JPH042795B2 - - Google Patents

Info

Publication number
JPH042795B2
JPH042795B2 JP5078487A JP5078487A JPH042795B2 JP H042795 B2 JPH042795 B2 JP H042795B2 JP 5078487 A JP5078487 A JP 5078487A JP 5078487 A JP5078487 A JP 5078487A JP H042795 B2 JPH042795 B2 JP H042795B2
Authority
JP
Japan
Prior art keywords
shape memory
shape
memory alloy
alloy plate
memorized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5078487A
Other languages
Japanese (ja)
Other versions
JPS63215881A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5078487A priority Critical patent/JPS63215881A/en
Publication of JPS63215881A publication Critical patent/JPS63215881A/en
Publication of JPH042795B2 publication Critical patent/JPH042795B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Position Or Direction (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は形状記憶合金を利用したアクチユエー
ターの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to improvements in actuators using shape memory alloys.

(従来の技術とその問題点) Ni−Ti合金などの形状記憶効果を利用したア
クチユエーターは種々のものが公知である。これ
らの多くのものは形状記憶合金自体に二方向特性
を持たせると高、低温側それぞれの形状を正確に
設定できないことから、一方向特性を有する形状
記憶合金を利用している。一方向性形状記憶合金
を使つて二方向の特性を得る方法としては、バイ
アス法と差動式二方向素子がある。これらの方法
としては低温で軟かく高温で硬い性質を利用した
もので例えばバイアス法としては第3図に示すも
のがある。
(Prior art and its problems) Various actuators using shape memory effects such as Ni-Ti alloys are known. In many of these, shape memory alloys having unidirectional properties are used because if the shape memory alloy itself has two-way properties, it is not possible to accurately set the shapes on the high and low temperature sides. Methods for obtaining bidirectional characteristics using a unidirectional shape memory alloy include a bias method and a differential bidirectional element. These methods utilize the properties of being soft at low temperatures and hard at high temperatures, such as the bias method shown in FIG. 3.

すなわち形状記憶合金コイル5とコイルばね6
をストツパー7を介して中心軸8に並列して配置
したもので抵温のときはコイルばねのバイアス力
により形状記憶コイルは収縮した形状となつてい
るが、形状記憶コイルを加熱して高温になるとコ
イルばねのバイアス力に打勝つて形状記憶コイル
が伸びストツパーを図面上右方に押し、中心軸が
右方に移動する。加熱を止めて低温になるとコイ
ルばねのバイアス力が強くなり、形状記憶コイル
を押戻しストツパー、中心軸を左方に移動させ
る。このような動作を繰り返して中心軸に二方向
の駆動力を付与するものである。また差動式は第
3図のコイルばね6に代えて、これも形状記憶コ
イルとし、左右2個の形状記憶コイルを交互に加
熱して上記と同様に二方向の駆動力を得るもので
ある。
That is, the shape memory alloy coil 5 and the coil spring 6
are arranged in parallel to the central axis 8 via the stopper 7.When the temperature is low, the shape memory coil is in a contracted shape due to the bias force of the coil spring, but when the shape memory coil is heated to a high temperature. Then, the shape memory coil expands by overcoming the bias force of the coil spring, pushing the stopper to the right in the drawing, and the central axis moves to the right. When the heating is stopped and the temperature becomes low, the bias force of the coil spring becomes stronger, pushing the shape memory coil back to the stopper and moving the central axis to the left. By repeating such operations, driving forces in two directions are applied to the central shaft. In addition, in the differential type, a shape memory coil is used instead of the coil spring 6 shown in Fig. 3, and the two left and right shape memory coils are alternately heated to obtain driving force in two directions in the same way as above. .

しかしこのようなバイアス式、差動式において
はいずれも加熱時に記憶された形状へ復帰する性
質を利用しているため低温になると元の位置に戻
つてしまう。移動させた位置に維持する場合は形
状記憶を維持するに必要な期間は常にその温度を
保持する必要がある。すなわち上記の第3図のバ
イアス式においてストツパーを右方に移動し、そ
のまま一定時間を維持したい場合は形状記憶コイ
ルに一定時間継続して一定の温度に保持する必要
があつた。通常形状記憶コイルの加熱方法として
はコイルに直接通電し加熱する方法、熱風による
加熱などが考えられているが、電流制御装置、タ
イマーなどの調整装置、熱風加熱装置などが必要
とされ、したがつてコスト高となり、また設置場
所などの制約もあつてこの種の駆動装置の利用面
に大きな障害となつていた。
However, both the bias type and the differential type use the property of returning to the memorized shape when heated, so they return to the original position when the temperature becomes low. When maintaining the moved position, it is necessary to maintain that temperature for the period necessary to maintain shape memory. That is, in the bias type shown in FIG. 3, if the stopper is moved to the right and the temperature is to be maintained for a certain period of time, it is necessary to maintain the shape memory coil at a certain temperature for a certain period of time. Normally, methods for heating shape memory coils include heating the coil by directly applying electricity to the coil, heating with hot air, etc. However, current control devices, adjustment devices such as timers, and hot air heating devices are required. However, the cost is high, and there are also restrictions on the installation location, which pose major obstacles to the use of this type of drive device.

本発明者は、上記の問題を検討し、この改良を
行い、「アクチユエーター」として昭和62年1月
31日に特許出願した。この発明は第2図に示すよ
うに形状記憶合金の短冊状の板を第2図aのよう
に弓状に形状記憶させ、これを同図bの1のよう
に記憶形状と対称形に反転させたものを1枚と弓
状に形状記憶させたもの2と並列してストツパー
3を介してシヤフト4に挿通したもので、形状記
憶合金板の上下端は固定され、夫々の形状記憶合
金板は交互に加熱できるようになつている。そし
てこの状態で低温において安定であるとき形状記
憶合金板1を所定の温度に加熱すると第2図cに
示すように形状記憶合金板1は記憶された元の形
状に戻る。この際形状記憶合金板2もbの記憶形
状からcのように飛び移り座屈して反転し、シヤ
フト4は右方に駆動して加熱を止め冷却されて
も、この状態において安定静止する。次にこの状
態のとき形状記憶合金板2を加熱すると第1図b
のように形状記憶合金板2は記憶された元の形状
に戻り、形状記憶合金板1も飛び移り座屈して反
転し、シヤフト4は左方に駆動し、この状態で安
定静止する。上記の作動を繰り返し行うことによ
りシヤフトに二方向の断続、または連続した駆動
を付与することが可能となる。
The inventor studied the above problems, made this improvement, and released it as an "actuator" in January 1986.
A patent application was filed on the 31st. As shown in Fig. 2, this invention allows a rectangular plate of shape memory alloy to memorize the shape of a rectangular shape as shown in Fig. 2 a, and then inverts this into a shape symmetrical to the memorized shape as shown in Fig. 2 b. The shape memory alloy plates are inserted into the shaft 4 through the stopper 3 in parallel with the shape memory alloy plate 2, and the upper and lower ends of the shape memory alloy plates are fixed. can be heated alternately. When the shape memory alloy plate 1 is heated to a predetermined temperature when it is stable at low temperatures in this state, the shape memory alloy plate 1 returns to its original memorized shape as shown in FIG. 2c. At this time, the shape memory alloy plate 2 also jumps from the memory shape of b to buckle and reverse as shown in c, and even if the shaft 4 is driven to the right and stops heating and is cooled, it remains stable in this state. Next, when the shape memory alloy plate 2 is heated in this state, Fig. 1b
As shown in the figure, the shape memory alloy plate 2 returns to its original memorized shape, the shape memory alloy plate 1 also jumps, buckles, and turns over, and the shaft 4 is driven to the left and remains stably stationary in this state. By repeating the above operations, it becomes possible to provide intermittent or continuous drive in two directions to the shaft.

すなわち形状記憶合金板の少くとも1個を記憶
形状から反転させて組合せてあるため、これが作
動時に飛び移り反転し座屈状態となるため冷却時
にも安定静止状態が維持できるものである。
That is, since at least one of the shape memory alloy plates is inverted from its memorized shape and combined, it jumps and inverts during operation and becomes a buckled state, so that a stable stationary state can be maintained even during cooling.

(発明が解決しようとする問題点) 上記の発明においては所期の目的は達成した
が、第2図bの1の反転させた状態から同図cの
1の記憶した形状に復帰させる場合形状記憶合金
板が2点鎖線で示す中立面を通過する際周長の関
係で若干の変位を伴つて通過する必要がある。こ
の変位は板厚のバラツキ等により予測し難く、局
部に大きな歪を伴うこともあり、このため形状記
憶合金の繰り返し寿命が短かくなるおそれがあ
る。本発明は上記の問題について検討した結果、
形状記憶合金が作動時に歪を生じることなく、長
寿命のアクチユエーターを開発したものである。
(Problems to be Solved by the Invention) Although the above invention has achieved the intended purpose, when returning from the inverted state of 1 in Figure 2b to the memorized shape of 1 in Figure 2c, the shape When the memory alloy plate passes through the neutral plane shown by the two-dot chain line, it needs to pass through with some displacement due to the circumferential length. This displacement is difficult to predict due to variations in plate thickness, etc., and may be accompanied by large local strains, which may shorten the repeated life of the shape memory alloy. The present invention was developed as a result of considering the above problems.
We have developed a long-life actuator made of shape memory alloy that does not cause distortion during operation.

(問題点を解決するための手段および作用) 複数の形状記憶合金板を弓状もしくは円錐形状
でかつその裾部が複数の曲線部を有する形状に記
憶させ、この内の単数または複数の形状記憶合金
板を記憶形状に対称形に反転させてシヤフトに並
列して組合せ、加熱により反転させた形状記憶合
金板を記憶形状に復帰させると共にもう一方の形
状記憶合金板を反転させてシヤフトを二方向に駆
動させることを特徴とするアクチユエーターであ
る。
(Means and effects for solving the problem) A plurality of shape memory alloy plates are memorized into a shape having an arcuate or conical shape and a bottom portion thereof has a plurality of curved parts, and one or more of the shape memory alloy plates is The alloy plates are symmetrically inverted into a memorized shape and combined in parallel with the shaft, and the inverted shape memory alloy plate is returned to the memorized shape by heating, and the other shape memory alloy plate is inverted to move the shaft in two directions. This actuator is characterized by being driven by.

すなわち本発明は第1図に示すようにNi−Ti
などからなる形状記憶合金の短冊状の板を同図a
に示すように弓状に大きなRを有し、かつその裾
部に小さなr1,r2を有する形状に記憶させる。こ
の内の1枚を同図bの1のように常温において記
憶形状と対称形に反転させたものと、記憶したま
まの形状記憶合金板2を並列してストツパー3を
介してシヤフト4に挿通したもので、形状記憶合
金板1,2の上下端は固定され、また夫々が別個
に加熱できるようになつており、電気的、熱的に
絶縁してアクチユエーターとしたものである。こ
の作動について説明すると第1図bの状態におい
て形状記憶合金板1および2が低温で安定である
とき形状記憶合金板1を所定の温度に加熱すると
第1図cに示すように形状記憶合金板1は記憶さ
れた元の形状に戻る。この際形状記憶合金板2は
bの記憶形状からcのように飛び移り座屈して反
転し、シヤフト4は右方に駆動して加熱を止めて
冷却されても、この状態において安定静止する。
次にこの状態のとき形状記憶合金板2を通電加熱
すると第1図bのように形状記憶合金板2は記憶
された元の形状に戻り、形状記憶合金板1は飛び
移り座屈して反転し、シヤフト4は左方に駆動
し、この状態で安定静止する。上記作動を繰り返
し行うことによりシヤフトに二方向の断続、また
は連続した駆動を付与することが可能となる。
That is, as shown in FIG.
A rectangular plate of shape memory alloy made of
As shown in the figure, a shape having a large arcuate radius and small r 1 and r 2 at the bottom is memorized. One of these sheets is inverted to be symmetrical to the memorized shape at room temperature as shown in 1 in Figure b, and the shape memory alloy sheet 2 with the same memorized shape is placed in parallel and inserted into the shaft 4 via the stopper 3. The upper and lower ends of the shape memory alloy plates 1 and 2 are fixed, each can be heated separately, and is electrically and thermally insulated to serve as an actuator. To explain this operation, when the shape memory alloy plates 1 and 2 are stable at low temperatures in the state shown in Fig. 1b, when the shape memory alloy plate 1 is heated to a predetermined temperature, the shape memory alloy plates 1 and 2 change as shown in Fig. 1c. 1 returns to the memorized original shape. At this time, the shape memory alloy plate 2 jumps from the memorized shape of b to the shape of c, buckles and reverses, and even if the shaft 4 is driven to the right, stops heating, and is cooled, it remains stable in this state.
Next, in this state, when the shape memory alloy plate 2 is heated with electricity, the shape memory alloy plate 2 returns to its original memorized shape as shown in Fig. 1b, and the shape memory alloy plate 1 jumps, buckles, and reverses itself. , the shaft 4 is driven to the left and remains stable in this state. By repeating the above operations, it becomes possible to provide intermittent or continuous drive in two directions to the shaft.

しかして本発明は形状記憶合金板の少くとも1
個を記憶形状から反転させて組合せてあるため、
これが作動時に飛び移り反転し座屈状態となるた
め冷却時に安定静止状態が維持できるものであ
る。
However, the present invention provides at least one shape memory alloy plate.
Since the pieces are reversed from the memory shape and combined,
Since this jumps and reverses during operation and becomes buckled, a stable stationary state can be maintained during cooling.

また本発明においては形状記憶合金板を弓状ま
たは円錐状とし、かつその裾部に複数の曲線部を
有する形状に記憶させてあるので、逆方向に飛び
移り反転する際、曲線部により、上下方向或は周
方向への拘束が緩和されて変位が容易となり作動
による大きな歪が生じないのである。
In addition, in the present invention, the shape memory alloy plate is made into a bow shape or a cone shape, and is memorized in a shape having a plurality of curved parts at the bottom of the plate, so that when jumping in the opposite direction and reversing, the curved parts will cause Constraints in the direction or circumferential direction are relaxed, displacement becomes easy, and large distortions due to operation do not occur.

本発明において使用する形状記憶合金板の数は
2枚以上の複数枚が使用でき、この内の半数枚を
記憶形状から反転させて組合せたものとした方が
作動時の力のバランス上好ましい。短冊状でなく
円板を円錐形状にしたものを使用してもよい。形
状記憶合金としてはNi−Ti合金の他これにFe、
Coなど第3元素を添加したNi−Ti系合金、およ
びCu−Al−Ni、Cu−Au−ZuなどのCu系合金の
他通常使用される形状記憶合金が適用できる。さ
らに形状記憶合金の加熱方法としては通電加熱の
他、熱風、ガス炎などの通常の加熱方法が利用で
きる。
The number of shape memory alloy plates used in the present invention can be two or more, and it is preferable in terms of force balance during operation that half of these plates are inverted from the memory shape and combined. Instead of a rectangular shape, a disc shaped like a cone may be used. In addition to Ni-Ti alloys, shape memory alloys include Fe,
Ni-Ti alloys to which a third element such as Co is added, Cu-based alloys such as Cu-Al-Ni and Cu-Au-Zu, and commonly used shape memory alloys can be used. Further, as a heating method for the shape memory alloy, in addition to current heating, ordinary heating methods such as hot air and gas flame can be used.

(実施例) 以下に本発明の一実施例について説明する。(Example) An embodiment of the present invention will be described below.

Ni−Ti合金からなる短冊状の板を第1図aに
示すように弓状に大きなRをつけ、かつその裾部
にr1およびr2の曲線部を付けた状態で形状記憶処
理を施した。次にこの板を常温において反転させ
て同図bの1に示すように、記憶形状のままの合
金板2と共にストツパー3と共にシヤフト4を貫
通させてアクチユエーターとした。
As shown in Figure 1a, a strip-shaped plate made of Ni-Ti alloy is given a shape memory treatment with a large arcuate radius and curved parts r 1 and r 2 attached to its bottom. did. Next, this plate was turned over at room temperature, and as shown in FIG. 1B, the shaft 4 was passed through the alloy plate 2 and the stopper 3 together with the alloy plate 2 in the memorized shape to form an actuator.

なお形状記憶合金板1,2は通電またはガス炎
加熱などにより別個に加熱できるようになつてい
る。上記のアクチユエーターは常温において第1
図bの状態を保ち安定静止しているが、形状記憶
合金板1を加熱すると、この合金板は記憶した形
状に復帰する。この際形状記憶合金板2もbの記
憶形状からcのように飛び移り反転して座屈し、
シヤフト4は右方に駆動して加熱を止めて冷却さ
れてもこの状態において安定静止する。次にこの
状態のとき形状記憶合金板2を加熱すると同図b
のように形状記憶合金板2は記憶された元の形状
に戻り、形状記憶合金板1も飛び移り反転座屈し
てシヤフト4は左方に駆動し、この状態で安定静
止する。上記の作動を繰り返し行うことによりシ
ヤフトを断続または連続させて駆動することが可
能である。
Note that the shape memory alloy plates 1 and 2 can be heated separately by electricity, gas flame heating, or the like. The above actuator is in the first position at room temperature.
The shape memory alloy plate 1 remains stable and stationary in the state shown in Figure b, but when the shape memory alloy plate 1 is heated, the alloy plate returns to its memorized shape. At this time, the shape memory alloy plate 2 also jumps from the memory shape of b to the shape of c, reverses, and buckles.
Even when the shaft 4 is driven to the right, heating is stopped, and the shaft 4 is cooled, it remains stable in this state. Next, in this state, when the shape memory alloy plate 2 is heated,
The shape memory alloy plate 2 returns to its original memorized shape, and the shape memory alloy plate 1 also jumps and reverses buckling, and the shaft 4 is driven to the left and remains stable in this state. By repeating the above operations, it is possible to drive the shaft intermittently or continuously.

上記においては形状記憶合金板1を記憶させた
形状から反転させて組合せた例について説明した
が、反転させる合金板は1,2のいずれでもよ
く、最初の加熱は反転させた合金に付与すれば、
その合金が元の形状に戻るため、その力により別
の合金が反転して座屈状態となり、以後交互に加
熱することにより二方向の駆動が得られるもので
ある。
In the above, an example was explained in which the shape memory alloy plate 1 is inverted from the memorized shape and combined, but the alloy plate to be inverted may be either 1 or 2, and the initial heating may be applied to the inverted alloy. ,
Since that alloy returns to its original shape, the other alloy is reversed by that force and becomes buckled, and then by alternately heating it, drive in two directions can be obtained.

(効 果) 以上に説明したように本発明によれば複数の形
状記憶合金板を交互に加熱することにより形状を
反転させてシヤフトを移動し二方向の往復運動を
付与することができると共に加熱を止めて低温に
なつてもその位置を維持することができる。また
必要な二位置に選択して維持することができ、か
つ作動の際に大きな歪が発生しないので繰り返し
寿命が長いなど極めて顕著な効果を奏するもので
ある。
(Effects) As explained above, according to the present invention, by alternately heating a plurality of shape memory alloy plates, the shape can be reversed and the shaft can be moved, giving reciprocating motion in two directions, and the heating can be stopped and maintain its position even in low temperatures. In addition, since it is possible to select and maintain two required positions, and no large distortion occurs during operation, it has extremely significant effects such as a long cycle life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のアクチユエーターの作動状態
を示す模式図、第2図は先行技術のアクチユエー
ターの作動状態を示す模式図、第3図は従来のア
クチユエーターの作動状態を示す模式図である。 1…反転して組合せた形状記憶合金板、2…形
状記憶合金板、3…ストツパー、4…シヤフト、
5…形状記憶コイル、6…コイルばね、7…スト
ツパー、8…中心軸。
Fig. 1 is a schematic diagram showing the operating state of the actuator of the present invention, Fig. 2 is a schematic diagram showing the operating state of the actuator of the prior art, and Fig. 3 is a schematic diagram showing the operating state of the conventional actuator. It is a schematic diagram. 1... Shape memory alloy plate combined inverted, 2... Shape memory alloy plate, 3... Stopper, 4... Shaft,
5...Shape memory coil, 6...Coil spring, 7...Stopper, 8...Center shaft.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の形状記憶合金板を弓状もしくは円錐形
状でかつその裾部が複数の曲線部を有する形状に
記憶させ、この内の単数または複数の形状記憶合
金板を記憶形状と対称形に反転させてシヤフトに
並列して組合せ、加熱により反転させた形状記憶
合金板を記憶形状に復帰させると共にもう一方の
形状記憶合金板を反転させてシヤフトを二方向に
駆動させることを特徴とするアクチユエーター。
1 A plurality of shape memory alloy plates are memorized into a shape having an arcuate or conical shape with a plurality of curved portions at the bottom thereof, and one or more of the shape memory alloy plates is inverted to be symmetrical with the memorized shape. An actuator characterized in that the shape memory alloy plate is assembled in parallel with the shaft, and the shape memory alloy plate reversed by heating returns to the memorized shape, and the other shape memory alloy plate is reversed to drive the shaft in two directions. .
JP5078487A 1987-03-05 1987-03-05 Actuator Granted JPS63215881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5078487A JPS63215881A (en) 1987-03-05 1987-03-05 Actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5078487A JPS63215881A (en) 1987-03-05 1987-03-05 Actuator

Publications (2)

Publication Number Publication Date
JPS63215881A JPS63215881A (en) 1988-09-08
JPH042795B2 true JPH042795B2 (en) 1992-01-20

Family

ID=12868445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5078487A Granted JPS63215881A (en) 1987-03-05 1987-03-05 Actuator

Country Status (1)

Country Link
JP (1) JPS63215881A (en)

Also Published As

Publication number Publication date
JPS63215881A (en) 1988-09-08

Similar Documents

Publication Publication Date Title
US4716731A (en) Actuator of shape memory effect material
JPH042795B2 (en)
WO2006030434A2 (en) Magnetic spring actuator device
JPH042796B2 (en)
US6803846B2 (en) Actuator
JPH0377390B2 (en)
JPH0377388B2 (en)
JPH0377389B2 (en)
JPS6146475A (en) Shape memory alloy device
JPS5941256B2 (en) Band-operated thermal reed switch
JPS60166766A (en) Heat-sensitive actuator
JPS59110876A (en) Heating for driving body made of shape memory alloy
JPS59110978A (en) Control valve
JPS5944959A (en) Linear actuator
JP4284898B2 (en) Giant magnetostrictive linear actuator
JPH0134262Y2 (en)
JPS6050280A (en) Response improvement system for shape-memory alloy
JPH0125390Y2 (en)
JPS5924114Y2 (en) Thermal response switch
Sasaki et al. Positioning control of a redundant actuator
JPH051395B2 (en)
JPS59110979A (en) Control valve
JPS5933519B2 (en) holding device
JPS5810123Y2 (en) temperature response mechanism
SU606175A1 (en) Electromagnetic relay