, 1/100 of the iFe film's resistance change rate.
On the other hand, the resistivity is approximately 5.6 times greater than that of the NiFe film, and the anisotropic magnetic field is approximately the same as 40e, which is desirable for the amorphous soft magnetic layer 5. Furthermore, the magnetostriction constant is on the order of 10-7, and from the viewpoint of magnetic properties, it can be said to be ideal as a material for the amorphous soft magnetic layer.
ところで、非晶質軟磁性体層に求められる特性としては
、単に上述したような良好な磁気特性を有することのみ
ではなく、ヘッドの特性を長期的に保証するため、優れ
た耐蝕性を有することも重要である。特に、磁気記憶装
置に用いられる磁気抵抗効果ヘッドでは、膨大な量の情
報を読み出すため高い信転性が要求されており、磁気抵
抗効果ヘッドを構成する非晶質軟磁性体層にも当然のこ
とながら高い信転性(耐蝕性)が求められている。By the way, the properties required of the amorphous soft magnetic material layer are not only good magnetic properties as mentioned above, but also excellent corrosion resistance in order to guarantee the long-term properties of the head. It is also important. In particular, magnetoresistive heads used in magnetic storage devices require high reliability in order to read vast amounts of information. Above all, high reliability (corrosion resistance) is required.
本発明は、この様な状況を踏まえて成されたものであり
、従来非晶質軟磁性体層として用いられていたCoZr
Mo膜に較べて、より優れた耐蝕性を有する非晶質軟磁
性体層材料を提供し、信館性の高いMRヘッドを実現す
ることを目的としている。The present invention was made based on this situation, and it is possible to improve the CoZr
The purpose of this invention is to provide an amorphous soft magnetic layer material that has better corrosion resistance than a Mo film, and to realize an MR head with high reliability.
[課題を解決するための手段]
本発明の磁気抵抗効果ヘッドは、
強磁性磁気抵抗効果素子と非晶質軟磁性体層とが非磁性
導体層を介して積層された構造を有し、且つ前記非晶質
軟磁性体層がCo Z rMoにRhを添加した膜から
なることを特徴とする。[Means for Solving the Problems] A magnetoresistive head of the present invention has a structure in which a ferromagnetic magnetoresistive element and an amorphous soft magnetic layer are laminated with a nonmagnetic conductor layer interposed therebetween, and The amorphous soft magnetic layer is characterized in that it is made of CoZrMo with Rh added.
〔作用]
第3図は、ガラス基板上に成膜した膜厚0.3μmのC
OaoZ r w−xM o +zRhx (原子%
)膜を、湿度85%、温度90’Cの環境下に放置した
際の飽和磁化M、の変化を示した図である。ここで、横
軸は添加したRhhxを原子%で示しており、縦軸は試
験後のMs値が試験前の値の80%になる時間をログス
ケールで示している。[Function] Figure 3 shows a C film with a thickness of 0.3 μm formed on a glass substrate.
OaoZ r w−xM o +zRhx (atomic %
) is a diagram showing the change in saturation magnetization M when the film is left in an environment with a humidity of 85% and a temperature of 90'C. Here, the horizontal axis shows the added Rhhx in atomic %, and the vertical axis shows the time when the Ms value after the test becomes 80% of the value before the test on a log scale.
この図から明らかなように、Rh添加量が0または2%
未満の膜では、僅が200時間程度で飽和磁化が初期値
の80%まで低下しており、膜の腐蝕が急激に進行して
いることがわかる。一方、2%以上Rhを添加した膜で
は飽和磁化の減少が著しく抑制されており、例えば2%
Rh添加膜および3%Rh添加膜では、Ms値が初期値
の80%まで減少する時間は各々約4000時間、約6
000時間と、Rh添加量が2%未満の場合に比較して
10倍以上の長い時間を要しており、このことは膜の耐
蝕性が著しく向上したことを意味していると言える。As is clear from this figure, the amount of Rh added is 0 or 2%.
It can be seen that in the case of a film of less than 200 mL, the saturation magnetization decreased to 80% of the initial value after only about 200 hours, indicating that corrosion of the film was rapidly progressing. On the other hand, in films with 2% or more Rh added, the decrease in saturation magnetization is significantly suppressed.
For the Rh-doped film and the 3% Rh-doped film, the time it takes for the Ms value to decrease to 80% of the initial value is about 4000 hours and about 6 hours, respectively.
000 hours, which is more than 10 times longer than when the amount of Rh added is less than 2%, which can be said to mean that the corrosion resistance of the film was significantly improved.
従って、Rhを2%以上添加したCoZrM。Therefore, CoZrM to which 2% or more of Rh is added.
膜を非晶質軟磁性体層として用いることにより、従来の
CoZrMo膜に比較して耐蝕性が改善された信軌性の
高い磁気抵抗効果ヘッドが実現できる。ここで重要な点
は、膜の耐蝕性がRhの添加により著しく改善されるが
、磁気特性の観点から添加量に上限があることである。By using the film as an amorphous soft magnetic layer, a magnetoresistive head with improved corrosion resistance and high reliability compared to conventional CoZrMo films can be realized. The important point here is that although the corrosion resistance of the film is significantly improved by adding Rh, there is an upper limit to the amount added from the viewpoint of magnetic properties.
つまり、Rh添加量が6%を越えると未添加の膜に較べ
保磁力が急激に増大(例えば6.4%添加で約2倍)し
、しかも磁気異方性の分散が顕著となり非晶質軟磁性体
層として用いることができなかった。In other words, when the amount of Rh added exceeds 6%, the coercive force increases rapidly (for example, approximately twice as much when 6.4% is added) compared to the film without Rh added, and furthermore, the dispersion of magnetic anisotropy becomes significant, resulting in an amorphous film. It could not be used as a soft magnetic layer.
他のCoZrMoRh膜(Co量にして75〜87原子
%)についても検討したが、やはりRhを2%以上添加
することにより耐蝕性が向上すること、及び6%以上の
Rh添加により磁気特性が劣化し非晶質軟磁性体層とし
て使用できないことが明らかとなった。We also considered other CoZrMoRh films (75 to 87 at% Co), but found that adding 2% or more of Rh improves the corrosion resistance, and adding 6% or more of Rh deteriorates the magnetic properties. However, it became clear that it could not be used as an amorphous soft magnetic material layer.
以上から、非晶質軟磁性体層として望ましい磁気的特性
を有し且つ耐蝕性に優れたRh添加量Xは、原子%表示
で2%≦X≦6%であった。From the above, the Rh addition amount X, which has desirable magnetic properties and excellent corrosion resistance as an amorphous soft magnetic layer, was 2%≦X≦6% in atomic percent.
〔実施例] 第1図は、本発明の一実施例を示す図である。〔Example] FIG. 1 is a diagram showing an embodiment of the present invention.
第1図において、ガラス等の非磁性基板(図示せず)上
に蒸着法を用いてMR素子1となる膜厚400人のパー
マロイ(Ni82%−Fe18%、重量%)膜を成膜し
た。尚、蒸着時には1000eの磁界を永久磁石で印加
しパーマロイ膜に一軸異方性を付与した。In FIG. 1, a permalloy (Ni 82%-Fe 18%, weight %) film having a thickness of 400 layers, which will become the MR element 1, was formed on a non-magnetic substrate (not shown) such as glass using a vapor deposition method. During the deposition, a magnetic field of 1000 e was applied using a permanent magnet to impart uniaxial anisotropy to the permalloy film.
ついで、同じく蒸着法を用いて非磁性導体層2となる膜
厚200人のTi膜をパーマロイ膜上に成膜した。Then, using the same vapor deposition method, a Ti film having a thickness of 200 nm, which will become the nonmagnetic conductor layer 2, was formed on the permalloy film.
更に、非晶質軟磁性体層として膜厚300人、異方性磁
界Hi+50eのCoZrMoRh膜層7 (Co82
%−Zr4%−Mo12%−Rh2%、原子%)を前述
のTi膜上に蒸着法を用いて成膜した。尚、CoZrM
oRh膜の蒸着に際しては成膜時の基板温度を低く抑え
るため、基板ホルダーを液体窒素で冷却した。Furthermore, as an amorphous soft magnetic layer, a CoZrMoRh film layer 7 (Co82
%-Zr4%-Mo12%-Rh2%, atomic%) was formed into a film using a vapor deposition method on the Ti film described above. Furthermore, CoZrM
During vapor deposition of the oRh film, the substrate holder was cooled with liquid nitrogen in order to keep the substrate temperature low during film formation.
その後、この積層体上に所定形状のフォトレジストパタ
ーンを形成し、Arガス雰囲気中でイオンエツチングを
行い、長さ50μm1幅5μmの矩形状のパターンに加
工した。ここで、エツチング条件は、加速電圧: 50
0V、 A rガス圧カニ 0.1mTorrである。Thereafter, a photoresist pattern of a predetermined shape was formed on this laminate, and ion etching was performed in an Ar gas atmosphere to form a rectangular pattern with a length of 50 μm and a width of 5 μm. Here, the etching conditions are acceleration voltage: 50
0V, Ar gas pressure 0.1 mTorr.
ついで、前述の積層体にセンス電流■を供給する端子6
を集積化薄膜技術を用いて形成し、MRヘッドを作製し
た。尚、端子6はTiとAuの積層蒸着膜を使用し、膜
厚は各々50人、0.5μmである。Next, a terminal 6 for supplying the sense current ■ to the above-mentioned multilayer body
was formed using integrated thin film technology to produce an MR head. Note that the terminal 6 uses a laminated vapor-deposited film of Ti and Au, each having a film thickness of 50 and 0.5 μm.
以上のような構成を持つ本実施例によるMRヘッドにお
いては、センス電流Iが15mAで良好な線形応答性と
高い再生効率を有するMRヘッドが確認された。ついで
、このMRヘッドを湿度85%温度90°Cの環境下に
3000時間連続して放置した後、情報の読み出しを行
ったが、放置前と全く変わらない再生特性が得られた。In the MR head according to this example having the above-described configuration, an MR head with a sense current I of 15 mA and good linear response and high reproduction efficiency was confirmed. Next, this MR head was left in an environment of 85% humidity and 90° C. for 3,000 hours, and then information was read out, and the reproduction characteristics were the same as before the head was left.
(比較例1)
非晶質軟磁性体層Rhを添加しない従来のC0ZrMo
膜(Co82%−Zr5%−Mo13%、原子%)とし
た以外は実施例と全く同様にしてMRヘッドを作製した
。このMRヘッドの初期再生特性は実施例と全く遜色が
なかったが、湿度85%温度90°Cの環境下に300
0時間放置した後の再生出力は1/4に低下した。浮揚
面側からMR素子部を観察したところ非晶質軟磁性体層
部分に変色が認められ、膜の腐蝕により充分なバイアス
がMR素子に印加されなかったことが出力低下の原因と
推定された。(Comparative Example 1) Conventional C0ZrMo without adding amorphous soft magnetic layer Rh
An MR head was produced in exactly the same manner as in the example except that the film (Co82%-Zr5%-Mo13%, atomic %) was used. The initial playback characteristics of this MR head were no different from those of the example, but it was
After being left for 0 hours, the reproduction output decreased to 1/4. When the MR element was observed from the levitation surface side, discoloration was observed in the amorphous soft magnetic layer, and it was assumed that the cause of the decrease in output was that insufficient bias was not applied to the MR element due to film corrosion. .
(比較例2)
非晶質磁性体層をCoZrMoRh膜(Co82%−Z
r4%−Mo7.5%−Rh6.5%、原子%)とした
以外は実施例と全く同様としたMRヘッドを作製した。(Comparative Example 2) The amorphous magnetic layer was made of a CoZrMoRh film (Co82%-Z
An MR head was fabricated in exactly the same manner as in the example except that the ratio was 4%-Mo7.5%-Rh6.5% (atomic %).
しかし、このCoZrMoRh膜は磁気異方性分散が大
きく、充分なバイアスをMR素子に印加することができ
ず、作製したMRヘッドの再生波形に著しいノイズが認
められ実用に供し得ないことが明らかとなった。However, this CoZrMoRh film has a large magnetic anisotropy dispersion, making it impossible to apply a sufficient bias to the MR element, and significant noise was observed in the reproduced waveform of the manufactured MR head, making it clear that it cannot be put to practical use. became.
尚、以上の説明においてはMR素子、非磁性導体層、C
oZrMoRh膜層の順序で積層する例のみについて言
及したが、CoZrMoRh膜1i。In the above explanation, the MR element, the nonmagnetic conductor layer, and the C
Although only an example in which the oZrMoRh film layers are stacked in this order has been described, the CoZrMoRh film 1i.
非磁性導体層、MR素子の順序で積層したMRヘッドに
おいても本発明の意図するところはなんら損なわれない
。また、非磁性導体層を成す材料はTiに限定されるも
のではなく、例えばTa、Mo、Wあるいはこれらの合
金等を使用しても構わない。更に、実施例中のCoZr
MoRh膜の組成は一例であり、適用されるMRヘッド
の構造・仕様等によって他の組成を用いても構わない。Even in an MR head in which a nonmagnetic conductor layer and an MR element are laminated in this order, the purpose of the present invention is not impaired in any way. Further, the material forming the nonmagnetic conductor layer is not limited to Ti, and for example, Ta, Mo, W, or an alloy thereof may be used. Furthermore, CoZr in the examples
The composition of the MoRh film is one example, and other compositions may be used depending on the structure and specifications of the MR head to which it is applied.
勿論この場合、CoZrMoRh膜の磁気特性、特に異
方性磁界Hkを劣化させない組成であることは言うまで
もない。Of course, in this case, it goes without saying that the composition does not deteriorate the magnetic properties of the CoZrMoRh film, especially the anisotropic magnetic field Hk.
以上述べてきたように、本発明によればRh量が2〜6
原子%のCoZrMoRh膜層を非晶質軟磁性体層とす
ることにより、非晶質軟磁性体層の耐蝕性を改善した、
信顧性の高いMRへラドが実現される。As described above, according to the present invention, the Rh amount is 2 to 6
The corrosion resistance of the amorphous soft magnetic layer is improved by using the atomic % CoZrMoRh film layer as the amorphous soft magnetic layer.
Radiation for MR with high credibility is realized.
第1図は本発明の一実施例を示す図、
第2図は従来のMRヘッドを示す図、
第3図はCoZrMoRhの飽和磁化の変化を示す図で
ある。
1・・・・・MR素子
2・・・・・非磁性導体層
5・・・・・非晶質軟磁性体層
6・・・・・端子
7− ・−−−CoZrMoRh層FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing a conventional MR head, and FIG. 3 is a diagram showing changes in saturation magnetization of CoZrMoRh. 1...MR element 2...Nonmagnetic conductor layer 5...Amorphous soft magnetic layer 6...Terminal 7----CoZrMoRh layer
Claims (1)
非磁性導体層を介して積層された構造を有し、且つ前記
非晶質軟磁性体層がCoZrMoにRhを添加した膜か
らなることを特徴とする磁気抵抗効果ヘッド。(1) It has a structure in which a ferromagnetic magnetoresistive element and an amorphous soft magnetic layer are laminated with a nonmagnetic conductor layer interposed therebetween, and the amorphous soft magnetic layer is CoZrMo doped with Rh. A magnetoresistive head characterized by being made of a film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2133105A JP2569897B2 (en) | 1990-05-23 | 1990-05-23 | Magnetoresistive head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2133105A JP2569897B2 (en) | 1990-05-23 | 1990-05-23 | Magnetoresistive head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0428005A true JPH0428005A (en) | 1992-01-30 |
JP2569897B2 JP2569897B2 (en) | 1997-01-08 |
Family
ID=15096935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2133105A Expired - Fee Related JP2569897B2 (en) | 1990-05-23 | 1990-05-23 | Magnetoresistive head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2569897B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0469808A (en) * | 1990-07-10 | 1992-03-05 | Nec Corp | Magneto-resistance effect head |
-
1990
- 1990-05-23 JP JP2133105A patent/JP2569897B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0469808A (en) * | 1990-07-10 | 1992-03-05 | Nec Corp | Magneto-resistance effect head |
JP2621601B2 (en) * | 1990-07-10 | 1997-06-18 | 日本電気株式会社 | Magnetoresistive head |
Also Published As
Publication number | Publication date |
---|---|
JP2569897B2 (en) | 1997-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3587447B2 (en) | Memory element | |
US5688380A (en) | Method of producing giant magnetoresistive material film and magnetic head | |
US6893748B2 (en) | Soft magnetic film for perpendicular recording disk | |
US20060147758A1 (en) | Perpendicular magnetic recording medium with magnetically resetable single domain soft magnetic underlayer | |
JPH0722235A (en) | Thin film and magnetic head of multilayer ferromagnetic material using common material | |
US6055135A (en) | Exchange coupling thin film and magnetoresistive element comprising the same | |
US6507457B2 (en) | Magnetic head | |
JP2550893B2 (en) | Magnetic multilayer film | |
JP2961914B2 (en) | Magnetoresistive material and method of manufacturing the same | |
JPH0553852B2 (en) | ||
JPH0428005A (en) | Magneto-resistance effect head | |
JP2751700B2 (en) | Magnetoresistive head | |
JPH0945074A (en) | Memory cell utilizing magnetoresistance effect and amplifying element | |
JP2000307170A (en) | Magnetoresistive device and magnetoresistive memory device | |
JP2867416B2 (en) | Magnetoresistive head | |
JPS63237204A (en) | Magneto-resistance effect head | |
JP2833586B2 (en) | Magnetoresistive element and method of manufacturing the same | |
JP2621601B2 (en) | Magnetoresistive head | |
JPH0354713A (en) | Magneto-resistance effect head | |
JP3021785B2 (en) | Magnetoresistive material and method of manufacturing the same | |
JPH11284248A (en) | Magnetoresistance effect element | |
JPH1174123A (en) | Magneto-resistance effect film | |
JP2964690B2 (en) | Magnetoresistive material and method of manufacturing the same | |
JPH11353868A (en) | Magnetic thin film memory device and method for manufacturing the same, and apparatus for manufacturing the same | |
JP2699567B2 (en) | Magnetoresistive head |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071024 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081024 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |