JPH04279042A - Etching residual inspection method - Google Patents

Etching residual inspection method

Info

Publication number
JPH04279042A
JPH04279042A JP4207191A JP4207191A JPH04279042A JP H04279042 A JPH04279042 A JP H04279042A JP 4207191 A JP4207191 A JP 4207191A JP 4207191 A JP4207191 A JP 4207191A JP H04279042 A JPH04279042 A JP H04279042A
Authority
JP
Japan
Prior art keywords
etching
residual
substrate
residue
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4207191A
Other languages
Japanese (ja)
Inventor
Seiichi Fukuda
誠一 福田
Shingo Kadomura
新吾 門村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP4207191A priority Critical patent/JPH04279042A/en
Publication of JPH04279042A publication Critical patent/JPH04279042A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To enable the number of generated etching fine residuals in cylindrical shape which are formed on a substrate to be measured and inspected accurately by forming a side-wall portion corresponding to the etching residual being in contact with the etching residual and then measuring the number of side-wall portions by an optical means. CONSTITUTION:An SiO2 film 6 is formed on an Si substrate 1 where a cylindrical etching fine residual 5 is formed by a CVD device etc. After that, the SiO2 film 6 is etched back by dry etching for elimination. In this case, a side-wall spacer 6a according to SiO2 is formed in semi-spherical shape at the residual portion where the cylindrical etching fine residual 5 exists. After forming the SiO2 side-wall spacer 6a at a peripheral portion of the residual, the number of etching residuals which are formed on the Si substrate can be measured accurately by measuring the number of fine particles on a surface of the Si substrate 1 by a laser particle counter.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、柱状エッチング微小
残渣の測定検査方法に係り、特にLSI等の半導体装置
の製造におけるドライエッチング時に発生する柱状エッ
チング微小残渣の定量的検査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring and inspecting minute columnar etching residues, and more particularly to a method for quantitatively inspecting minute columnar etching residues generated during dry etching in the manufacture of semiconductor devices such as LSIs.

【0002】0002

【従来の技術】LSI等の半導体装置の集積度の向上に
伴い、エッチング技術等の微細加工技術の進歩は近年と
みに著しい。しかし、急激な微細加工術の進歩の反面、
特にドライエッチング時に発生するエッチング残渣の問
題が知られている。
2. Description of the Related Art With the increase in the degree of integration of semiconductor devices such as LSIs, advances in microfabrication techniques such as etching techniques have been remarkable in recent years. However, despite the rapid progress in microfabrication technology,
In particular, the problem of etching residue generated during dry etching is known.

【0003】すなわち、第1に単結晶シリコン(Si)
トレンチエッチング時、チェンバー内雰囲気等の影響で
生ずる自然酸化膜が原因で発生する残渣(ブラックシリ
コン)、第2にAl−Si中のSi偏析により局所的に
エッチレートの差により生ずるAlエッチング時のSi
残渣、第3にCu等の不揮発性物質が原因で発生するA
l−Si−Cuエッチング時の残渣、第4に上記単結晶
トレンチエッチング時と同様に自然酸化膜マスクを原因
とする針状残渣等の問題である。これらのエッチング残
渣は、残渣自体が光学顕微鏡による観察が可能な大きさ
であるため、容量評価も比較的容易であり現在では抑制
策も確立されている。
[0003] First, single crystal silicon (Si)
During trench etching, residues (black silicon) are generated due to natural oxide film caused by the atmosphere in the chamber, etc. Second, residues (black silicon) are generated due to local etch rate differences due to Si segregation in Al-Si during Al etching. Si
A caused by residue and thirdly non-volatile substances such as Cu.
The fourth problem is the problem of the residue during l-Si-Cu etching, and the fourth problem is the needle-like residue caused by the natural oxide film mask as in the case of the single crystal trench etching. These etching residues are large enough to be observed with an optical microscope, so capacity evaluation is relatively easy, and measures to suppress them have now been established.

【0004】0004

【発明が解決しようとする課題】上記以外の残渣、例え
ばタングステン(W)ポリサイド、すなわちWSix/
n+poly−Siのドライエッチング時に発生すると
推測される、例えば柱状のエッチング残渣は、その残渣
の直径が0.2μm以下微小のものも含まれるため、そ
の発生個数の定量的検査については公知光学的手段では
検出限界があった。図2にその柱状エッチング微小残渣
形成過程図を示す。すなわち図2(a)に示すようにS
i基板1、SiO2膜2、n+polySi層3、Ws
ix層4が順次形成されているウェハー上に例えばカー
ボン系ポリマー等の付着物7が付着されているとその付
着物が起因となって付着物下の被エッチング材料のエッ
チングレートを遅らせ、図2(b)の中間エッチング過
程を経て図2(c)に5で示した柱状エッチング微小残
渣として残る。
[Problem to be Solved by the Invention] Residues other than those mentioned above, such as tungsten (W) polycide, that is, WSix/
For example, columnar etching residues that are assumed to be generated during dry etching of n+poly-Si include those with a diameter of 0.2 μm or less, so quantitative inspection of the number of generated residues can be performed using known optical means. There was a detection limit. FIG. 2 shows a process diagram of the formation of columnar etching minute residues. That is, as shown in FIG. 2(a), S
i-substrate 1, SiO2 film 2, n+polySi layer 3, Ws
If a deposit 7 such as a carbon-based polymer is deposited on the wafer on which the ix layer 4 is sequentially formed, the deposit slows down the etching rate of the material to be etched under the deposit, and as shown in FIG. After the intermediate etching process shown in FIG. 2(b), a small columnar etching residue shown at 5 in FIG. 2(c) remains.

【0005】本発明は基板上に形成された上記柱状エッ
チング微小残渣の発生個数を精度よく測定検査すること
を目的とする。
An object of the present invention is to accurately measure and inspect the number of columnar etching minute residues formed on a substrate.

【0006】[0006]

【課題を解決するための手段】上述課題は本発明によれ
ば、被エッチング材料に異方性エッチングを施した際に
発生する柱状エッチング残渣の定量的検査方法において
、前記エッチング残渣に接して該エッチング残渣個数と
対応した側壁部を形成した後、光学的手段によって該側
壁部の個数を測定することによって前記エッチング残渣
を定量的に測定することを特徴とするエッチング残渣検
査方法によって解決される。
[Means for Solving the Problems] According to the present invention, the above-mentioned problem is solved in a method for quantitatively inspecting columnar etching residues generated when a material to be etched is subjected to anisotropic etching. The problem is solved by an etching residue inspection method characterized in that the etching residue is quantitatively measured by forming sidewall parts corresponding to the number of etching residues and then measuring the number of sidewall parts by optical means.

【0007】本発明で用いられる被エッチング材料とし
ては、チタン(Ti)、タングステン(W)、モリブデ
ン(Mo)等の高融点金属のポリサイド化合物等をはじ
めとして、polySi等上記メカニズムで残渣を生ず
る全てに適用できる。また、エッチング残渣に接した側
壁部(サイドウォール)の形成方法としてはエッチバッ
ク等による残置形成法、あるいはエッチング残渣の材料
の一部を選択的に成長させる付着形成法、また該残渣の
材料の一部を変質させる変質形成方法(例えばSiをS
iO2に)等が好ましく用いられる。なお、側壁部材料
としては光が乱反射する光学的特性を有することが好ま
しい。
The materials to be etched used in the present invention include polycide compounds of high-melting point metals such as titanium (Ti), tungsten (W), and molybdenum (Mo), as well as all materials that generate residues by the above-mentioned mechanism, such as polySi. Applicable to In addition, methods for forming sidewalls in contact with the etching residue include a residual formation method such as etchback, an adhesion formation method in which a part of the etching residue material is selectively grown, and a method for forming the sidewall portion in contact with the etching residue material. Alteration formation method that alters a part (for example, changing Si to S
iO2) etc. are preferably used. Note that it is preferable that the side wall material has an optical property that diffusely reflects light.

【0008】本発明で用いる光学的手段としては、パー
ティクルカウンタ、SEMあるいは光学顕微鏡等が好ま
しい。
[0008] As the optical means used in the present invention, a particle counter, SEM, optical microscope, etc. are preferable.

【0009】[0009]

【作用】本発明によれば、微小な水平断面を有する柱状
のエッチング残渣を水平方向に拡大させて光学的手段の
検査解像の範囲内に入れることができるため、残渣の個
数を精度よく測定することが可能となる。
[Operation] According to the present invention, columnar etching residues having a minute horizontal cross section can be expanded in the horizontal direction and placed within the inspection resolution range of optical means, so the number of residues can be measured with high accuracy. It becomes possible to do so.

【0010】0010

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は本発明に係る方法の一実施例を説明するた
めの工程断面図である。
Embodiments Hereinafter, embodiments of the present invention will be explained based on the drawings. FIG. 1 is a process sectional view for explaining an embodiment of the method according to the present invention.

【0011】図1(a)において、Si基板1上に形成
されたSiO2膜2上に、例えば幅(直径)W1が約0
.2μmの円形状の柱状エッチング微小残渣5(n+p
olySi層3とWSix層4からなる)が形成されて
いる。
In FIG. 1(a), for example, a width (diameter) W1 of about 0 is formed on a SiO2 film 2 formed on a Si substrate 1.
.. 2 μm circular columnar etching minute residue 5 (n+p
(consisting of an olySi layer 3 and a WSix layer 4) is formed.

【0012】次に図1(b)に示すように、柱状エッチ
ング微小残渣5を形成したSi基板1上にCVD(化学
気相成長)装置等によりSiO2膜6を形成する。Si
O2膜6の厚さは柱状エッチング微小残渣5の高さ以上
で、例えば0.25μmとした。従って、柱状エッチン
グ微小残渣5上にも約0.25μmの厚さにSiO2膜
6が形成される。その後、ドライエッチングによりSi
O2膜6をエッチバックすることにより除去する。この
際、柱状エッチング微小残渣5が存在するところでは、
残渣部分にSiO2による側壁(サイドウォール)スペ
ーサ6aが図1(c)に示すように半球状に形成される
。この半球状の側壁スペーサ6aの直径W2は、柱状エ
ッチング微小残渣5の高さの約2倍、すなわち約0.4
μmとなり、残渣直上部に視点を置くと残渣の大きさは
SiO2によって拡大された(すなわち従来の測定範囲
に入る)形状となる。残渣周辺部にSiO2側壁スペー
サ6aを形成した後、レーザパーティクルカウンタによ
りSi基板1表面上の微小粒子数を測定すればSi基板
上に形成されたエッチング残渣数を精度よく測定するこ
とが可能である。
Next, as shown in FIG. 1B, a SiO2 film 6 is formed on the Si substrate 1 on which the columnar etching minute residue 5 has been formed using a CVD (chemical vapor deposition) device or the like. Si
The thickness of the O2 film 6 was greater than the height of the columnar etching minute residue 5, and was, for example, 0.25 μm. Therefore, the SiO2 film 6 with a thickness of about 0.25 μm is also formed on the columnar etching minute residue 5. After that, Si was etched by dry etching.
The O2 film 6 is removed by etching back. At this time, where the columnar etching minute residue 5 exists,
A side wall spacer 6a made of SiO2 is formed in the residual portion in a hemispherical shape as shown in FIG. 1(c). The diameter W2 of this hemispherical sidewall spacer 6a is about twice the height of the columnar etching minute residue 5, that is, about 0.4
μm, and when the viewpoint is placed directly above the residue, the size of the residue becomes enlarged by SiO2 (that is, falls within the conventional measurement range). After forming the SiO2 sidewall spacer 6a around the residue, by measuring the number of microparticles on the surface of the Si substrate 1 using a laser particle counter, it is possible to accurately measure the number of etching residues formed on the Si substrate. .

【0013】なお、本実施例で用いたドライエッチング
ではC2Cl3F3系、HBr系ガスを用いた。
Note that in the dry etching used in this example, C2Cl3F3-based and HBr-based gases were used.

【0014】[0014]

【発明の効果】以上説明したように、この発明によれば
被エッチング材料に異方性ドライエッチングを施した際
に発生する柱状のエッチング微小残渣数の精度よい測定
検査が可能になる。
As described above, according to the present invention, it is possible to accurately measure and inspect the number of columnar etching minute residues generated when anisotropic dry etching is performed on a material to be etched.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る方法の一実施例を説明するための
工程断面図である。
FIG. 1 is a process sectional view for explaining an embodiment of the method according to the present invention.

【図2】柱状エッチング微小残渣の形成過程を示す工程
断面図である。
FIG. 2 is a process cross-sectional view showing the process of forming columnar etching minute residues.

【符号の説明】[Explanation of symbols]

1  Si基板 2,6  SiO2膜 3  n+polySi層 4  WSix層 5  柱状エッチング微小残渣 6a  側壁スペーサ 7  付着物 1 Si substrate 2,6 SiO2 film 3 n+polySi layer 4 WSix layer 5 Column-shaped etching minute residue 6a Side wall spacer 7 Adherence

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  被エッチング材料に異方性エッチング
を施した際に発生する柱状エッチング残渣の定量的検査
方法において、前記エッチング残渣に接して該エッチン
グ残渣個数と対応した側壁部を形成した後、光学的手段
によって該側壁部の個数を測定することによって前記エ
ッチング残渣を定量的に測定することを特徴とするエッ
チング残渣検査方法。
1. In a method for quantitatively inspecting columnar etching residues generated when anisotropic etching is performed on a material to be etched, after forming sidewall portions corresponding to the number of etching residues in contact with the etching residues, An etching residue inspection method characterized in that the etching residue is quantitatively measured by measuring the number of the sidewall portions by optical means.
JP4207191A 1991-03-07 1991-03-07 Etching residual inspection method Pending JPH04279042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4207191A JPH04279042A (en) 1991-03-07 1991-03-07 Etching residual inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4207191A JPH04279042A (en) 1991-03-07 1991-03-07 Etching residual inspection method

Publications (1)

Publication Number Publication Date
JPH04279042A true JPH04279042A (en) 1992-10-05

Family

ID=12625845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4207191A Pending JPH04279042A (en) 1991-03-07 1991-03-07 Etching residual inspection method

Country Status (1)

Country Link
JP (1) JPH04279042A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009147057A (en) * 2007-12-13 2009-07-02 Toyota Central R&D Labs Inc Method and device for evaluating watermark

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009147057A (en) * 2007-12-13 2009-07-02 Toyota Central R&D Labs Inc Method and device for evaluating watermark

Similar Documents

Publication Publication Date Title
JP3451955B2 (en) Crystal defect evaluation method and crystal defect evaluation device
JP5915570B2 (en) Defect inspection method
JP2715289B2 (en) Three-dimensional defect analysis method for semiconductor device
WO2006002153A1 (en) Probes for use in scanning probe microscopes and methods of fabricating such probes
US5804460A (en) Linewidth metrology of integrated circuit structures
TW473894B (en) Inspecting device for crystal defect of silicon wafer and method for detecting crystal defect of the same
JPH04279042A (en) Etching residual inspection method
JP2010278363A (en) Crystal defect detecting method
Diebold et al. A survey of non‐destructive surface characterization methods used to insure reliable gate oxide fabrication for silicon IC devices
US6956659B2 (en) Measurement of critical dimensions of etched features
JP4908885B2 (en) Semiconductor device characteristic prediction method and characteristic prediction apparatus
JP5032396B2 (en) Standard substrate for thin film defect inspection, its manufacturing method, and thin film defect inspection method
JP7232901B2 (en) Method for fabricating semiconductor wafer features
JP3003642B2 (en) Standard sample for calibration of foreign object detection sensitivity and method for producing the same
CN110164819A (en) The detection method of semiconductor detection structure and forming method thereof, plug defect
US6333785B1 (en) Standard for calibrating and checking a surface inspection device and method for the production thereof
US11385187B1 (en) Method of fabricating particle size standards on substrates
TWI786550B (en) Method for inspecting pattern defects and test device
KR100912342B1 (en) Evaluation method of defect in wafer using reactive ion etching and wafer structure for the same
JPH01122132A (en) Evaluating method for dust generation of processing device
TWI236724B (en) Method of wafer defect monitoring
JP2004301623A (en) Standard sample for fluorescent x-ray analysis and manufacturing method thereof
JP2007180266A (en) Standard silicon wafer used for inspection made by defect inspection device, its manufacturing method, and inspection method using standard silicon wafer
KR100664857B1 (en) Analysis Method of Si Defect
JPH0471457B2 (en)