JPH04279042A - Etching residual inspection method - Google Patents
Etching residual inspection methodInfo
- Publication number
- JPH04279042A JPH04279042A JP4207191A JP4207191A JPH04279042A JP H04279042 A JPH04279042 A JP H04279042A JP 4207191 A JP4207191 A JP 4207191A JP 4207191 A JP4207191 A JP 4207191A JP H04279042 A JPH04279042 A JP H04279042A
- Authority
- JP
- Japan
- Prior art keywords
- etching
- residual
- substrate
- residue
- sio2
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005530 etching Methods 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims description 22
- 238000007689 inspection Methods 0.000 title claims description 5
- 230000003287 optical effect Effects 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 24
- 229910052681 coesite Inorganic materials 0.000 abstract description 12
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 12
- 239000000377 silicon dioxide Substances 0.000 abstract description 12
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 12
- 229910052682 stishovite Inorganic materials 0.000 abstract description 12
- 229910052905 tridymite Inorganic materials 0.000 abstract description 12
- 239000000758 substrate Substances 0.000 abstract description 11
- 238000001312 dry etching Methods 0.000 abstract description 7
- 125000006850 spacer group Chemical group 0.000 abstract description 6
- 239000002245 particle Substances 0.000 abstract description 3
- 230000008030 elimination Effects 0.000 abstract 1
- 238000003379 elimination reaction Methods 0.000 abstract 1
- 239000010419 fine particle Substances 0.000 abstract 1
- 230000002093 peripheral effect Effects 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910021418 black silicon Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910018594 Si-Cu Inorganic materials 0.000 description 1
- 229910008465 Si—Cu Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は、柱状エッチング微小
残渣の測定検査方法に係り、特にLSI等の半導体装置
の製造におけるドライエッチング時に発生する柱状エッ
チング微小残渣の定量的検査方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring and inspecting minute columnar etching residues, and more particularly to a method for quantitatively inspecting minute columnar etching residues generated during dry etching in the manufacture of semiconductor devices such as LSIs.
【0002】0002
【従来の技術】LSI等の半導体装置の集積度の向上に
伴い、エッチング技術等の微細加工技術の進歩は近年と
みに著しい。しかし、急激な微細加工術の進歩の反面、
特にドライエッチング時に発生するエッチング残渣の問
題が知られている。2. Description of the Related Art With the increase in the degree of integration of semiconductor devices such as LSIs, advances in microfabrication techniques such as etching techniques have been remarkable in recent years. However, despite the rapid progress in microfabrication technology,
In particular, the problem of etching residue generated during dry etching is known.
【0003】すなわち、第1に単結晶シリコン(Si)
トレンチエッチング時、チェンバー内雰囲気等の影響で
生ずる自然酸化膜が原因で発生する残渣(ブラックシリ
コン)、第2にAl−Si中のSi偏析により局所的に
エッチレートの差により生ずるAlエッチング時のSi
残渣、第3にCu等の不揮発性物質が原因で発生するA
l−Si−Cuエッチング時の残渣、第4に上記単結晶
トレンチエッチング時と同様に自然酸化膜マスクを原因
とする針状残渣等の問題である。これらのエッチング残
渣は、残渣自体が光学顕微鏡による観察が可能な大きさ
であるため、容量評価も比較的容易であり現在では抑制
策も確立されている。[0003] First, single crystal silicon (Si)
During trench etching, residues (black silicon) are generated due to natural oxide film caused by the atmosphere in the chamber, etc. Second, residues (black silicon) are generated due to local etch rate differences due to Si segregation in Al-Si during Al etching. Si
A caused by residue and thirdly non-volatile substances such as Cu.
The fourth problem is the problem of the residue during l-Si-Cu etching, and the fourth problem is the needle-like residue caused by the natural oxide film mask as in the case of the single crystal trench etching. These etching residues are large enough to be observed with an optical microscope, so capacity evaluation is relatively easy, and measures to suppress them have now been established.
【0004】0004
【発明が解決しようとする課題】上記以外の残渣、例え
ばタングステン(W)ポリサイド、すなわちWSix/
n+poly−Siのドライエッチング時に発生すると
推測される、例えば柱状のエッチング残渣は、その残渣
の直径が0.2μm以下微小のものも含まれるため、そ
の発生個数の定量的検査については公知光学的手段では
検出限界があった。図2にその柱状エッチング微小残渣
形成過程図を示す。すなわち図2(a)に示すようにS
i基板1、SiO2膜2、n+polySi層3、Ws
ix層4が順次形成されているウェハー上に例えばカー
ボン系ポリマー等の付着物7が付着されているとその付
着物が起因となって付着物下の被エッチング材料のエッ
チングレートを遅らせ、図2(b)の中間エッチング過
程を経て図2(c)に5で示した柱状エッチング微小残
渣として残る。[Problem to be Solved by the Invention] Residues other than those mentioned above, such as tungsten (W) polycide, that is, WSix/
For example, columnar etching residues that are assumed to be generated during dry etching of n+poly-Si include those with a diameter of 0.2 μm or less, so quantitative inspection of the number of generated residues can be performed using known optical means. There was a detection limit. FIG. 2 shows a process diagram of the formation of columnar etching minute residues. That is, as shown in FIG. 2(a), S
i-substrate 1, SiO2 film 2, n+polySi layer 3, Ws
If a deposit 7 such as a carbon-based polymer is deposited on the wafer on which the ix layer 4 is sequentially formed, the deposit slows down the etching rate of the material to be etched under the deposit, and as shown in FIG. After the intermediate etching process shown in FIG. 2(b), a small columnar etching residue shown at 5 in FIG. 2(c) remains.
【0005】本発明は基板上に形成された上記柱状エッ
チング微小残渣の発生個数を精度よく測定検査すること
を目的とする。An object of the present invention is to accurately measure and inspect the number of columnar etching minute residues formed on a substrate.
【0006】[0006]
【課題を解決するための手段】上述課題は本発明によれ
ば、被エッチング材料に異方性エッチングを施した際に
発生する柱状エッチング残渣の定量的検査方法において
、前記エッチング残渣に接して該エッチング残渣個数と
対応した側壁部を形成した後、光学的手段によって該側
壁部の個数を測定することによって前記エッチング残渣
を定量的に測定することを特徴とするエッチング残渣検
査方法によって解決される。[Means for Solving the Problems] According to the present invention, the above-mentioned problem is solved in a method for quantitatively inspecting columnar etching residues generated when a material to be etched is subjected to anisotropic etching. The problem is solved by an etching residue inspection method characterized in that the etching residue is quantitatively measured by forming sidewall parts corresponding to the number of etching residues and then measuring the number of sidewall parts by optical means.
【0007】本発明で用いられる被エッチング材料とし
ては、チタン(Ti)、タングステン(W)、モリブデ
ン(Mo)等の高融点金属のポリサイド化合物等をはじ
めとして、polySi等上記メカニズムで残渣を生ず
る全てに適用できる。また、エッチング残渣に接した側
壁部(サイドウォール)の形成方法としてはエッチバッ
ク等による残置形成法、あるいはエッチング残渣の材料
の一部を選択的に成長させる付着形成法、また該残渣の
材料の一部を変質させる変質形成方法(例えばSiをS
iO2に)等が好ましく用いられる。なお、側壁部材料
としては光が乱反射する光学的特性を有することが好ま
しい。The materials to be etched used in the present invention include polycide compounds of high-melting point metals such as titanium (Ti), tungsten (W), and molybdenum (Mo), as well as all materials that generate residues by the above-mentioned mechanism, such as polySi. Applicable to In addition, methods for forming sidewalls in contact with the etching residue include a residual formation method such as etchback, an adhesion formation method in which a part of the etching residue material is selectively grown, and a method for forming the sidewall portion in contact with the etching residue material. Alteration formation method that alters a part (for example, changing Si to S
iO2) etc. are preferably used. Note that it is preferable that the side wall material has an optical property that diffusely reflects light.
【0008】本発明で用いる光学的手段としては、パー
ティクルカウンタ、SEMあるいは光学顕微鏡等が好ま
しい。[0008] As the optical means used in the present invention, a particle counter, SEM, optical microscope, etc. are preferable.
【0009】[0009]
【作用】本発明によれば、微小な水平断面を有する柱状
のエッチング残渣を水平方向に拡大させて光学的手段の
検査解像の範囲内に入れることができるため、残渣の個
数を精度よく測定することが可能となる。[Operation] According to the present invention, columnar etching residues having a minute horizontal cross section can be expanded in the horizontal direction and placed within the inspection resolution range of optical means, so the number of residues can be measured with high accuracy. It becomes possible to do so.
【0010】0010
【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は本発明に係る方法の一実施例を説明するた
めの工程断面図である。Embodiments Hereinafter, embodiments of the present invention will be explained based on the drawings. FIG. 1 is a process sectional view for explaining an embodiment of the method according to the present invention.
【0011】図1(a)において、Si基板1上に形成
されたSiO2膜2上に、例えば幅(直径)W1が約0
.2μmの円形状の柱状エッチング微小残渣5(n+p
olySi層3とWSix層4からなる)が形成されて
いる。In FIG. 1(a), for example, a width (diameter) W1 of about 0 is formed on a SiO2 film 2 formed on a Si substrate 1.
.. 2 μm circular columnar etching minute residue 5 (n+p
(consisting of an olySi layer 3 and a WSix layer 4) is formed.
【0012】次に図1(b)に示すように、柱状エッチ
ング微小残渣5を形成したSi基板1上にCVD(化学
気相成長)装置等によりSiO2膜6を形成する。Si
O2膜6の厚さは柱状エッチング微小残渣5の高さ以上
で、例えば0.25μmとした。従って、柱状エッチン
グ微小残渣5上にも約0.25μmの厚さにSiO2膜
6が形成される。その後、ドライエッチングによりSi
O2膜6をエッチバックすることにより除去する。この
際、柱状エッチング微小残渣5が存在するところでは、
残渣部分にSiO2による側壁(サイドウォール)スペ
ーサ6aが図1(c)に示すように半球状に形成される
。この半球状の側壁スペーサ6aの直径W2は、柱状エ
ッチング微小残渣5の高さの約2倍、すなわち約0.4
μmとなり、残渣直上部に視点を置くと残渣の大きさは
SiO2によって拡大された(すなわち従来の測定範囲
に入る)形状となる。残渣周辺部にSiO2側壁スペー
サ6aを形成した後、レーザパーティクルカウンタによ
りSi基板1表面上の微小粒子数を測定すればSi基板
上に形成されたエッチング残渣数を精度よく測定するこ
とが可能である。Next, as shown in FIG. 1B, a SiO2 film 6 is formed on the Si substrate 1 on which the columnar etching minute residue 5 has been formed using a CVD (chemical vapor deposition) device or the like. Si
The thickness of the O2 film 6 was greater than the height of the columnar etching minute residue 5, and was, for example, 0.25 μm. Therefore, the SiO2 film 6 with a thickness of about 0.25 μm is also formed on the columnar etching minute residue 5. After that, Si was etched by dry etching.
The O2 film 6 is removed by etching back. At this time, where the columnar etching minute residue 5 exists,
A side wall spacer 6a made of SiO2 is formed in the residual portion in a hemispherical shape as shown in FIG. 1(c). The diameter W2 of this hemispherical sidewall spacer 6a is about twice the height of the columnar etching minute residue 5, that is, about 0.4
μm, and when the viewpoint is placed directly above the residue, the size of the residue becomes enlarged by SiO2 (that is, falls within the conventional measurement range). After forming the SiO2 sidewall spacer 6a around the residue, by measuring the number of microparticles on the surface of the Si substrate 1 using a laser particle counter, it is possible to accurately measure the number of etching residues formed on the Si substrate. .
【0013】なお、本実施例で用いたドライエッチング
ではC2Cl3F3系、HBr系ガスを用いた。Note that in the dry etching used in this example, C2Cl3F3-based and HBr-based gases were used.
【0014】[0014]
【発明の効果】以上説明したように、この発明によれば
被エッチング材料に異方性ドライエッチングを施した際
に発生する柱状のエッチング微小残渣数の精度よい測定
検査が可能になる。As described above, according to the present invention, it is possible to accurately measure and inspect the number of columnar etching minute residues generated when anisotropic dry etching is performed on a material to be etched.
【図1】本発明に係る方法の一実施例を説明するための
工程断面図である。FIG. 1 is a process sectional view for explaining an embodiment of the method according to the present invention.
【図2】柱状エッチング微小残渣の形成過程を示す工程
断面図である。FIG. 2 is a process cross-sectional view showing the process of forming columnar etching minute residues.
1 Si基板 2,6 SiO2膜 3 n+polySi層 4 WSix層 5 柱状エッチング微小残渣 6a 側壁スペーサ 7 付着物 1 Si substrate 2,6 SiO2 film 3 n+polySi layer 4 WSix layer 5 Column-shaped etching minute residue 6a Side wall spacer 7 Adherence
Claims (1)
を施した際に発生する柱状エッチング残渣の定量的検査
方法において、前記エッチング残渣に接して該エッチン
グ残渣個数と対応した側壁部を形成した後、光学的手段
によって該側壁部の個数を測定することによって前記エ
ッチング残渣を定量的に測定することを特徴とするエッ
チング残渣検査方法。1. In a method for quantitatively inspecting columnar etching residues generated when anisotropic etching is performed on a material to be etched, after forming sidewall portions corresponding to the number of etching residues in contact with the etching residues, An etching residue inspection method characterized in that the etching residue is quantitatively measured by measuring the number of the sidewall portions by optical means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4207191A JPH04279042A (en) | 1991-03-07 | 1991-03-07 | Etching residual inspection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4207191A JPH04279042A (en) | 1991-03-07 | 1991-03-07 | Etching residual inspection method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04279042A true JPH04279042A (en) | 1992-10-05 |
Family
ID=12625845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4207191A Pending JPH04279042A (en) | 1991-03-07 | 1991-03-07 | Etching residual inspection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04279042A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009147057A (en) * | 2007-12-13 | 2009-07-02 | Toyota Central R&D Labs Inc | Method and device for evaluating watermark |
-
1991
- 1991-03-07 JP JP4207191A patent/JPH04279042A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009147057A (en) * | 2007-12-13 | 2009-07-02 | Toyota Central R&D Labs Inc | Method and device for evaluating watermark |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3451955B2 (en) | Crystal defect evaluation method and crystal defect evaluation device | |
JP5915570B2 (en) | Defect inspection method | |
JP2715289B2 (en) | Three-dimensional defect analysis method for semiconductor device | |
WO2006002153A1 (en) | Probes for use in scanning probe microscopes and methods of fabricating such probes | |
US5804460A (en) | Linewidth metrology of integrated circuit structures | |
TW473894B (en) | Inspecting device for crystal defect of silicon wafer and method for detecting crystal defect of the same | |
JPH04279042A (en) | Etching residual inspection method | |
JP2010278363A (en) | Crystal defect detecting method | |
Diebold et al. | A survey of non‐destructive surface characterization methods used to insure reliable gate oxide fabrication for silicon IC devices | |
US6956659B2 (en) | Measurement of critical dimensions of etched features | |
JP4908885B2 (en) | Semiconductor device characteristic prediction method and characteristic prediction apparatus | |
JP5032396B2 (en) | Standard substrate for thin film defect inspection, its manufacturing method, and thin film defect inspection method | |
JP7232901B2 (en) | Method for fabricating semiconductor wafer features | |
JP3003642B2 (en) | Standard sample for calibration of foreign object detection sensitivity and method for producing the same | |
CN110164819A (en) | The detection method of semiconductor detection structure and forming method thereof, plug defect | |
US6333785B1 (en) | Standard for calibrating and checking a surface inspection device and method for the production thereof | |
US11385187B1 (en) | Method of fabricating particle size standards on substrates | |
TWI786550B (en) | Method for inspecting pattern defects and test device | |
KR100912342B1 (en) | Evaluation method of defect in wafer using reactive ion etching and wafer structure for the same | |
JPH01122132A (en) | Evaluating method for dust generation of processing device | |
TWI236724B (en) | Method of wafer defect monitoring | |
JP2004301623A (en) | Standard sample for fluorescent x-ray analysis and manufacturing method thereof | |
JP2007180266A (en) | Standard silicon wafer used for inspection made by defect inspection device, its manufacturing method, and inspection method using standard silicon wafer | |
KR100664857B1 (en) | Analysis Method of Si Defect | |
JPH0471457B2 (en) |