JPH04279772A - Hydraulic machinery and method for activating and controlling it - Google Patents

Hydraulic machinery and method for activating and controlling it

Info

Publication number
JPH04279772A
JPH04279772A JP3042032A JP4203291A JPH04279772A JP H04279772 A JPH04279772 A JP H04279772A JP 3042032 A JP3042032 A JP 3042032A JP 4203291 A JP4203291 A JP 4203291A JP H04279772 A JPH04279772 A JP H04279772A
Authority
JP
Japan
Prior art keywords
opening
runner
guide vane
inlet valve
hydraulic machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3042032A
Other languages
Japanese (ja)
Other versions
JP2945770B2 (en
Inventor
Toshifumi Kurokawa
川 敏 史 黒
Toshiaki Suzuki
木 敏 暁 鈴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3042032A priority Critical patent/JP2945770B2/en
Publication of JPH04279772A publication Critical patent/JPH04279772A/en
Application granted granted Critical
Publication of JP2945770B2 publication Critical patent/JP2945770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Water Turbines (AREA)

Abstract

PURPOSE:To reduce stress acting on runners when hydraulic machinery is started for power generation or when pumping operation is transferred to generating operation. CONSTITUTION:At start-up for power generation, a movable guide vane is opened to an activating opening. Then, an inlet valve is opened to a relatively small given opening to introduce pressurized water to runners. The rotational speed of the runners is detected and when the speed reaches a given value, the inlet vale is fully opened. When introduction of pressurized water is started to the runners, the water flows along the runners because the guide vane has already been opened to the activating opening and the inlet valve has a relatively small opening.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は水車やポンプ水車等の水
力機械とその起動及び制御方法に係り、特に入口管と入
口弁とケーシングと可動式の案内羽根とランナとを具備
した水力機械とその起動及び制御方法に関する。
[Industrial Application Field] The present invention relates to hydraulic machines such as water turbines and pump turbines, and methods for starting and controlling them, and particularly to hydraulic machines equipped with an inlet pipe, an inlet valve, a casing, a movable guide vane, and a runner. The present invention relates to its activation and control method.

【0002】0002

【従来の技術】可動式の案内羽根を有する水力機械は、
一般に案内羽根を開口してランナに圧力水を導入して水
車起動を行う。
[Prior Art] A hydraulic machine with movable guide vanes is
Generally, the turbine is started by opening the guide vanes and introducing pressure water into the runner.

【0003】図10は一般的な可動案内羽根を有するポ
ンプ水車を示したもので、発電運転では、入口管1から
の圧力水は入口弁2を通ってケーシング3に流入し、可
動式の案内羽根4を介してランナ5に流入し、これを回
転駆動して吸出し菅6から放出される。
FIG. 10 shows a general pump turbine having movable guide vanes. During power generation operation, pressurized water from the inlet pipe 1 flows into the casing 3 through the inlet valve 2, and the movable guide vanes flow into the casing 3. It flows into the runner 5 via the blade 4, is driven to rotate, and is discharged from the suction pipe 6.

【0004】この水力機械の発電起動時には、図11(
a)に示したように入口弁2の開度ai を時点T1 
において全閉状態から全開開度まで開口し、圧力水をケ
ーシング3内に充水する。入口弁2が時点T2 におい
て全開すると、図11(b)に示したように案内羽根4
の開度agを全閉状態から所定の起動開度まで開口し、
ランナ5に圧力水を導入しランナ5の回転を開始させる
。時点T3 で案内羽根4の開度ag が所定の起動開
度に達すると、この後は案内羽根4を更に徐々に開口し
、図11(c)に示したようにランナの回転速度が目標
回転数No 以下の設定回転速度、例えば目標回転数N
o の80%程度に達した時点T4 で、ガバナ(不図
示)によるランナ回転速度の制御を開始し、目標回転数
No になるように案内羽根開度ag を調整する。
[0004] When starting the power generation of this hydraulic machine, FIG.
As shown in a), the opening degree ai of the inlet valve 2 is set at time T1.
The casing 3 is opened from the fully closed state to the fully open position, and the casing 3 is filled with pressurized water. When the inlet valve 2 is fully opened at time T2, the guide vane 4 opens as shown in FIG. 11(b).
Open the opening ag from the fully closed state to the predetermined starting opening,
Pressure water is introduced into the runner 5 and the rotation of the runner 5 is started. When the opening ag of the guide vane 4 reaches the predetermined starting opening at time T3, the guide vane 4 is further gradually opened and the rotation speed of the runner reaches the target rotation as shown in FIG. 11(c). Set rotational speed below the number number, e.g. target rotational speed N
At time T4 when approximately 80% of o is reached, control of the runner rotational speed by a governor (not shown) is started, and the guide vane opening degree ag is adjusted so as to reach the target rotational speed No.

【0005】図12は定常運転状態における、案内羽根
4からランナ5に流入した圧力水の絶対流速Vとランナ
羽根7の周速度Uと圧力水の相対速度Wとの関係を示し
たものである。この定常運転状態では、案内羽根4の開
度ag が大きいため絶対流速Vの流れ角αが比較的大
きく、かつ案内羽根7が大きな周速度Uで回転している
ので、相対速度Wとランナ羽根7の入口角との差βは小
さくなる。従って、圧力水はランナ羽根7に沿ってスム
ーズに流入し、図11(d)に示したようにランナ羽根
7に作用する応力σは非常に小さい。
FIG. 12 shows the relationship between the absolute flow velocity V of the pressure water flowing into the runner 5 from the guide vane 4, the circumferential velocity U of the runner vane 7, and the relative velocity W of the pressure water in a steady operating state. . In this steady operating state, since the opening degree ag of the guide vane 4 is large, the flow angle α of the absolute flow velocity V is relatively large, and the guide vane 7 is rotating at a large circumferential velocity U, so that the relative velocity W and the runner vane The difference β from the entrance angle of 7 becomes small. Therefore, the pressure water flows smoothly along the runner blade 7, and the stress σ acting on the runner blade 7 is extremely small as shown in FIG. 11(d).

【0006】なお、以上の動作はポンプ水車以外の一般
の水車についても同様である。また、ポンプ水車が揚水
運転から発電運転に移行する際には、図13に示したよ
うに揚水運転中に、時点T1 で発電運転切り換え指令
を受けると、図13(a)に示したように入口弁2の開
度ai は100%のままで、図13(b)に示したよ
うに案内羽根4の開度ag を所定の小開度まで閉める
。この間に、図13(d)に示したように時点T2 で
発電電動機を電力系統から解列して、発電電動機のポン
プ方向入力Pを零にする。これによって、ランナ5は上
池の水の位置エネルギーによりポンプ方向の回転から水
車方向の回転に徐々に移行する。案内羽根4は時点T3
 に所定の小開度になるとこの小開度に保持される。
[0006] The above operation is the same for general water turbines other than pump water turbines. In addition, when the pump-turbine shifts from pumping operation to power generation operation, when it receives a power generation operation switching command at time T1 during pumping operation as shown in FIG. 13(a), While the opening degree ai of the inlet valve 2 remains 100%, the opening degree ag of the guide vane 4 is closed to a predetermined small opening degree as shown in FIG. 13(b). During this time, as shown in FIG. 13(d), the generator motor is disconnected from the power grid at time T2, and the pump direction input P to the generator motor is made zero. As a result, the runner 5 gradually shifts from rotation in the direction of the pump to rotation in the direction of the water wheel due to the potential energy of the water in the upper pond. Guide vane 4 is at time T3
When the opening reaches a predetermined small opening, it is maintained at this small opening.

【0007】図13(c)に示したようにランナ5のポ
ンプ方向回転速度Nが時点T4 で零付近に達すると、
案内羽根開度ag を発電起動開度まで開口する。ラン
ナ回転速度Nが目標回転速度No の例えば80%に達
したことを時点T5 で検出すると、ガバナ(不図示)
による回転制御を開始して、目標回転速度No になる
ように案内羽根開度ag を調整する。
As shown in FIG. 13(c), when the rotational speed N of the runner 5 in the pump direction reaches around zero at time T4,
The guide vane opening ag is opened to the power generation starting opening. When it is detected at time T5 that the runner rotational speed N has reached, for example, 80% of the target rotational speed No., the governor (not shown)
rotation control is started, and the guide vane opening degree ag is adjusted so that the target rotational speed No. is reached.

【0008】図14は揚水運転時、即ち図13の時点T
1 における水の速度三角形を示したもので、相対速度
Wの方向はランナ羽根7に沿っており、図13(e)に
示したようにランナ5に作用する応力σは小さい。
FIG. 14 shows the pumping operation, that is, the time T in FIG.
13(e), the direction of the relative velocity W is along the runner blade 7, and the stress σ acting on the runner 5 is small as shown in FIG. 13(e).

【0009】[0009]

【発明が解決しようとする課題】ところが、従来の水力
機械は発電起動時には案内羽根開度ag が小さいため
、図15に示したように流れ角αは小さく、絶対速度V
は大きい。また、ランナ5は静止または低速回転である
ため、ランナ羽根7の周速度Uが非常に小さい。従って
、水の相対速度Wの方向とランナ羽根7の入口角との差
βは大きくなり、相対速度Wの水はランナ羽根7にほぼ
垂直に衝突し、羽根面に大きな衝撃力が作用する。この
ため、図11の(d)に示したように発電起動時にはラ
ンナ羽根7の付根部に大きな応力σが作用する。
[Problems to be Solved by the Invention] However, in conventional hydraulic machines, since the guide vane opening degree ag is small at the time of starting power generation, the flow angle α is small as shown in FIG. 15, and the absolute speed V
is big. Further, since the runner 5 is stationary or rotates at a low speed, the circumferential speed U of the runner blade 7 is very small. Therefore, the difference β between the direction of the relative velocity W of water and the entrance angle of the runner blade 7 becomes large, and the water at the relative velocity W collides with the runner blade 7 almost perpendicularly, causing a large impact force to act on the blade surface. Therefore, as shown in FIG. 11(d), a large stress σ acts on the root portion of the runner blade 7 at the time of starting power generation.

【0010】また、ポンプ水車の揚水運転から発電運転
への切り換え時にも、図13(e)に示したように時点
T4 付近においてランナ羽根の付根部に大きな応力σ
が作用する。これは、上述の発電起動時と同様に案内羽
根開度が小さくランナ羽根の周速度がほぼ零であるため
、図16に示したように相対速度Wが絶対速度Vに等し
くなり、水の相対速度Wの方向とランナ羽根7の入口角
との差βが大きく、相対速度Wの水はランナ羽根7にほ
ぼ垂直に衝突するためである。
[0010] Also, when the pump-turbine is switched from pumping operation to power generation operation, a large stress σ is generated at the base of the runner blade near time T4, as shown in Fig. 13(e).
acts. This is because the opening of the guide vanes is small and the circumferential speed of the runner vanes is almost zero, as at the time of power generation start-up mentioned above, so the relative velocity W becomes equal to the absolute velocity V as shown in Fig. 16, and the relative velocity of the water This is because the difference β between the direction of the velocity W and the entrance angle of the runner blade 7 is large, and the water at the relative velocity W collides with the runner blade 7 almost perpendicularly.

【0011】このような大きな応力が発電起動時ごと、
または揚水運転から発電運転への切り換え時ごとにラン
ナ5に作用するとランナ5の疲労破壊を招来するといっ
た問題がある。特に高落差の水力機械では、運転中のラ
ンナ羽根の付根部に作用する繰り返し応力が非常に大き
く、これに加えて起動時の案内羽根4からの水流が高速
であるため、ランナ羽根7の受ける衝撃力も大きくラン
ナの疲労強度が大幅に低下し、疲労破壊や破損の恐れが
大きくなる。
[0011] Such a large stress is generated every time power generation is started.
Alternatively, if it acts on the runner 5 every time the pumping operation is switched to the power generation operation, there is a problem that fatigue failure of the runner 5 may occur. Particularly in high-head hydraulic machines, the repeated stress that acts on the base of the runner blade during operation is extremely large, and in addition to this, the water flow from the guide blade 4 at startup is high-speed, so the runner blade 7 is subjected to The impact force is also large, significantly reducing the fatigue strength of the runner, and increasing the risk of fatigue failure and breakage.

【0012】そこで、本願の第1発明の目的は、水力機
械の発電起動時にランナ羽根に作用する応力を充分に低
減することができる水力機械の起動方法を提供すること
にある。本願の第2発明の目的は、水力機械の揚水運転
から発電運転への移行時にランナ羽根に作用する応力を
充分に低減することができる水力機械の制御方法を提供
することにある。本願の第3発明の目的は、発電起動時
にランナ羽根に作用する応力を充分に低減することがで
きる水力機械を提供することにある。
[0012] Accordingly, it is an object of the first invention of the present application to provide a method for starting a hydraulic machine that can sufficiently reduce the stress acting on the runner blades when the hydraulic machine starts generating electricity. A second object of the present invention is to provide a method for controlling a hydraulic machine that can sufficiently reduce the stress acting on the runner blades when the hydraulic machine shifts from pumping operation to power generation operation. A third object of the present invention is to provide a hydraulic machine that can sufficiently reduce the stress acting on the runner blades at the time of starting power generation.

【0013】[0013]

【課題を解決するための手段】この目的を達成するため
に本願の第1の発明に係る水力機械の起動方法は、入口
弁と可動式の案内羽根とランナとを具備した水力機械の
起動方法において、上記案内羽根を所定の起動開度まで
開口する工程と、上記所定の起動開度までの開口後に上
記入口弁を全閉状態から比較的小さな所定開度まで開口
する工程と、上記ランナの回転速度を検出しこの回転速
度検出値が所定の値に達した時に上記入口弁を全開開度
まで開口する工程とを具備することを特徴とするもので
ある。
[Means for Solving the Problem] To achieve this object, a method for starting a hydraulic machine according to the first invention of the present application is a method for starting a hydraulic machine equipped with an inlet valve, a movable guide vane, and a runner. , a step of opening the guide vane to a predetermined starting opening, a step of opening the inlet valve from a fully closed state to a relatively small predetermined opening after opening to the predetermined starting opening, and a step of opening the guide vane to a relatively small predetermined opening of the runner. The present invention is characterized by comprising a step of detecting a rotational speed and opening the inlet valve to a full opening degree when the detected rotational speed reaches a predetermined value.

【0014】本願の第2の発明に係る水力機械の制御方
法は、入口弁と可動式の案内羽根とランナとを具備し、
揚水運転と発電運転との切り換えが可能な水力機械の制
御方法において、揚水運転時に上記案内羽根を所定の開
度まで閉じる第1工程と、この第1工程の途中において
上記入口弁を全開状態から所定の小開度まで閉める第2
工程と、この第2工程の途中においてポンプ水車の発電
電動機を電力系統から解列する第3工程と、上記ランナ
の回転速度を検出しこの回転速度検出値が発電運転の回
転方向の所定の値に達した時に上記入口弁を全開開度ま
で開口する工程とを具備することを特徴とするものであ
る。
[0014] A method for controlling a hydraulic machine according to a second invention of the present application includes an inlet valve, a movable guide vane, and a runner,
In a method for controlling a hydraulic machine capable of switching between pumping operation and power generation operation, a first step of closing the guide vane to a predetermined opening degree during pumping operation, and a step of opening the inlet valve from a fully open state during this first step. The second door closes to a predetermined small opening.
a third step of disconnecting the generator motor of the pump-turbine from the power system during the second step, and detecting the rotational speed of the runner, and determining that the detected rotational speed value is a predetermined value in the rotational direction of the power generation operation. The invention is characterized by comprising the step of opening the inlet valve to a full opening degree when the opening degree is reached.

【0015】本願の第3の発明に係る水力機械は、入口
管とケーシングと可動式の案内羽根とランナとを具備し
た水力機械において、上記入口管及び上記ケーシングの
少なくとも一方と上記案内羽根及び上記ランナの間の流
路とを連通するバイパス管と、このバイパス管に設置さ
れた制御弁と、水力機械の起動時に上記案内羽根の開口
前に上記制御弁を開口する制御装置とを具備することを
特徴とするものである。
A hydraulic machine according to a third aspect of the present invention is a hydraulic machine including an inlet pipe, a casing, a movable guide vane, and a runner, wherein at least one of the inlet pipe and the casing, the guide vane, and the runner are provided. A bypass pipe that communicates with the flow path between the runners, a control valve installed in the bypass pipe, and a control device that opens the control valve before the guide vane opens when the hydraulic machine is started. It is characterized by:

【0016】[0016]

【作用】第1の発明の作用を以下に述べる。最初に案内
羽根を所定の起動開度まで開口した後に、入口弁を全閉
状態から比較的小さな所定開度まで開口して、ランナに
圧力水を導入しランナを回転させる。このランナへの圧
力水の導入時には、案内羽根は既に起動開度に開口され
ているため圧力水の絶対速度の流れ角αが大きくなり、
かつまた入口弁開度が小さいため絶対速度は小さい。従
って、ランナ羽根の周速度が小さいにも拘らず圧力水の
相対速度の方向とランナ羽根の方向とのなす角度が、従
来に比べて大幅に小さくなり、ランナ羽根に作用する応
力も大幅に低減する。
[Operation] The operation of the first invention will be described below. First, the guide vanes are opened to a predetermined startup opening degree, and then the inlet valve is opened from a fully closed state to a relatively small predetermined opening degree, and pressurized water is introduced into the runner to rotate the runner. When pressure water is introduced into the runner, the guide vanes have already opened to the starting opening, so the flow angle α of the absolute velocity of the pressure water becomes large.
Furthermore, since the inlet valve opening is small, the absolute speed is small. Therefore, even though the circumferential speed of the runner blades is small, the angle between the direction of the relative velocity of the pressure water and the direction of the runner blades is significantly smaller than before, and the stress acting on the runner blades is also significantly reduced. do.

【0017】第2の発明の作用は以下の通りである。揚
水運転時に案内羽根を所定の開度まで閉じる。この第1
工程の途中において入口弁を全開状態から所定の小開度
まで閉める。この第2工程の途中においてポンプ水車の
発電電動機を電力系統から解列して揚水を停止し、発電
起動運転に移行する。この発電起動時には、案内羽根は
予め所定開度に設定されるいるため圧力水の絶対速度の
流れ角が大きく、また入口弁は所定の小開度に設定され
ているため絶対速度は小さい。従って、ランナ羽根の周
速度が小さいにも拘らず圧力水の相対速度の方向とラン
ナ羽根の方向とのなす角度が、従来に比べて大幅に小さ
くなり、ランナ羽根に作用する応力も大幅に低減する。
The operation of the second invention is as follows. The guide vanes are closed to a predetermined opening during pumping operation. This first
During the process, the inlet valve is closed from a fully open state to a predetermined small opening. In the middle of this second step, the generator motor of the pump-turbine is disconnected from the power system, water pumping is stopped, and power generation start operation is started. At the start of power generation, the guide vanes are set in advance to a predetermined opening, so the flow angle of the absolute velocity of the pressure water is large, and the inlet valve is set to a predetermined small opening, so the absolute velocity is small. Therefore, even though the circumferential speed of the runner blades is small, the angle between the direction of the relative velocity of the pressure water and the direction of the runner blades is significantly smaller than before, and the stress acting on the runner blades is also significantly reduced. do.

【0018】第3の発明の作用は以下の通りである。水
車起動時には、制御装置は案内羽根の開口前に制御弁を
開口する。これによって、入口管またはケーシングから
の圧力水が、案内羽根をバイパスしてバイパス管を介し
てランナに流入し、ランナを予め回転させる。このラン
ナの予回転によってランナ周速度が充分に大きくなった
後に、案内羽根が開口される。従って、案内羽根からの
ランナに流入する圧力水はランナ羽根に沿って流れ、ラ
ンナ羽根に大きな力を及ぼすことはない。
The operation of the third invention is as follows. When starting the water turbine, the control device opens the control valve before opening the guide vanes. This allows pressurized water from the inlet pipe or the casing to bypass the guide vanes and flow into the runner via the bypass pipe, pre-rotating the runner. After the runner peripheral speed becomes sufficiently large due to this pre-rotation of the runner, the guide vanes are opened. Therefore, the pressure water flowing into the runner from the guide vanes flows along the runner blades and does not exert a large force on the runner blades.

【0019】[0019]

【実施例】以下に本発明による水力機械の実施例を図1
0乃至図16と同部分には同一符号を付して示した図1
乃至図9を参照して説明する。本願の第1の発明に係る
水力機械の起動方法及び第2の発明に係る水力機械の制
御方法は、図10に示した従来の水力機械にも適用する
ことができるので、以下に図10の水力機械に適用した
実施例について説明する。
[Example] An example of a hydraulic machine according to the present invention is shown below in Figure 1.
1, in which the same parts as in FIGS. 0 to 16 are given the same reference numerals.
This will be explained with reference to FIGS. The method for starting a hydraulic machine according to the first invention of the present application and the method for controlling a hydraulic machine according to the second invention can also be applied to the conventional hydraulic machine shown in FIG. An example applied to a hydraulic machine will be described.

【0020】図1、図2及び図10において、発電起動
指令が時点T1 に発生されると、図2(b)に示した
ように可動式の案内羽根4の開度ag が比較的大きな
所定の起動開度まで開口され、時点T2 でこの所定起
動開度に達するとこれを保持する。入口弁2の開度ai
 は図2(a)に示したように時点T2 において全閉
状態から比較的小さな所定開度まで開口され、この所定
開度に保持される。この入口弁2の開口開始によって圧
力水が入口管1から入口弁2とケーシング3と案内羽根
4とを介してランナ5に導入され、ランナ5を回転駆動
する。
In FIGS. 1, 2, and 10, when a power generation start command is issued at time T1, the opening degree ag of the movable guide vane 4 becomes relatively large as shown in FIG. 2(b). When the predetermined starting opening degree is reached at time T2, this opening degree is maintained. Opening degree ai of inlet valve 2
As shown in FIG. 2(a), the opening is opened from the fully closed state to a relatively small predetermined opening at time T2, and is maintained at this predetermined opening. When the inlet valve 2 starts opening, pressurized water is introduced from the inlet pipe 1 into the runner 5 via the inlet valve 2, casing 3, and guide vane 4, and drives the runner 5 to rotate.

【0021】図示を省略した回転検出器がこのランナ5
の回転速度を検出し、この回転速度検出値が図2(c)
に示したように所定の回転速度Nに達した時点T3 で
入口弁2が全開開度まで開口される。その後に、ランナ
回転速度Nが所定の設定値、例えば目標ランナ回転速度
No の80%程度に達した時T4 に、図示を省略し
たガバナによるランナ回転速度の制御を開始し、目標ラ
ンナ回転速度No になるように案内羽根開度agを調
整する。
A rotation detector (not shown) is connected to this runner 5.
The detected rotation speed is shown in Figure 2(c).
As shown in FIG. 3, at time T3 when the predetermined rotational speed N is reached, the inlet valve 2 is opened to the full opening degree. Thereafter, when the runner rotational speed N reaches a predetermined set value, for example, about 80% of the target runner rotational speed No., at T4, control of the runner rotational speed by a governor (not shown) is started, and the target runner rotational speed No. Adjust the guide vane opening ag so that

【0022】このように、ランナ5への圧力水の流入開
始時には、図3に示したように、案内羽根4は既に比較
的大きな起動開度に開口されているため圧力水の絶対速
度Vの流れ角αが大きくなり、かつまた入口弁2の開度
が小さいため絶対速度Vは値が小さい。従って、ランナ
羽根7の周速度Uが小さいにも拘らず圧力水の相対速度
Wの方向とランナ羽根7の方向とのなす角度βが、従来
に比べて大幅に小さくなり、図2(d)に示したように
発電起動時にランナ羽根7に作用する応力αも大幅に低
減する。
In this way, when the pressure water starts flowing into the runner 5, as shown in FIG. Since the flow angle α becomes large and the opening degree of the inlet valve 2 is small, the absolute velocity V has a small value. Therefore, even though the circumferential speed U of the runner blade 7 is small, the angle β between the direction of the relative velocity W of the pressure water and the direction of the runner blade 7 is significantly smaller than that in the conventional case, as shown in FIG. 2(d). As shown in FIG. 2, the stress α acting on the runner blades 7 at the time of starting power generation is also significantly reduced.

【0023】なお、案内羽根4の起動開度は無負荷開度
に設定することが望ましい。この無負荷開度への設定に
よって、たとえガバナが故障等により正常なランナ回転
速度の制御を行うことができなくなった場合にも、ラン
ナ回転速度が目標回転速度No を越えてしまうことを
防止できる。
Note that it is desirable that the starting opening of the guide vane 4 is set to the no-load opening. By setting this no-load opening, it is possible to prevent the runner rotation speed from exceeding the target rotation speed No. even if the governor is unable to control the runner rotation speed normally due to a failure etc. .

【0024】図4は上記第1発明の実施例の変形例の時
間線図を示したもので、案内羽根4の起動開度を図2の
場合よりも更に大きくする。これによってランナ5の回
転速度Nは図2の場合よりも急激に上昇し、入口弁2が
全開する前の時点T4 で目標回転速度No の80%
程度に達するので、この時点T4 からガバナ制御を開
始する。
FIG. 4 shows a time diagram of a modification of the embodiment of the first invention, in which the starting opening degree of the guide vane 4 is made larger than that in FIG. 2. As a result, the rotational speed N of the runner 5 increases more rapidly than in the case of FIG. 2, and reaches 80% of the target rotational speed No at time T4 before the inlet valve 2 is fully opened.
Governor control is started from this point T4.

【0025】この変形例では案内羽根4の起動開度が大
きいため、図3の流れ角αが更に大きくなり、これに伴
い角度βが小さくなりランナ5に発生する応力αを一層
小さくすることができる。また、発電起動運転の所要時
間も短縮する。
In this modification, since the starting opening of the guide vane 4 is large, the flow angle α shown in FIG. can. Additionally, the time required for power generation start-up operation is also shortened.

【0026】次に、本願の第2の発明に係る水力機械の
制御方法の一実施例を説明する。揚水運転時に図5に示
したように時点T4 において発電運転切り換え指令が
発生すると、図5(b)に示したように案内羽根4が比
較的大きな所定の開度まで閉じられる。案内羽根開度a
g が時点T4 で所定開度になるとこの開度が保持さ
れる。 入口弁2の開度ai は図5(a)に示したように時点
T2 で、全開状態から閉成動作が開始され、時点T5
 で小さな所定開度に達するとこの所定開度に保持され
る。
Next, an embodiment of a method for controlling a hydraulic machine according to the second invention of the present application will be described. During pumping operation, when a power generation operation switching command is generated at time T4 as shown in FIG. 5, the guide vanes 4 are closed to a relatively large predetermined opening as shown in FIG. 5(b). Guide vane opening a
When g reaches a predetermined opening degree at time T4, this opening degree is maintained. The opening degree ai of the inlet valve 2 starts from the fully open state at time T2 as shown in FIG. 5(a), and closes at time T5.
When a small predetermined opening degree is reached, the opening degree is maintained at this predetermined opening degree.

【0027】図示を省略した発電電動機が図5(d)に
示したように時点T3で電力系統から解列されると、図
5(c)に示されたようにポンプ方向のランナ回転速度
Nが減速を開始し、時点T6 で零になり、水車方向の
回転が開始される。この水車方向の回転速度Nが時点T
7 で予め設定した第1の所定速度に達したことを検出
すると、図5(a)に示したように入口弁2を更に全開
まで開口する。
When the generator motor (not shown) is disconnected from the power grid at time T3 as shown in FIG. 5(d), the runner rotation speed N in the pump direction increases as shown in FIG. 5(c). starts decelerating, becomes zero at time T6, and starts rotating in the direction of the water wheel. The rotational speed N in the direction of the water wheel is at time T
When it is detected that the first predetermined speed set in advance is reached at step 7, the inlet valve 2 is further opened to the full extent as shown in FIG. 5(a).

【0028】水車方向のランナ回転速度Nが予め設定し
た第2の所定速度、例えば目標回転速度No の80%
程度に達した時点T8 で、ガバナによるランナ回転速
度の制御を開始し、目標回転速度No になるように案
内羽根開度ag を調整する。
[0028] The runner rotational speed N in the water turbine direction is a second predetermined speed, for example, 80% of the target rotational speed No.
At time T8 when the rotational speed reaches the target rotational speed No., the governor starts controlling the runner rotational speed and adjusts the guide vane opening degree ag so that the target rotational speed No. is reached.

【0029】図6はランナ回転速度Nが零の時、即ち図
5の時点T6 における速度三角形を示したもので、ラ
ンナ羽根7の周速度が零であるため、相対速度Wは絶対
速度Vに一致する。案内羽根4は比較的大きい開度に設
定されるいるため圧力水の絶対速度Vの流れ角が大きく
、また入口弁は所定の小開度に設定されているため絶対
速度Vは値が小さい。従って、ランナ羽根7の周速度が
零であるにも拘らず圧力水の相対速度Wの方向とランナ
羽根7の方向とのなす角度βが、従来に比べて大幅に小
さくなり、ランナ羽根に作用する応力も大幅に低減する
FIG. 6 shows a speed triangle when the runner rotational speed N is zero, that is, at time T6 in FIG. 5. Since the circumferential speed of the runner blade 7 is zero, the relative speed W becomes the absolute speed V. Match. Since the guide vanes 4 are set to a relatively large opening, the flow angle of the absolute velocity V of the pressure water is large, and since the inlet valve is set to a predetermined small opening, the absolute velocity V is small. Therefore, even though the circumferential speed of the runner blade 7 is zero, the angle β between the direction of the relative velocity W of the pressure water and the direction of the runner blade 7 is significantly smaller than that in the past, and the effect on the runner blade is The stress caused by this process is also significantly reduced.

【0030】本実施例でも、第1の発明の場合と同様に
案内羽根開度を発電運転時の無負荷開度にすることがで
きる。図7は上記第2発明の実施例の変形例の時間線図
を示したもので、ランナ回転速度Nが零となる時点T6
 を境にして、入口弁2の開度を変化させている。即ち
、入口弁2は、時点T5 〜T6 の間の開度が極めて
小さく、時点T6 〜T7の間の開度がそれより大きく
定められている。これによって、ランナ回転速度Nが零
付近、特にランナ回転速度Nが零になる直前でのランナ
羽根応力αを図7(e)に示したように更に低減するこ
とができる。
[0030] In this embodiment as well, the guide vane opening can be set to the no-load opening during power generation operation, as in the case of the first invention. FIG. 7 shows a time diagram of a modification of the embodiment of the second invention, in which the runner rotational speed N becomes zero at time T6.
The opening degree of the inlet valve 2 is changed after . That is, the opening degree of the inlet valve 2 between time points T5 and T6 is extremely small, and the opening degree between time points T6 and T7 is set to be larger than that. As a result, the runner blade stress α when the runner rotational speed N is near zero, particularly just before the runner rotational speed N becomes zero, can be further reduced as shown in FIG. 7(e).

【0031】図8は本願の第3の発明に係る水力機械の
一実施例を示したもので、ケーシング3にはバイパス管
8の一端が接続され、このバイパス管8の他端は案内羽
根4とランナ5との間の流路9に接続されている。この
ように、バイパス管8は案内羽根4をバイパスしてケー
シング3と流路9とを連通している。バイパス管8には
制御弁10が設置され、この制御弁10は制御装置11
の出力によって開閉制御される。主軸12には図示を省
略した回転速度検出器が設置され、この回転速度検出器
はランナ5の回転速度を検出する。その他の構成は図1
0の構成と同一である。
FIG. 8 shows an embodiment of a hydraulic machine according to the third invention of the present application, in which one end of a bypass pipe 8 is connected to the casing 3, and the other end of the bypass pipe 8 is connected to the guide vane 4. and the runner 5. In this way, the bypass pipe 8 bypasses the guide vane 4 and communicates the casing 3 with the flow path 9. A control valve 10 is installed in the bypass pipe 8, and this control valve 10 is connected to a control device 11.
Opening/closing is controlled by the output of A rotation speed detector (not shown) is installed on the main shaft 12, and this rotation speed detector detects the rotation speed of the runner 5. Other configurations are shown in Figure 1.
The configuration is the same as 0.

【0032】この水力機械の起動は次のように行われる
。入口弁1が全開された後に、図9(a)に示したよう
に時点T1 で制御弁10の開度ac が全開される。 これによって、入口管1と入口弁2とケーシング3とを
通った圧力水がバイパス管8を通って流路9に流入し、
この流路9からランナ5を通って吸出し管6に流出する
。 こうして、ランナ5はバイパス管8を通った圧力水によ
って予め回転される。
[0032] The hydraulic machine is started as follows. After the inlet valve 1 is fully opened, the opening degree ac of the control valve 10 is fully opened at time T1 as shown in FIG. 9(a). As a result, the pressure water that has passed through the inlet pipe 1, inlet valve 2, and casing 3 flows into the flow path 9 through the bypass pipe 8,
From this flow path 9, it passes through the runner 5 and flows out into the suction pipe 6. In this way, the runner 5 is pre-rotated by the pressure water passing through the bypass pipe 8.

【0033】ランナ5の回転速度Nを検出する回転速度
検出器の検出出力に基づき、制御装置11は、ランナ回
転速度Nが予め設定された所定の値に達した時点T2 
に、制御弁10を全閉すると共に図9(b)に示したよ
うに案内羽根4を開口して、ランナ回転速度Nを目標回
転速度、即ち定格回転数まで上昇させる。
Based on the detection output of the rotation speed detector that detects the rotation speed N of the runner 5, the control device 11 determines the time T2 when the runner rotation speed N reaches a predetermined value.
Then, the control valve 10 is fully closed and the guide vane 4 is opened as shown in FIG. 9(b) to increase the runner rotational speed N to the target rotational speed, that is, the rated rotational speed.

【0034】このように起動時の案内羽根4の開口時に
は予めランナ5が所定の回転速度で回転しているため、
ランナ周速度Uが比較的大きく、従って相対流れは従来
に比べてランナ羽根7に沿った方向になり、図9(d)
に示したようにランナ羽根に作用する応力αは充分に小
さくなる。また、定常運転中は制御弁10は閉止されて
いるため、バイパス管8を通った水流が案内羽根4から
の水流を乱すことはない。なお、上記実施例ではバイパ
ス管8はケーシング3と流路9とを連通している。しか
しながら、このバイパス管8は入口管1と流路9とを連
通してもよい。
[0034] As described above, since the runner 5 is already rotating at a predetermined rotational speed when the guide vane 4 is opened at the time of startup,
The runner circumferential speed U is relatively large, so the relative flow is in the direction along the runner blade 7 compared to the conventional case, as shown in Fig. 9(d).
As shown in , the stress α acting on the runner blade becomes sufficiently small. Further, since the control valve 10 is closed during steady operation, the water flow passing through the bypass pipe 8 does not disturb the water flow from the guide vane 4. In the above embodiment, the bypass pipe 8 communicates the casing 3 and the flow path 9. However, this bypass pipe 8 may also communicate the inlet pipe 1 and the flow path 9.

【0035】[0035]

【発明の効果】以上の説明から明らかなように、本願の
第1の発明によれば、発電起時においてランナへの圧力
水の導入時には、案内羽根は予め起動開度に開口されて
いるため圧力水の絶対速度の流れ角が大きくなり、かつ
また入口弁開度が小さいため絶対速度は小さい。従って
、圧力水の相対速度の方向とランナ羽根の方向とのなす
角度が、従来に比べて大幅に小さくなり、ランナ羽根に
作用する応力が大幅に低減し、ランナ羽根の疲労強度の
低下を低減できると共に水流の衝撃によるランナ周辺の
振動発生も低減することができる。
[Effects of the Invention] As is clear from the above description, according to the first invention of the present application, when pressure water is introduced into the runner during power generation, the guide vanes are opened to the starting opening in advance. The absolute velocity of the pressure water is small because the flow angle is large and the inlet valve opening is small. Therefore, the angle between the direction of the relative velocity of the pressurized water and the direction of the runner blades is significantly smaller than before, and the stress acting on the runner blades is significantly reduced, reducing the decrease in fatigue strength of the runner blades. At the same time, it is possible to reduce vibrations around the runner due to the impact of the water flow.

【0036】また、本願の第2の発明によれば、揚水運
転から発電起動運転への移行の際、案内羽根は予め所定
開度に設定されているため圧力水の絶対速度の流れ角が
大きく、また入口弁は所定の小開度に設定されているた
め絶対速度は小さい。従って、圧力水の相対速度の方向
とランナ羽根の方向とのなす角度が、従来に比べて大幅
に小さくなり、ランナ羽根に作用する応力も大幅に低減
し、ランナ羽根の疲労強度の低下を低減できると共に水
流の衝撃によるランナ周辺の振動発生も低減することが
できる。
Further, according to the second invention of the present application, since the guide vanes are set to a predetermined opening degree in advance during the transition from pumping operation to power generation start-up operation, the flow angle of the absolute velocity of the pressure water is large. Also, since the inlet valve is set to a predetermined small opening degree, the absolute speed is small. Therefore, the angle between the direction of the relative velocity of the pressurized water and the direction of the runner blades is significantly smaller than before, and the stress acting on the runner blades is also significantly reduced, reducing the decrease in fatigue strength of the runner blades. At the same time, it is possible to reduce vibrations around the runner due to the impact of the water flow.

【0037】本願の第3の発明によれば、水車起動時に
は、案内羽根が開口する前にランナが予め回転しランナ
周速度が充分に大きくなっているため、案内羽根からラ
ンナに流入する圧力水はランナ羽根に沿って流れ、ラン
ナ羽根に作用する応力が大幅に低減し、ランナ羽根の疲
労強度の低下を低減できると共に水流の衝撃によるラン
ナ周辺の振動発生も低減することができる。
According to the third invention of the present application, when the water turbine is started, the runner rotates in advance before the guide vanes open and the runner circumferential speed is sufficiently high, so that the pressure water flowing from the guide vanes into the runners is The water flows along the runner blades, and the stress acting on the runner blades is significantly reduced, making it possible to reduce the decrease in fatigue strength of the runner blades and also to reduce the occurrence of vibrations around the runners due to the impact of the water flow.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本願の第1の発明に係る水力機械の起動方法の
一実施例を示したフローチャート。
FIG. 1 is a flowchart showing an embodiment of a method for starting a hydraulic machine according to a first invention of the present application.

【図2】上記実施例の起動方法を説明するための時間線
図。
FIG. 2 is a time diagram for explaining the startup method of the above embodiment.

【図3】上記実施例の起動時のランナ羽根入口部の速度
三角形図。
FIG. 3 is a velocity triangle diagram of the runner blade inlet portion during startup of the above embodiment.

【図4】上記実施例の変形例を説明するための時間線図
FIG. 4 is a time diagram for explaining a modification of the above embodiment.

【図5】本願の第2の発明に係る水力機械の制御方法の
一実施例を説明するための時間線図。
FIG. 5 is a time diagram for explaining an embodiment of a method for controlling a hydraulic machine according to the second invention of the present application.

【図6】上記第2発明の一実施例の起動時におけるラン
ナ羽根入口部の速度三角形図。
FIG. 6 is a velocity triangle diagram of the runner blade inlet portion during startup of the embodiment of the second invention.

【図7】上記第2発明の一実施例の変形例を説明するた
めの時間線図。
FIG. 7 is a time diagram for explaining a modification of the embodiment of the second invention.

【図8】本願の第3の発明に係る水力機械の一実施例を
示した断面図。
FIG. 8 is a sectional view showing an embodiment of a hydraulic machine according to the third invention of the present application.

【図9】上記第3発明の一実施例を説明するための時間
線図。
FIG. 9 is a time diagram for explaining an embodiment of the third invention.

【図10】従来の水力機械を概略的に示した断面図。FIG. 10 is a cross-sectional view schematically showing a conventional hydraulic machine.

【図11】従来の水力機械の発電起動方法を説明するた
めの時間線図。
FIG. 11 is a time diagram for explaining a conventional method for starting power generation in a hydraulic machine.

【図12】従来の水力機械の定常発電運転時におけるラ
ンナ羽根入口部の速度三角形図。
FIG. 12 is a velocity triangle diagram of the runner blade inlet during steady power generation operation of a conventional hydraulic machine.

【図13】従来の水力機械の揚水運転から発電運転への
移行時の動作を説明するための時間線図。
FIG. 13 is a time diagram for explaining the operation of a conventional hydraulic machine when it transitions from pumping operation to power generation operation.

【図14】従来の揚水運転時におけるランナ羽根入口部
の速度三角形図。
FIG. 14 is a velocity triangle diagram of the runner blade inlet during conventional pumping operation.

【図15】従来の水力機械の発電起動時におけるランナ
羽根入口部の速度三角形図。
FIG. 15 is a velocity triangle diagram of the runner blade inlet section when power generation is started in a conventional hydraulic machine.

【図16】従来の揚水運転から発電運転への移行時にお
けるランナ羽根入口部の速度三角形図。
FIG. 16 is a velocity triangle diagram of the runner blade inlet during transition from conventional pumping operation to power generation operation.

【符号の説明】[Explanation of symbols]

1  入口管 2  入口弁 3  ケーシング 4  可動式の案内羽根 5  ランナ 6  吸出し管 7  ランナ羽根 8  バイパス管 9  流路 10  制御弁 11  制御装置 1 Inlet pipe 2 Inlet valve 3 Casing 4 Movable guide vanes 5 Runner 6 Suction pipe 7 Runner blade 8 Bypass pipe 9 Flow path 10 Control valve 11 Control device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  入口弁と可動式の案内羽根とランナと
を具備した水力機械の起動方法において、上記案内羽根
を所定の起動開度まで開口する工程と、上記所定の起動
開度までの開口後に上記入口弁を全閉状態から比較的小
さな所定開度まで開口する工程と、上記ランナの回転速
度を検出しこの回転速度検出値が所定の値に達した時に
上記入口弁を全開開度まで開口する工程とを具備するこ
とを特徴とする水力機械の起動方法。
1. A method for starting a hydraulic machine comprising an inlet valve, a movable guide vane, and a runner, comprising: opening the guide vane to a predetermined starting opening; and opening the guide vane to the predetermined starting opening. Thereafter, a step of opening the inlet valve from a fully closed state to a relatively small predetermined opening degree, and detecting the rotational speed of the runner and opening the inlet valve to the fully open degree when the detected rotational speed reaches a predetermined value. A method for starting a hydraulic machine, comprising the step of opening the machine.
【請求項2】  入口弁と可動式の案内羽根とランナと
を具備し、揚水運転と発電運転との切り換えが可能な水
力機械の制御方法において、揚水運転時に上記案内羽根
を所定の開度まで閉じる第1工程と、この第1工程の途
中において上記入口弁を全開状態から所定の小開度まで
閉める第2工程と、この第2工程の途中においてポンプ
水車の発電電動機を電力系統から解列する第3工程と、
上記ランナの回転速度を検出しこの回転速度検出値が発
電運転の回転方向の所定の値に達した時に上記入口弁を
全開開度まで開口する工程とを具備することを特徴とす
る水力機械の制御方法。
Claim 2: A method for controlling a hydraulic machine that is equipped with an inlet valve, a movable guide vane, and a runner and is capable of switching between pumping operation and power generation operation, the method comprising: opening the guide vane to a predetermined opening degree during pumping operation; A first step of closing the inlet valve, a second step of closing the inlet valve from a fully open state to a predetermined small opening during this first step, and disconnecting the generator motor of the pump water turbine from the power system during this second step. A third step of
Detecting the rotational speed of the runner and opening the inlet valve to a full opening when the detected rotational speed reaches a predetermined value in the rotational direction of power generation operation. Control method.
【請求項3】  入口管とケーシングと可動式の案内羽
根とランナとを具備した水力機械において、上記入口管
及び上記ケーシングの少なくとも一方と上記案内羽根及
び上記ランナの間の流路とを連通するバイパス管と、こ
のバイパス管に設置された制御弁と、水力機械の起動時
に上記案内羽根の開口前に上記制御弁を開口する制御装
置とを具備することを特徴とする水力機械。
3. A hydraulic machine comprising an inlet pipe, a casing, a movable guide vane, and a runner, wherein at least one of the inlet pipe and the casing communicates with a flow path between the guide vane and the runner. A hydraulic machine comprising: a bypass pipe; a control valve installed in the bypass pipe; and a control device that opens the control valve before opening the guide vane when the hydraulic machine is started.
JP3042032A 1991-03-07 1991-03-07 Hydraulic machine and its starting and control method Expired - Fee Related JP2945770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3042032A JP2945770B2 (en) 1991-03-07 1991-03-07 Hydraulic machine and its starting and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3042032A JP2945770B2 (en) 1991-03-07 1991-03-07 Hydraulic machine and its starting and control method

Publications (2)

Publication Number Publication Date
JPH04279772A true JPH04279772A (en) 1992-10-05
JP2945770B2 JP2945770B2 (en) 1999-09-06

Family

ID=12624826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3042032A Expired - Fee Related JP2945770B2 (en) 1991-03-07 1991-03-07 Hydraulic machine and its starting and control method

Country Status (1)

Country Link
JP (1) JP2945770B2 (en)

Also Published As

Publication number Publication date
JP2945770B2 (en) 1999-09-06

Similar Documents

Publication Publication Date Title
EP3596334B1 (en) Method for operating a hydraulic machine and corresponding installation for converting hydraulic energy into electrical energy
US3403888A (en) Reversible pump turbines
US11608809B2 (en) Startup method of Francis turbine and Francis turbine
JPH04279772A (en) Hydraulic machinery and method for activating and controlling it
KR20070089989A (en) Method for operating a turbocompressor
JPH04298686A (en) Power generation starting device for hydraulic machinery and starting method thereof
JP4141780B2 (en) Pump turbine and its operation control method
JP2878856B2 (en) How to start a hydraulic turbine
US4267459A (en) Method of operating a hydraulic turbine or a pump-turbine
CN113818989B (en) Francis turbine starting method and Francis turbine
JP3839862B2 (en) Pumping operation method of variable speed hydraulic machine
JPS6131671A (en) Pelton wheel
JPS63239376A (en) Method of stopping variable speed pump or pump turbine
JPH09100773A (en) Starting method of hydraulic turbine speed governor
JPH10231709A (en) Geothermal turbine power generating plant
JPH09250443A (en) Overspeed controller of water wheel generator
JPS62225704A (en) Overspeed preventing device for turbine
JPS63124872A (en) Exhaust method for variable speed reversible pump-turbine
JPH01257772A (en) Method for controlling protection stoppage of ac excited synchronizer
JPS63113181A (en) Operation control method at pumped storage power station shutdown
JPH0849507A (en) Internal cooling method for bleeder turbine
JPS623174A (en) Operation stop of pump in pump waterwheel
JPS61152969A (en) Operation controlling method of reversible pump-turbine
JPH06241158A (en) Variable velocity power generator, variable velocity pumped storage power generator and drive control of them
JPS60198378A (en) Method of controlling operation of water wheel or pump

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees