JPH03123086A - Manufacture of infrared detecting element - Google Patents

Manufacture of infrared detecting element

Info

Publication number
JPH03123086A
JPH03123086A JP1260080A JP26008089A JPH03123086A JP H03123086 A JPH03123086 A JP H03123086A JP 1260080 A JP1260080 A JP 1260080A JP 26008089 A JP26008089 A JP 26008089A JP H03123086 A JPH03123086 A JP H03123086A
Authority
JP
Japan
Prior art keywords
crystal
hgcdte
sensing element
temperature
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1260080A
Other languages
Japanese (ja)
Inventor
Koji Hirota
廣田 耕治
Makoto Ito
真 伊藤
Tomoshi Ueda
知史 上田
Yukihiro Yoshida
幸広 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1260080A priority Critical patent/JPH03123086A/en
Publication of JPH03123086A publication Critical patent/JPH03123086A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent an element from changing in resistance even if it slightly fluctuates in a range of low temperature by a method wherein a prescribed amount of Hg, Cd or Te family element is added to melt material of Hg, Cd, and Te as a dopant. CONSTITUTION:Crystal of HgCdTe is epitaxially grown on a board 4 through a liquid phase growth method, which is processed into an infrared detecting element, where a prescribed amount of Hg, Cd, or Te is added to a melt material 7 of HgCdTe as a dopant. The added amount of the dopant is required to be enough to decrease the HgCdTe crystal enough in mobility in a range of low temperature where an infrared detecting device is made to operate. When an infrared detecting element is formed of the HgCdTe crystal possessed of the above characteristics, the element is kept constant in resistance at the operating temperature of the element or in the region of low temperature (77-100K). By this setup, even if a detecting element fluctuates in cooling temperature, it is kept constant in resistance and noises are prevented from occurring.

Description

【発明の詳細な説明】 概要 赤外線検知素子の製造方法に関し、 素子の動作温度である低温領域で多少温度が変動しても
素子抵抗が変化しない赤外線検知素子の製造方法を提供
することを目的とし、 基板上にHgCdTe結晶を液相エピタキシャル成長さ
せ、該HgCdTe結晶を加工して赤外線検知素子とし
て使用する赤外線検知素子の製造方法において、HgC
dTeのメルト材料中にHg、Cd又はTeの同族元素
を所定量ドーパントとして添加し、HgCd4e結晶の
移動度を赤外線検知素子の動作温度である低温領域で減
少させるように構成する。
[Detailed Description of the Invention] Overview Regarding a method for manufacturing an infrared sensing element, an object of the present invention is to provide a method for manufacturing an infrared sensing element in which the element resistance does not change even if the temperature changes slightly in the low temperature region that is the operating temperature of the element. , In a method for manufacturing an infrared sensing element, in which a HgCdTe crystal is grown on a substrate by liquid phase epitaxial growth, and the HgCdTe crystal is processed and used as an infrared sensing element,
A predetermined amount of a homologous element of Hg, Cd, or Te is added as a dopant to the dTe melt material, so that the mobility of the HgCd4e crystal is reduced in the low temperature region that is the operating temperature of the infrared sensing element.

産業上の利用分野 本発明は赤外線検知素子の製造方法に関する。Industrial applications The present invention relates to a method for manufacturing an infrared sensing element.

赤外線センサは目標物体に接触することなく物体の存在
、形状、温度、組成等を知ることができるため、人工衛
星による気象観測、防犯、防災、地質・資源調査、赤外
線サーモグラフィによる医療用等の多くの分野で用いら
れている。このような赤外線センサの内、二元又は三元
化合物半導体を利用した光電効果型センサは、感度が高
く、応答速度も速いが、通常素子の概略液体窒素温度で
の冷却が必要である。
Infrared sensors can detect the presence, shape, temperature, composition, etc. of a target object without coming into contact with it, so it is used in many applications such as weather observation using artificial satellites, crime prevention, disaster prevention, geological and resource surveys, and medical use using infrared thermography. It is used in the field of Among such infrared sensors, photoelectric effect sensors using binary or ternary compound semiconductors have high sensitivity and fast response speed, but usually require cooling of the element to approximately the temperature of liquid nitrogen.

光電効果型センサは、光導電型、光起電力型、MIS型
に大別されるが、この内光導電型センサを構成する素子
としてHgCdTe結晶がよ(用いられる。HgCdT
e結晶は通常液相エピタキシャル結晶成長方法により製
造され、この結晶を加工して赤外線検知素子として使用
している。この赤外線検知素子は、光照射時の抵抗変化
を利用したものであり、半導体素子であるためにその抵
抗は温度とともに変化する。
Photoelectric effect sensors are broadly classified into photoconductive type, photovoltaic type, and MIS type, and among these, HgCdTe crystal is often used as the element constituting the photoconductive type sensor.
E-crystals are usually manufactured by a liquid phase epitaxial crystal growth method, and this crystal is processed and used as an infrared sensing element. This infrared sensing element utilizes a change in resistance upon irradiation with light, and since it is a semiconductor element, its resistance changes with temperature.

従来の技術 易蒸発性の成分元素を含む化合物半導体結晶に適した一
般的な方法として、密封回転式の液相エピタキシャル結
晶成長法を第4図及び第5図により説明する。第4図を
参照すると、基板保持治具1は、円筒状の石英アンプル
2内に内接する外径と所定長さの、例えば石英ガラスあ
るいはカーボン材からなる円柱の外周部中央の一部を切
り欠いた切欠凹部3を有している。この切欠凹部3内の
対向壁面には、結晶成長用の基板4を横架する形に水平
保持するための溝5,5が形成されている。
BACKGROUND OF THE INVENTION As a general method suitable for compound semiconductor crystals containing easily evaporated component elements, a sealed rotation liquid phase epitaxial crystal growth method will be explained with reference to FIGS. 4 and 5. Referring to FIG. 4, the substrate holding jig 1 cuts a part of the center of the outer circumference of a cylinder made of quartz glass or carbon material, which has an outer diameter and a predetermined length and is inscribed in a cylindrical quartz ampoule 2. It has a cutout recess 3. Grooves 5, 5 for horizontally holding the crystal growth substrate 4 in a horizontally suspended manner are formed on opposing wall surfaces within the cutout recess 3.

そして、液相エピタキシャル結晶成長に際しては、治具
1の切欠凹部3内に例えばCdTeからなる結晶成長用
基板4が収容された基板ホルダ6を水平に掛は渡した形
に保持し、基板4及び基板ホルダ6と、予め所定組成比
に秤量されたHgCd 、、T eからなる結晶成長用
のメルト材料7とを図示のように石英アンプル2内に配
設し、内部を排気した後、基板保持治具1が内部で動か
ないように気密に封止する。
During liquid phase epitaxial crystal growth, the substrate holder 6 containing the crystal growth substrate 4 made of, for example, CdTe is held in the cutout recess 3 of the jig 1 in a horizontally hanging manner. A substrate holder 6 and a melt material 7 for crystal growth made of HgCd, Te, weighed in advance to a predetermined composition ratio are arranged in a quartz ampoule 2 as shown in the figure, and after the inside is evacuated, the substrate is held. The jig 1 is hermetically sealed so that it does not move inside.

しかる後、石英アンプル2を図示しないエビクキシャル
結晶成長炉内に配置し、結晶成長温度よりも高い所定温
度に加熱して、第5図(A)に示すように、石英アンプ
ル2内の結晶成長用のメルト材料7を溶融させる。そし
て、石英アンプル2を180°回転して基板4面を溶融
した結晶成長用メルト材料7に接触させ、炉内温度を所
定の結晶成長温度に低下させると、同図(B)に示すよ
うに、基板4上にHg+−CdつTeからなる結晶層8
が成長する。次に、所定の厚さの結晶層が形成された時
点で、同図(C)に示すように、石英アンプル2を再び
180°反転させることにより、基板4をメルト材料7
内から除去して結晶成長を停止させ、その後、炉内より
石英アンプル2を除冷しながら引き出し、石英アンプル
2を開封し、結晶層8が形成された基板4を基板保持治
具1から取り出すようにしている。
Thereafter, the quartz ampoule 2 is placed in an evixaxial crystal growth furnace (not shown), and heated to a predetermined temperature higher than the crystal growth temperature, as shown in FIG. 5(A). The melt material 7 is melted. Then, when the quartz ampoule 2 is rotated 180 degrees to bring the 4 surfaces of the substrate into contact with the melt material 7 for crystal growth, and the temperature inside the furnace is lowered to a predetermined crystal growth temperature, as shown in FIG. , a crystal layer 8 made of Hg+-Cd and Te on the substrate 4.
grows. Next, when a crystal layer of a predetermined thickness is formed, as shown in FIG.
The quartz ampoule 2 is removed from the inside to stop crystal growth, and then the quartz ampoule 2 is pulled out from inside the furnace while being slowly cooled, the quartz ampoule 2 is unsealed, and the substrate 4 on which the crystal layer 8 is formed is taken out from the substrate holding jig 1. That's what I do.

このような液相エピタキシャル結晶成長方法によりHg
CdTe結晶を成長させた後、この結晶に適当な加工を
加えて赤外線検知素子を製造している。
By such a liquid phase epitaxial crystal growth method, Hg
After growing a CdTe crystal, this crystal is subjected to appropriate processing to manufacture an infrared sensing element.

発明が解決しようとする課題 光導電型赤外線検知素子は、光が照射されたことによっ
て発生した過剰キャリアによって検知素子の抵抗が小さ
くなることを利用した素子である。
Problems to be Solved by the Invention A photoconductive infrared sensing element is an element that utilizes the fact that the resistance of the sensing element decreases due to excess carriers generated by irradiation with light.

即ち、検知素子の抵抗をR1キャリア濃度をn1移動度
をμとすると、R=1/(n・μ)で表される。しかし
、この素子は半導体素子であるために、その抵抗は温度
とともに変化する。これは、キャリア濃度及び移動度が
温度とともに変化する半導体に固有の現象である。
That is, when the resistance of the sensing element is R1, the carrier concentration is n1, and the mobility is μ, it is expressed as R=1/(n·μ). However, since this element is a semiconductor element, its resistance changes with temperature. This is a phenomenon unique to semiconductors in which carrier concentration and mobility change with temperature.

高性能の赤外線検知素子を作成するためには、検知素子
を1000/λ。(λ。はカットオフ波長)以下まで冷
却する必要がある。したがって、8〜14μm帯用赤外
線横用赤外線検知素子に付近までの冷却を必要とする。
In order to create a high-performance infrared sensing element, the sensing element must be 1000/λ. (λ is the cutoff wavelength) or below. Therefore, it is necessary to cool the infrared ray detection element for horizontal infrared rays in the 8 to 14 μm band to a temperature close to that level.

このような低温への冷却は、例えば液体窒素のような冷
媒により冷却するか、或いはジュールトムソン式の低温
冷却器等により冷却している。しかし、従来採用されて
いる冷却方法によると、冷却温度の変動を無視すること
はできない。
Cooling to such a low temperature is carried out, for example, by using a refrigerant such as liquid nitrogen, or by using a Joule-Thomson type low temperature cooler. However, according to conventionally employed cooling methods, fluctuations in cooling temperature cannot be ignored.

第6図は従来のHgCdTe結晶のキャリア濃度特性図
であり、第7図は移動度特性図である。
FIG. 6 is a carrier concentration characteristic diagram of a conventional HgCdTe crystal, and FIG. 7 is a mobility characteristic diagram.

上述したように素子抵抗Rは素子のキャリア濃度の逆数
及び移動度の逆数に比例するから、即ち、R=1/(n
・μ)であるから、従来の赤外線検− − 知素子の抵抗特性図は第6図のグラフの逆数及び第7図
のグラフの逆数を合成して第8図に示したようなものと
なる。即ち、赤外線検知素子の動作温度である80〜9
0にでは、温度に従って素子抵抗Rが変化する。
As mentioned above, the element resistance R is proportional to the reciprocal of the carrier concentration and the reciprocal of the mobility of the element, that is, R=1/(n
・μ) Therefore, the resistance characteristic diagram of the conventional infrared detection element is as shown in Figure 8 by combining the reciprocal of the graph in Figure 6 and the reciprocal of the graph in Figure 7. . That is, the operating temperature of the infrared sensing element is 80-9.
At 0, the element resistance R changes according to temperature.

ところで、この赤外線検知素子は一定のバイアス電流で
動作しているために、温度変動により素子抵抗が変化す
ると、素子の端子間の電圧が変化してしまう。この電圧
変化分は、実際に検知素子に光が当たって生じる信号電
圧とは異なりノイズである。このように第8図に示すよ
うな特性を持つHgCdTe結晶を用いて赤外線検知素
子を作成すると、温度変動に起因する信号ノイズが発生
するという問題があった。
By the way, since this infrared sensing element operates with a constant bias current, if the element resistance changes due to temperature fluctuation, the voltage between the terminals of the element will change. This voltage change is noise, unlike the signal voltage that occurs when light actually hits the sensing element. When an infrared sensing element is fabricated using a HgCdTe crystal having the characteristics shown in FIG. 8, there is a problem in that signal noise is generated due to temperature fluctuations.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、素子の動作温度である低温領域
で多少温度が変動しても素子抵抗が変化しない、赤外線
検知素子の製造方法を提供することである。
The present invention has been made in view of these points, and its purpose is to manufacture an infrared sensing element in which the element resistance does not change even if the temperature fluctuates slightly in the low-temperature region that is the operating temperature of the element. The purpose is to provide a method.

課題を解決するための手段 上述した目的を達成するために、基板上にHgCdTe
結晶を液相エピタキシャル成長させ、該HgCdTe結
晶を加工して赤外線検知素子として使用する赤外線検知
素子の製造方法において、HgCdTeのメルト材料中
にHg、Cd又はTeの同族元素(中性不純物)を所定
量ドーパントとして添加。実際にHgCdTeのメルト
材料中に添加する中性不純物としては、Hg、Cdの同
族元素であるZn及びTeの同族元素であるSe。
Means for Solving the Problems In order to achieve the above-mentioned objectives, HgCdTe was deposited on the substrate.
In a method for manufacturing an infrared sensing element in which a crystal is grown by liquid phase epitaxial growth and the HgCdTe crystal is processed to be used as an infrared sensing element, a predetermined amount of a homologous element (neutral impurity) of Hg, Cd or Te is added to a melt material of HgCdTe. Added as a dopant. Neutral impurities actually added to the HgCdTe melt material include Hg, Zn, which is a homologous element of Cd, and Se, which is a homologous element of Te.

S等があげられる。Examples include S.

添加量としてはHgCdTe結晶の移動度を赤外線検知
素子の動作温度である低温領域で十分に減少させる量で
あることが必要である。
The amount added must be such that the mobility of the HgCdTe crystal is sufficiently reduced in the low temperature region that is the operating temperature of the infrared sensing element.

作   用 このようにして形成された結晶のキャリア濃度特性図は
第2図に示すとおりであり、第6図に示した従来の特性
図と変わらないが、移動度は第3図に示すより120に
以下の低温側において減少する。第2図及び第3図に示
すような特性を有するHgCdTe結晶から赤外線検知
素子を作成すると、検知素子の抵抗RはR=1/(n・
μ)であるから、第1図のグラフに示すようになり、素
子の動作温度である低温領域(77に〜100K)で素
子抵抗が一定となる。検知素子がこのような抵抗特性を
有していると、例え検知素子の冷却温度が変動しても素
子抵抗は変化することがなく、ノイズが発生することは
ない。
Effect The carrier concentration characteristic diagram of the crystal thus formed is as shown in Figure 2, which is the same as the conventional characteristic diagram shown in Figure 6, but the mobility is 120% higher than that shown in Figure 3. decreases on the low temperature side below. When an infrared sensing element is made from a HgCdTe crystal having the characteristics shown in FIGS. 2 and 3, the resistance R of the sensing element is R=1/(n・
μ), as shown in the graph of FIG. 1, the element resistance becomes constant in the low temperature range (77 to 100 K), which is the operating temperature of the element. If the sensing element has such a resistance characteristic, even if the cooling temperature of the sensing element changes, the element resistance will not change and no noise will occur.

発明の効果 本発明は以上を詳述したように、素子の動作温度である
低温領域で温度変動が生じても、素子抵抗が変化しない
赤外線検知素子を製造できるため、冷却温度の変動によ
りノイズの生じない赤外線検知素子を実現できるという
効果を奏する。
Effects of the Invention As described in detail above, the present invention can manufacture an infrared sensing element in which the element resistance does not change even if temperature fluctuations occur in the low-temperature region that is the operating temperature of the element. This has the effect of realizing an infrared detecting element that does not generate light.

第2図は本発明結晶のキャリア濃度特性図、第3図は本
発明結晶の移動度特性図、 第4図は従来の密封回転式の液相エピタキシャル結晶成
長装置の一部破断斜視図、 第5図は同装置を使用した結晶成長工程図、第6図は従
来技術による結晶のキャリア濃度特性図、 第7図は同移動度特性図、 第8図は従来の赤外線検知素子の抵抗特性図である。
FIG. 2 is a carrier concentration characteristic diagram of the crystal of the present invention, FIG. 3 is a mobility characteristic diagram of the crystal of the present invention, FIG. 4 is a partially cutaway perspective view of a conventional sealed rotary liquid phase epitaxial crystal growth apparatus, Figure 5 is a diagram of the crystal growth process using the same device, Figure 6 is a carrier concentration characteristic diagram of a crystal according to the conventional technology, Figure 7 is a mobility characteristic diagram of the same, and Figure 8 is a resistance characteristic diagram of a conventional infrared sensing element. It is.

1・・・基板保持治具 2・・・石英アンプル 4・・・基板 7・・・メルト材料 8・・・結晶層。1... Board holding jig 2...Quartz ampoule 4... Board 7...Melt material 8...Crystal layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による赤外線検知素子の抵抗特性図、 FIG. 1 is a resistance characteristic diagram of an infrared sensing element according to the present invention.

Claims (1)

【特許請求の範囲】 基板(4)上にHgCdTe結晶を液相エピタキシャル
成長させ、該HgCdTe結晶を加工して赤外線検知素
子として使用する赤外線検知素子の製造方法において、 HgCdTeのメルト材料(7)中にHg、Cd又はT
eの同族元素を所定量ドーパントとして添加し、 HgCdTe結晶の移動度を赤外線検知素子の動作温度
である低温領域で減少させることを特徴とする赤外線検
知素子の製造方法。
[Claims] In a method for manufacturing an infrared sensing element, in which an HgCdTe crystal is grown on a substrate (4) by liquid phase epitaxial growth, and the HgCdTe crystal is processed to be used as an infrared sensing element, the HgCdTe melt material (7) contains: Hg, Cd or T
A method for producing an infrared sensing element, characterized in that a predetermined amount of a homologous element of e is added as a dopant to reduce the mobility of the HgCdTe crystal in a low temperature region that is the operating temperature of the infrared sensing element.
JP1260080A 1989-10-06 1989-10-06 Manufacture of infrared detecting element Pending JPH03123086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1260080A JPH03123086A (en) 1989-10-06 1989-10-06 Manufacture of infrared detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1260080A JPH03123086A (en) 1989-10-06 1989-10-06 Manufacture of infrared detecting element

Publications (1)

Publication Number Publication Date
JPH03123086A true JPH03123086A (en) 1991-05-24

Family

ID=17343025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1260080A Pending JPH03123086A (en) 1989-10-06 1989-10-06 Manufacture of infrared detecting element

Country Status (1)

Country Link
JP (1) JPH03123086A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5964063A (en) * 1996-07-22 1999-10-12 Honda Giken Kogyo Kabushiki Kaisha Motor-vehicle door having window winder, method of assembling the door, and window sash assembly suitable for use in the door

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5964063A (en) * 1996-07-22 1999-10-12 Honda Giken Kogyo Kabushiki Kaisha Motor-vehicle door having window winder, method of assembling the door, and window sash assembly suitable for use in the door

Similar Documents

Publication Publication Date Title
Tufte et al. Growth and Properties of Hg1− x Cd x Te Epitaxial Layers
Gildart et al. Some semiconducting properties of bismuth trisulfide
US3725135A (en) PROCESS FOR PREPARING EPITAXIAL LAYERS OF Hg{11 {118 {11 Cd{11 Te
US2953529A (en) Semiconductive radiation-sensitive device
JPS6021960B2 (en) Manufacturing method of Hg↓1-↓xCd↓xTe composition layer
US4086555A (en) Photoconductive sensor
US3224911A (en) Use of hydrogen halide as carrier gas in forming iii-v compound from a crude iii-v compound
US2844737A (en) Semi-conductive materials
US4642142A (en) Process for making mercury cadmium telluride
US3105906A (en) Germanium silicon alloy semiconductor detector for infrared radiation
US4081819A (en) Mercury cadmium telluride device
JPH03123086A (en) Manufacture of infrared detecting element
US3963540A (en) Heat treatment of mercury cadmium telluride
US3033791A (en) Method of manufacturing high-ohmic cadmium telluride for use in semiconductor devices or photo-sensitive devices
US3574140A (en) Epitaxial lead-containing photoconductive materials
Hobgood et al. Growth and characterization of Indium-doped silicon for extrinsic IR detectors
JP6713341B2 (en) Compound semiconductor substrate and manufacturing method thereof
US8969803B2 (en) Room temperature aluminum antimonide radiation detector and methods thereof
US4487813A (en) Composition control of CSVPE HgCdTe
US5028296A (en) Annealing method
US3945935A (en) Semiconductive metal chalcogenides of the type Cu3 VS4 and methods for preparing them
Stelzer et al. Mercury cadmium telluride as an infrared detector material
JPH06340499A (en) Formation of cadmium mercury telluride crystal and production of infrared detector
JP2915935B2 (en) Semiconductor thin film material
Alexiev et al. Gamma-ray detectors from thermally annealed Bridgman-grown CdTe