JPH04278589A - Manufacture of infrared sensor - Google Patents

Manufacture of infrared sensor

Info

Publication number
JPH04278589A
JPH04278589A JP3063794A JP6379491A JPH04278589A JP H04278589 A JPH04278589 A JP H04278589A JP 3063794 A JP3063794 A JP 3063794A JP 6379491 A JP6379491 A JP 6379491A JP H04278589 A JPH04278589 A JP H04278589A
Authority
JP
Japan
Prior art keywords
crystal
cdte
substrate
hgcdte
sensing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3063794A
Other languages
Japanese (ja)
Inventor
Masayo Ito
伊東 雅代
Koji Hirota
廣田 耕治
Tomoshi Ueda
知史 上田
Hiroyuki Tsuchida
土田 浩幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3063794A priority Critical patent/JPH04278589A/en
Publication of JPH04278589A publication Critical patent/JPH04278589A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To provide an infrared sensor having a flat HgCdTe crystal that will not warp at room temperature. CONSTITUTION:In a manufacturing method for an infrared sensor used as the sensor having the steps of liquid epitaxially growing an HgCdTe crystal 14 on a CdTe board 12 and processing the crystal 14, a material 16 having substantially the same thermal expansion coefficient as that of the crystal 14 substantially in the same thickness at substantially the same temperature as the growing temperature of the crystal 14 grown on its front surface side is formed on the entire rear surface side of the board 12.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は赤外線検知素子の製造方
法に関する。赤外線センサは目標物体に接触することな
く物体の存在、形状、温度、組成等を知ることができる
ため、人工衛星による気象観測、防犯、防災、地質・資
源調査、赤外線サーモグラフィによる医療用等の多くの
分野で用いられている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an infrared sensing element. Infrared sensors can detect the existence, shape, temperature, composition, etc. of a target object without coming into contact with it, so it is used in many applications such as weather observation using artificial satellites, crime prevention, disaster prevention, geological and resource surveys, and medical use using infrared thermography. It is used in the field of

【0002】このような赤外線センサのうち、二元又は
三元化合物半導体を利用した光電効果型センサは、感度
が高く、応答速度も速いが、通常素子の概略液体窒素温
度での冷却が必要である。
Among such infrared sensors, photoelectric effect sensors using binary or ternary compound semiconductors have high sensitivity and fast response speed, but usually require cooling to approximately the liquid nitrogen temperature of the element. be.

【0003】光電効果型センサは、光導電型、光起電力
型、MIS型に大別されるが、このうち光導電型センサ
を構成する素子としてHgCdTe結晶がよく用いられ
る。HgCdTe結晶は通常液相エピタキシャル結晶成
長方法により製造され、この結晶を加工して赤外線検知
素子として使用している。この赤外線検知素子は、光照
射時の抵抗変化を利用したものであり、半導体素子であ
るためにその抵抗が温度とともに変化する。
Photoelectric effect sensors are broadly classified into photoconductive type, photovoltaic type, and MIS type, and among these, HgCdTe crystal is often used as an element constituting the photoconductive type sensor. HgCdTe crystals are usually manufactured by a liquid phase epitaxial crystal growth method, and this crystal is processed and used as an infrared sensing element. This infrared sensing element utilizes a change in resistance upon irradiation with light, and since it is a semiconductor element, its resistance changes with temperature.

【0004】0004

【従来の技術】従来のHgCdTe結晶の一般的な結晶
成長方法として、ボートスライド式の液相エピタキシャ
ル結晶成長方法が知られている。即ち、カーボン製ボー
ト内に予め所定組成比に秤量されたHg1−X CdX
 Teからなる結晶成長用のメルト材料を収容し、これ
を結晶成長温度よりも高い所定温度に加熱して結晶成長
用のメルト材料を溶融させる。
2. Description of the Related Art A boat slide liquid phase epitaxial crystal growth method is known as a conventional general crystal growth method for HgCdTe crystals. That is, Hg1-X CdX weighed in advance at a predetermined composition ratio in a carbon boat
A melt material for crystal growth made of Te is stored and heated to a predetermined temperature higher than the crystal growth temperature to melt the melt material for crystal growth.

【0005】そして、カーボン製ボート内に予め収容し
たメルト材料に隣接して収容したCdTe基板を溶融し
た結晶成長用メルト材料に接触させ、炉内温度を所定の
結晶成長温度に低下させると、CdTe基板上にHgC
dTe結晶が成長する。
[0005] Then, when the CdTe substrate housed adjacent to the melt material previously housed in a carbon boat is brought into contact with the molten melt material for crystal growth and the temperature inside the furnace is lowered to a predetermined crystal growth temperature, CdTe HgC on the substrate
A dTe crystal grows.

【0006】所定の厚さのHgCdTe結晶層が形成さ
れた時点で、CdTe基板を収容したカーボン製ボート
をスライドさせることにより、CdTe基板をメルト材
料内から除去して結晶成長を停止させる。
[0006] When a HgCdTe crystal layer of a predetermined thickness is formed, the CdTe substrate is removed from the melt material by sliding a carbon boat containing the CdTe substrate to stop crystal growth.

【0007】これにより、図4(A)に示すように厚さ
約800μmのCdTe基板2上に厚さ約50μmのH
gCdTe結晶4を得ることができる。HgCdTe結
晶4の成長温度は約600℃である。
[0007] As a result, as shown in FIG.
gCdTe crystal 4 can be obtained. The growth temperature of the HgCdTe crystal 4 is approximately 600°C.

【0008】[0008]

【発明が解決しようとする課題】しかし、CdTe基板
2上にHgCdTe結晶4を成長させるという従来の方
法では、室温におけるCdTeとHgCdTeの熱膨張
係数の差のために、図4(B)に示すように、CdTe
基板2上にHgCdTe結晶4を成長させたウエハが反
るという問題があった。
However, in the conventional method of growing HgCdTe crystal 4 on CdTe substrate 2, due to the difference in thermal expansion coefficient between CdTe and HgCdTe at room temperature, As in, CdTe
There was a problem that the wafer on which the HgCdTe crystal 4 was grown on the substrate 2 warped.

【0009】ちなみに、300KにおけるCdTeとH
gCdTeの熱膨張係数はそれぞれ以下の通りである。 CdTe:4.5×10−6(K−1)HgCdTe:
5.1×10−6(K−1)
[0009] By the way, CdTe and H at 300K
The thermal expansion coefficients of gCdTe are as follows. CdTe:4.5×10-6(K-1)HgCdTe:
5.1×10-6 (K-1)

【0010】即ち、結晶成
長温度である約900Kでは、図4(A)に示すように
平坦なHgCdTe結晶4が得られているが、これを室
温(約300K)に冷却すると、HgCdTeの熱膨張
係数がCdTeの熱膨張係数よりも大きいために、図4
(B)に示すようにHgCdTe結晶4が反ってしまう
ことになる。
That is, at the crystal growth temperature of about 900 K, a flat HgCdTe crystal 4 is obtained as shown in FIG. Because the coefficient is larger than the thermal expansion coefficient of CdTe, Figure 4
As shown in (B), the HgCdTe crystal 4 is warped.

【0011】このように反ったHgCdTe結晶4を用
いて赤外線検知素子の素子化プロセスを行うと、HgC
dTe結晶4上に均一な性能を持つ赤外線検知素子が作
成できないという問題があった。
[0011] When the HgCdTe crystal 4 warped in this way is used to fabricate an infrared sensing element, HgC
There was a problem in that an infrared sensing element with uniform performance could not be created on the dTe crystal 4.

【0012】本発明はこのような点に鑑みてなされたも
のであり、その目的とするところは、室温において反り
のない平坦なHgCdTe結晶を得ることのできる赤外
線検知素子の製造方法を提供することである。
The present invention has been made in view of the above points, and its purpose is to provide a method for manufacturing an infrared sensing element that can obtain a flat HgCdTe crystal without warping at room temperature. It is.

【0013】[0013]

【課題を解決するための手段】本発明の第1の側面によ
ると、CdTe基板上にHgCdTe結晶を液相エピタ
キシャル成長させ、該HgCdTe結晶を加工して赤外
線検知素子として使用する赤外線検知素子の製造方法に
おいて、前記CdTe基板の裏面側全面に、表面側に成
長させるHgCdTe結晶の成長温度と概略同一温度で
、HgCdTe結晶の熱膨張係数とほぼ同一の熱膨張係
数を有する材料をHgCdTe結晶とほぼ同一の厚さ形
成することを特徴とする赤外線検知素子の製造方法が提
供される。
[Means for Solving the Problems] According to a first aspect of the present invention, a method for manufacturing an infrared sensing element includes growing an HgCdTe crystal on a CdTe substrate by liquid phase epitaxial growth, processing the HgCdTe crystal, and using the HgCdTe crystal as an infrared sensing element. In this step, a material having a coefficient of thermal expansion almost the same as that of the HgCdTe crystal is applied to the entire back surface of the CdTe substrate at approximately the same temperature as the growth temperature of the HgCdTe crystal grown on the front surface. A method of manufacturing an infrared sensing element is provided, which is characterized by forming a thickness.

【0014】CdTe基板の裏面側全面に形成する代わ
りに、CdTe基板の裏面側外周のみに形成するように
しても良い。
[0014] Instead of forming on the entire back surface side of the CdTe substrate, it may be formed only on the outer periphery of the back surface side of the CdTe substrate.

【0015】本発明の第2の側面によると、CdTe基
板の表面側外周にCdTe基板の熱膨張係数より小さい
熱膨張係数を有する材料を所定厚さ形成し、次いでCd
Te基板表面側にHgCdTe結晶を前記所定厚さとほ
ぼ同一厚さ液相エピタキシャル成長させることを特徴と
する赤外線検知素子の製造方法が提供される。
According to the second aspect of the present invention, a material having a thermal expansion coefficient smaller than that of the CdTe substrate is formed to a predetermined thickness on the outer periphery of the surface side of the CdTe substrate, and then the CdTe substrate is
There is provided a method for manufacturing an infrared sensing element, characterized in that a HgCdTe crystal is liquid-phase epitaxially grown on the surface side of a Te substrate to a thickness that is substantially the same as the predetermined thickness.

【0016】[0016]

【作用】第1の側面によると、CdTe基板の裏面側に
形成したHgCdTe結晶とほぼ同一の熱膨張係数を有
する材料により、室温冷却時に表面側のHgCdTe結
晶が収縮しようとする力が均衡させられるため、HgC
dTe結晶の反りが防止される。
[Operation] According to the first aspect, the material having almost the same coefficient of thermal expansion as the HgCdTe crystal formed on the back side of the CdTe substrate balances the force that causes the HgCdTe crystal on the front side to contract when cooled to room temperature. Therefore, HgC
Warping of the dTe crystal is prevented.

【0017】また第2の側面によると、CdTe基板の
表面側外周に形成したCdTe基板の熱膨張係数よりも
小さい熱膨張係数を有する材料により、室温冷却時に表
面側のHgCdTe結晶が収縮しようとする力が均衡さ
せられるため、HgCdTe結晶の反りが防止される。
According to the second aspect, the HgCdTe crystal on the surface side tends to contract when cooled to room temperature due to the material formed on the outer periphery of the surface side of the CdTe substrate and having a coefficient of thermal expansion smaller than that of the CdTe substrate. Since the forces are balanced, warping of the HgCdTe crystal is prevented.

【0018】[0018]

【実施例】図1は本発明の第1実施例を示している。こ
の実施例においては、厚さ約800μmのCdTe基板
12の裏面側に5.3×10−6/Kの熱膨張係数を有
するサファイア16を約600℃でCdTe基板12に
貼付する。サファイア16の厚さは約50μmである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a first embodiment of the present invention. In this example, sapphire 16 having a thermal expansion coefficient of 5.3 x 10-6/K is attached to the back side of the CdTe substrate 12 with a thickness of about 800 .mu.m at about 600.degree. The thickness of sapphire 16 is approximately 50 μm.

【0019】次いで、図1(A)に示すようにCdTe
基板12の表面側に約600℃でHgCdTe結晶14
を約50μmの厚さまで成長させる。
Next, as shown in FIG. 1(A), CdTe
A HgCdTe crystal 14 is formed on the surface side of the substrate 12 at about 600°C.
is grown to a thickness of approximately 50 μm.

【0020】HgCdTe結晶14の熱膨張係数は5.
1×10−6/Kでサファイア16の熱膨張係数に近い
ため、室温に冷却すると図1(B)に示すように、Hg
CdTe結晶14、CdTe基板12及びサファイア1
6内に矢印で示すような内部応力が発生し、HgCdT
e結晶14が収縮しようとする力が均衡させられるため
、反りのない平坦なHgCdTe結晶14を得ることが
できる。
The coefficient of thermal expansion of the HgCdTe crystal 14 is 5.
Since the coefficient of thermal expansion is 1×10-6/K, which is close to that of sapphire 16, when it is cooled to room temperature, Hg
CdTe crystal 14, CdTe substrate 12 and sapphire 1
6, internal stress as shown by the arrow occurs, and HgCdT
Since the forces that tend to cause the e-crystal 14 to contract are balanced, it is possible to obtain a flat HgCdTe crystal 14 without warping.

【0021】CdTe基板12上にHgCdTe結晶1
4が得られたならば、基板12と反対側をサファイア基
板に貼付し、エッチング等によりサファイア16及びC
dTe基板12を落としてから、HgCdTe結晶14
を約15μm厚まで研磨加工して赤外線検知素子を製造
する。
HgCdTe crystal 1 on CdTe substrate 12
4 is obtained, the side opposite to the substrate 12 is attached to a sapphire substrate, and sapphire 16 and C are formed by etching or the like.
After dropping the dTe substrate 12, the HgCdTe crystal 14 is
An infrared detecting element is manufactured by polishing to a thickness of approximately 15 μm.

【0022】この実施例ではCdTe基板12の裏面側
にサファイア16を貼付しているが、約600℃で熱膨
張係数5.2×10−6/KのGaP又は熱膨張係数5
.2×10−6/KのInAsを結晶成長させるように
しても良い。
In this embodiment, sapphire 16 is attached to the back side of the CdTe substrate 12, but GaP with a thermal expansion coefficient of 5.2 x 10-6/K at about 600°C or sapphire 16 with a thermal expansion coefficient of 5.
.. InAs crystals of 2×10 −6 /K may be grown.

【0023】図2は本発明の第2実施例を示しており、
この実施例はHgCdTeの結晶成長温度である約60
0℃でCdTe基板12の裏面側の外周部のみにサファ
イア18を貼付し、次いで図2(A)に示すように基板
12の表面側に約600℃でHgCdTe結晶14を成
長させるようにする。
FIG. 2 shows a second embodiment of the present invention,
This example is about 60°C, which is the crystal growth temperature of HgCdTe.
Sapphire 18 is attached only to the outer periphery of the back side of CdTe substrate 12 at 0°C, and then HgCdTe crystal 14 is grown on the front side of substrate 12 at about 600°C as shown in FIG. 2(A).

【0024】この実施例においても、室温に冷却すると
図2(B)の矢印に示すような内部応力が働くため、H
gCdTe結晶14が収縮しようとする力を均衡させる
ことができ、反りのない平坦なHgCdTe結晶14を
得ることができる。
In this example as well, when cooled to room temperature, internal stress as shown by the arrow in FIG. 2(B) acts, so H
The force that causes the gCdTe crystal 14 to shrink can be balanced, and a flat HgCdTe crystal 14 without warping can be obtained.

【0025】第2実施例において、サファイア18を基
板12の裏面側外周に貼付する代わりに、中央部をマス
クして基板12の裏面側外周部にGaP又はInAsを
結晶成長させるようにしても良い。
In the second embodiment, instead of attaching the sapphire 18 to the outer periphery of the back side of the substrate 12, the central part may be masked and GaP or InAs crystals may be grown on the outer periphery of the back side of the substrate 12. .

【0026】図3は本発明の第3実施例を示しており、
この実施例においてはCdTe基板12の表面側外周に
基板12の熱膨張係数よりも小さい熱膨張係数を有する
材料、例えば熱膨張係数4.2×10−6/Kを有する
Siを貼付する。次いで、図3(A)に示すようにCd
Te基板12の表面側に約600℃でHgCdTe結晶
14を成長させる。
FIG. 3 shows a third embodiment of the present invention,
In this embodiment, a material having a thermal expansion coefficient smaller than that of the substrate 12, such as Si having a thermal expansion coefficient of 4.2 x 10-6/K, is attached to the outer periphery of the CdTe substrate 12 on the front side. Next, as shown in FIG. 3(A), Cd
HgCdTe crystal 14 is grown on the surface side of Te substrate 12 at about 600°C.

【0027】室温に冷却すると、図3(B)の矢印に示
すような内部応力が働くため、HgCdTeが収縮しよ
うとする力が均衡され、反りのない平坦なHgCdTe
結晶14を得ることができる。
When cooled to room temperature, internal stress acts as shown by the arrow in FIG.
Crystal 14 can be obtained.

【0028】[0028]

【発明の効果】本発明によると、室温において反りのな
い平坦なHgCdTe結晶を得ることができるため、H
gCdTe結晶の全面に均一な性能を有する赤外線検知
素子を作成できるという効果を奏する。
Effects of the Invention According to the present invention, a flat HgCdTe crystal without warping can be obtained at room temperature.
This has the effect of making it possible to create an infrared sensing element having uniform performance over the entire surface of the gCdTe crystal.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】第1実施例断面図である。FIG. 1 is a sectional view of a first embodiment.

【図2】第2実施例断面図である。FIG. 2 is a sectional view of a second embodiment.

【図3】第3実施例断面図である。FIG. 3 is a sectional view of a third embodiment.

【図4】従来例断面図である。FIG. 4 is a sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

2,12  CdTe基板 4,14  HgCdTe結晶 16,18  サファイア 20  Si 2,12 CdTe substrate 4,14 HgCdTe crystal 16,18 Sapphire 20 Si

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  CdTe基板(12)上にHgCdT
e結晶(14)を液相エピタキシャル成長させ、該Hg
CdTe結晶(14)を加工して赤外線検知素子として
使用する赤外線検知素子の製造方法において、前記Cd
Te基板(12)の裏面側全面に、表面側に成長させる
HgCdTe結晶(14)の成長温度と概略同一温度で
、HgCdTe結晶(14)の熱膨張係数とほぼ同一の
熱膨張係数を有する材料(16)をHgCdTe結晶(
14)とほぼ同一の厚さ形成することを特徴とする赤外
線検知素子の製造方法。
[Claim 1] HgCdT on a CdTe substrate (12)
The e-crystal (14) is grown by liquid phase epitaxial growth, and the Hg
In the method for manufacturing an infrared sensing element in which a CdTe crystal (14) is processed and used as an infrared sensing element, the CdTe crystal (14) is processed.
A material having a coefficient of thermal expansion that is approximately the same as that of the HgCdTe crystal (14) at approximately the same temperature as the growth temperature of the HgCdTe crystal (14) grown on the front side is applied to the entire back side of the Te substrate (12). 16) with HgCdTe crystal (
14) A method for manufacturing an infrared sensing element, characterized in that it is formed to have substantially the same thickness as 14).
【請求項2】CdTe基板(12)上にHgCdTe結
晶(14)を液相エピタキシャル成長させ、該HgCd
Te結晶(14)を加工して赤外線検知素子として使用
する赤外線検知素子の製造方法において、前記CdTe
基板(12)の裏面側外周に、表面側に成長させるHg
CdTe結晶(14)の成長温度と概略同一温度で、H
gCdTe結晶(14)の熱膨張係数とほぼ同一の熱膨
張係数を有する材料(18)をHgCdTe結晶(14
)とほぼ同一の厚さ形成することを特徴とする赤外線検
知素子の製造方法。
2. A HgCdTe crystal (14) is grown on a CdTe substrate (12) by liquid phase epitaxial growth.
In the method for manufacturing an infrared sensing element in which a Te crystal (14) is processed and used as an infrared sensing element, the CdTe
Hg grown on the outer periphery of the back side of the substrate (12) on the front side
At approximately the same temperature as the growth temperature of CdTe crystal (14), H
A material (18) having a coefficient of thermal expansion that is almost the same as that of the gCdTe crystal (14) is used as a HgCdTe crystal (14).
) A method for manufacturing an infrared sensing element, characterized in that the element is formed to have almost the same thickness.
【請求項3】CdTe基板(12)上にHgCdTe結
晶(14)を液相エピタキシャル成長させ、該HgCd
Te結晶(14)を加工して赤外線検知素子として使用
する赤外線検知素子の製造方法において、前記CdTe
基板(12)の表面側外周にCdTe基板(12)の熱
膨張係数より小さい熱膨張係数を有する材料(20)を
所定厚さ形成し、次いでCdTe基板(12)表面側に
HgCdTe結晶(14)を前記所定厚さとほぼ同一厚
さ液相エピタキシャル成長させることを特徴とする赤外
線検知素子の製造方法。
3. A HgCdTe crystal (14) is grown on a CdTe substrate (12) by liquid phase epitaxial growth,
In the method for manufacturing an infrared sensing element in which a Te crystal (14) is processed and used as an infrared sensing element, the CdTe
A material (20) having a thermal expansion coefficient smaller than that of the CdTe substrate (12) is formed to a predetermined thickness on the outer periphery of the surface side of the substrate (12), and then a HgCdTe crystal (14) is formed on the surface side of the CdTe substrate (12). A method for manufacturing an infrared sensing element, characterized in that the method comprises growing the liquid phase epitaxially to a thickness substantially the same as the predetermined thickness.
JP3063794A 1991-03-06 1991-03-06 Manufacture of infrared sensor Withdrawn JPH04278589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3063794A JPH04278589A (en) 1991-03-06 1991-03-06 Manufacture of infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3063794A JPH04278589A (en) 1991-03-06 1991-03-06 Manufacture of infrared sensor

Publications (1)

Publication Number Publication Date
JPH04278589A true JPH04278589A (en) 1992-10-05

Family

ID=13239642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3063794A Withdrawn JPH04278589A (en) 1991-03-06 1991-03-06 Manufacture of infrared sensor

Country Status (1)

Country Link
JP (1) JPH04278589A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069492A1 (en) * 2011-11-09 2013-05-16 シャープ株式会社 Bypass diode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069492A1 (en) * 2011-11-09 2013-05-16 シャープ株式会社 Bypass diode
US9214573B2 (en) 2011-11-09 2015-12-15 Sharp Kabushiki Kaisha Bypass diode

Similar Documents

Publication Publication Date Title
US4558342A (en) Thermoelectric infrared detector array
US6121618A (en) Method of operating a high responsivity thermochromic infrared detector
EP0990717A1 (en) GaAs single crystal substrate and epitaxial wafer using the same
US4081819A (en) Mercury cadmium telluride device
JPH04278589A (en) Manufacture of infrared sensor
Kozlowski et al. High-performance 5-um 640 x 480 HgCdTe-on-sapphire focal plane arrays
Hobgood et al. Growth and characterization of Indium-doped silicon for extrinsic IR detectors
Yakovtseva et al. Porous silicon: a buffer layer for PbS heteroepitaxy
Partin et al. Temperature stable Hall effect sensors
Bornfreund et al. High-performance LWIR MBE-grown HgCdTe/Si focal plane arrays
Ashokan et al. Characteristics of MBE-grown heterostructure HgCdTe/CdTe/Si materials and planar photovoltaic devices
US4743949A (en) Infrared optical-electronic device
KR20180127073A (en) Thin film structure for Micro-bolometer and method for fabricating the same
Masek et al. Photovoltaic infrared sensor array in heteroepitaxial narrow gap lead-chalcogenides on silicon
Schoolar et al. Photoconductive PbSe epitaxial films
Zogg et al. Epitaxial lead chalcogenides on fluoride covered silicon substrates: Properties and infrared device fabrication
Katterloher et al. 32-pixel FIRGA demonstrator: testing of a gallium arsenide photoconductor array for far-infrared astronomy
EP0645003B1 (en) Bolometric thermal detector
JPH09232603A (en) Manufacture of infrared detector
JPH07146187A (en) Thermal element and its manufacturing method
US6708392B1 (en) Method of fabricating uncooled IR detector and arrays using colossal magneto-resistive materials and rock salt structure material substrates
US7527999B2 (en) Cd1−xZnxS high performance TCR material for uncooled microbolometers used in infrared sensors and method of making same
JPH03123086A (en) Manufacture of infrared detecting element
JP3134359B2 (en) Thin film thermoelectric element
JP3134360B2 (en) Manufacturing method of thin film thermoelectric element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514