JPH04278146A - Freezer device - Google Patents

Freezer device

Info

Publication number
JPH04278146A
JPH04278146A JP3713791A JP3713791A JPH04278146A JP H04278146 A JPH04278146 A JP H04278146A JP 3713791 A JP3713791 A JP 3713791A JP 3713791 A JP3713791 A JP 3713791A JP H04278146 A JPH04278146 A JP H04278146A
Authority
JP
Japan
Prior art keywords
pressure
compression means
compression
low
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3713791A
Other languages
Japanese (ja)
Other versions
JP2600506B2 (en
Inventor
Norihide Saho
典英 佐保
Takeo Nemoto
武夫 根本
Masao Shiibayashi
正夫 椎林
Kazuaki Yokoi
和明 横井
Naoki Kasahara
直紀 笠原
Shintaro Sado
佐渡 慎太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3037137A priority Critical patent/JP2600506B2/en
Publication of JPH04278146A publication Critical patent/JPH04278146A/en
Application granted granted Critical
Publication of JP2600506B2 publication Critical patent/JP2600506B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To provide a small-sized and light weight freezer device which is convenient in use and produces a high freezing amount and in which evaporated herium gas is condensed at a temperature lower than 5.0K or a cooled item is cooled to a temperature lower than 5.0K. CONSTITUTION:An expansion device 1 is used in a cryogenic generating device and then the cryogenic state can be accomplished by controlling the pressure at an outlet of a J.T valve 13 disposed at a lower end of each of heat exchangers 6, 7, 9, 10 and 12 of the J.T circuit from a positive level to an arbitrary negative pressure with the same compressor device 5.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、極低温冷凍装置に関し
、特に冷却温度を任意の温度に低下しかつその冷凍量を
増加する冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cryogenic refrigeration system, and more particularly to a refrigeration system that lowers the cooling temperature to a desired temperature and increases the amount of refrigeration.

【0002】0002

【従来の技術】超伝導マグネットを使用した核磁気共鳴
診断装置、熱物性測定装置、ジョセフソン素子や各種セ
ンサー等の各種電子機器や、高真空、高排気速度のクラ
イオポンプ、超伝導マグネットを使用した電子加速器や
放射光発生装置の冷媒には、極低温の液体ヘリウムを使
用する。これらの被冷却装置の冷媒温度を、大気下の液
体ヘリウムの蒸発温度を特に4.2K以下にすれば、超
伝導マグネットの安定化や高磁場化、各種センサーのN
S比の向上に非常に有効である。
[Prior technology] Nuclear magnetic resonance diagnostic equipment using superconducting magnets, thermophysical property measuring equipment, various electronic devices such as Josephson elements and various sensors, cryopumps with high vacuum and high pumping speed, and superconducting magnets are used. Cryogenic liquid helium is used as a refrigerant for electron accelerators and synchrotron radiation generators. If the refrigerant temperature of these cooled devices is kept below the evaporation temperature of liquid helium in the atmosphere, especially 4.2 K, it will be possible to stabilize superconducting magnets, increase the magnetic field, and improve the N of various sensors.
This is very effective in improving the S ratio.

【0003】冷媒の液体ヘリウムは、わずかな熱で蒸発
し、かつ、高価であるため蒸発したヘリウムガスを凝縮
する冷凍装置を装着する。また、熱物性測定装置では、
4.2K以下の広範囲な冷却温度で被冷却体を冷却する
必要がある。
Liquid helium, a refrigerant, evaporates with a small amount of heat and is expensive, so a refrigeration device is installed to condense the evaporated helium gas. In addition, in thermophysical property measuring equipment,
It is necessary to cool the object to be cooled over a wide range of cooling temperatures of 4.2K or less.

【0004】この冷凍装置の構造が圧縮比の異なる2台
のスクロール形圧縮機を2段に配置する圧縮機ユニット
で加圧したヘリウムガスを、予冷用の寒冷発生機にギフ
ォード・マクマホン(G・M)式往復動形膨張機を使用
した寒冷発生回路と、ジュール・トムソン弁(J・T弁
)を極低温部に有するジュール・トムソン回路(J・T
回路)の高圧流路に同じ配管で供給し、前記予冷用の寒
冷発生機の排気ヘリウムガスを前記2段に配置した圧縮
機ユニットの中圧ラインに戻し、J・T回路の排気ヘリ
ウムガスを前記2段に配置した圧縮機ユニットの低圧ラ
インに戻す方法が冷凍、第36巻、第733号(昭和6
3年11月)第81頁から87頁に記載されている。
The structure of this refrigeration system is that helium gas pressurized by a compressor unit in which two scroll compressors with different compression ratios are arranged in two stages is used as a cold generator for pre-cooling by Gifford McMahon (G. The Joule-Thomson circuit (J.T.
The exhaust helium gas from the cold generator for precooling is returned to the medium pressure line of the compressor unit arranged in the two stages, and the exhaust helium gas from the J/T circuit is supplied to the high pressure flow path of the J/T circuit through the same piping. A method of returning the pressure to the low pressure line of the compressor unit arranged in the two stages is described in Refrigeration, Vol. 36, No. 733 (Showa 6).
(November 3rd year), pages 81 to 87.

【0005】この場合、J・T回路のJ・T弁からの排
気ヘリウムガスを圧縮機の吸気口入口で1.0atm以
上の正圧の状態で回収する。したがって、J・T回路の
J・T弁出口圧力は回路中の低圧流路の圧力損失分高く
なり約1.2atm以上となる。このため、この冷凍装
置の冷凍温度は、4.5K以上である。また、圧縮機ユ
ニットで加圧したヘリウムガスを寒冷発生回路と、J・
T回路の高圧流路に同じ配管で供給するため、熱負荷の
変動等によって生じる寒冷発生回路の流量、圧力の変動
がJ・T回路の高圧、低圧流路内に影響し、安定な冷却
温度及び安定な冷凍量が得られない。
In this case, the exhaust helium gas from the J/T valve of the J/T circuit is recovered at a positive pressure of 1.0 atm or more at the intake port of the compressor. Therefore, the J/T valve outlet pressure of the J/T circuit increases by the pressure loss in the low pressure passage in the circuit, and becomes approximately 1.2 atm or more. Therefore, the freezing temperature of this refrigeration device is 4.5K or higher. In addition, the helium gas pressurized by the compressor unit is connected to the cold generation circuit,
Since the high pressure flow path of the T circuit is supplied through the same piping, fluctuations in the flow rate and pressure of the cold generation circuit caused by changes in heat load, etc. will affect the high pressure and low pressure flow paths of the J/T circuit, resulting in a stable cooling temperature. and stable frozen amount cannot be obtained.

【0006】また、圧縮比の異なる2台のスクロール形
圧縮機を2段に配置する圧縮機ユニットを使用し、加圧
したヘリウムガスを、寒冷発生機回路とJ・T回路の高
圧流路に同じ配管で同時に供給し、かつ、寒冷発生機回
路とJ・T回路の排気ガスをそれぞれ前記圧縮機ユニッ
トの中圧、低圧ラインに同時に戻すため2台のスクロー
ル形圧縮機を別々に細かく制御する必要があり、冷凍装
置の小型軽量化や操作の簡便さにかける。
[0006] In addition, a compressor unit in which two scroll compressors with different compression ratios are arranged in two stages is used to supply pressurized helium gas to the high-pressure flow path of the cold generator circuit and the J/T circuit. The two scroll compressors are separately and finely controlled in order to simultaneously supply them through the same piping and return the exhaust gas from the cold generator circuit and J/T circuit to the medium pressure and low pressure lines of the compressor unit, respectively. There is a need to make refrigeration equipment smaller and lighter and easier to operate.

【0007】また、他の冷凍装置の構造が特開昭61ー
235648号公報に記載されている。この冷凍装置で
は、予冷用の寒冷発生機にソルベイ式やギフォード・マ
クマホン(G・M)式往復動形膨張機を使用し、2台2
段の圧縮機(一般にはロータリー式や往復動式)を備え
J・T弁を極低温部に有するJ・T回路で液体ヘリウム
温度を発生する。膨張機及びJ・T回路には別経路の圧
縮機で圧縮したヘリウムガスを供給し、膨張機及びJ・
T回路からの排気ヘリウムガスを圧縮機の吸気口入口で
1.0atm以上の正圧の状態で回収する。したがって
、J・T回路のJ・T弁出口圧力は回路中の圧力損失分
高くなり約1.2atm以上となる。この場合も冷凍温
度は4.5K以上である。
[0007] Further, the structure of another refrigeration system is described in Japanese Patent Application Laid-Open No. 61-235648. This refrigeration system uses a Solvay type or Gifford-McMahon (G.M.) type reciprocating expander as a cold generator for pre-cooling.
Liquid helium temperature is generated in a J/T circuit that is equipped with stages of compressors (generally rotary type or reciprocating type) and has a J/T valve in the cryogenic section. Helium gas compressed by a compressor in a separate route is supplied to the expander and J/T circuit, and helium gas is supplied to the expander and J/T circuit.
Exhausted helium gas from the T circuit is recovered at a positive pressure of 1.0 atm or more at the inlet of the compressor. Therefore, the J/T valve outlet pressure of the J/T circuit increases by the pressure loss in the circuit, and becomes approximately 1.2 atm or more. In this case as well, the freezing temperature is 4.5K or higher.

【0008】また、この場合も圧縮比の異なる2台の圧
縮機を2段に配置する圧縮機ユニットを使用しているた
め、圧縮機を別々に細かく制御する必要があり、冷凍装
置の小型軽量化や操作の簡便さにかける。この場合、同
一流路内で2台のロータリー形圧縮機と2系統の油除去
、回収回路を用いて圧縮機ユニットを構成しているため
、冷凍装置の小型軽量化にかける。
[0008] Also, in this case, since a compressor unit is used in which two compressors with different compression ratios are arranged in two stages, it is necessary to finely control the compressors separately. The focus is on ease of use and ease of operation. In this case, since the compressor unit is configured using two rotary compressors and two oil removal and recovery circuits in the same flow path, the refrigeration system can be made smaller and lighter.

【0009】他の冷凍装置の構造であるクロード・サイ
クル冷凍機(圧縮機ユニットで加圧したヘリウムガスを
、予冷用の寒冷発生器に往復動形膨張機を使用した寒冷
発生回路と、J・T弁を極低温部に有するJ・T回路の
高圧流路に同じ配管で供給し低圧ヘリウムガスを両回路
の低圧流路が合流した配管で前記圧縮機ユニットに吸入
する方式)専用に圧縮比の同じ2台のスクロール形圧縮
機を並列1段に配置する圧縮機ユニットが低温工学・超
電導学会予稿集、第44回、(1990年11月)第9
6頁に記載されている。
Another refrigeration device structure is a Claude cycle refrigerator (a cold generation circuit that uses a reciprocating expander as a cold generator for precooling helium gas pressurized by a compressor unit, and a J. A method in which low-pressure helium gas is supplied to the high-pressure passages of the J and T circuits, which have a T-valve in the cryogenic part, through the same piping, and is sucked into the compressor unit through the piping where the low-pressure passages of both circuits join together. A compressor unit in which two identical scroll compressors are arranged in one stage in parallel was published in Proceedings of the Japan Society of Cryogenic Engineering and Superconductivity, 44th, (November 1990) No. 9.
It is described on page 6.

【0010】この冷凍装置においても、J・T回路のJ
・T弁からの排気ヘリウムガスを圧縮機の吸気口入口で
1.0atm以上の正圧の状態で回収する。従って、J
・T弁出口圧力は寒冷発生回路の低圧流路が合流したJ
・T回路の低圧流路の圧力損失分高くなり約1.2at
m以上となる。このため、この冷凍装置の冷凍温度は4
.5K以上である。
[0010] Also in this refrigeration system, J of the J・T circuit
・Recover the exhaust helium gas from the T-valve at the inlet of the compressor at a positive pressure of 1.0 atm or more. Therefore, J
・The T valve outlet pressure is J where the low pressure flow path of the cold generation circuit merges.
・The pressure loss in the low pressure flow path of the T circuit increases by approximately 1.2at.
m or more. Therefore, the freezing temperature of this freezing device is 4
.. 5K or more.

【0011】また圧縮機ユニットで加圧したヘリウムガ
スを、寒冷発生回路と、J・T回路の高圧流路に同じ配
管で供給するため、熱負荷の変動等によって生じる寒冷
発生回路の流量、圧力の変動がJ・T回路の高圧、低圧
流路内に影響し、安定な冷却温度及び安定な冷凍量が得
られない。この場合も同一流路内で2台のスクロール形
圧縮機と2系統の油除去、回収回路を用いて圧縮機ユニ
ットを構成しているため、冷凍装置の小型軽量化や寒冷
発生回路とJ・T回路へのヘリウムガス流量配分操作の
簡便さにかける。
[0011] Furthermore, since the helium gas pressurized by the compressor unit is supplied to the high-pressure flow path of the cold generation circuit and the J/T circuit through the same piping, the flow rate and pressure of the cold generation circuit caused by fluctuations in heat load, etc. This fluctuation affects the high-pressure and low-pressure channels of the J/T circuit, making it impossible to obtain a stable cooling temperature and a stable amount of refrigeration. In this case as well, the compressor unit is constructed using two scroll compressors and two systems of oil removal and recovery circuits in the same flow path, making the refrigeration system smaller and lighter, and the cold generation circuit and The reason for this is the simplicity of the helium gas flow distribution operation to the T circuit.

【0012】0012

【発明が解決しようとする課題】しかしながら、上記し
たごとく従来の技術は、4.5K未満の任意の温度に安
定に制御しながら冷却する方法に関しては触れられてい
ない。また、圧縮機吸入口を負圧にした場合、吐出圧が
低下し予冷寒冷発生回路の寒冷量が低下して、冷却温度
が4.5K以上に昇温する問題がある。また、圧縮機の
操作の簡便さ及び小型軽量化の方法に関しても触れられ
ていない。
[Problems to be Solved by the Invention] However, as described above, the conventional techniques do not mention a method of cooling while stably controlling the temperature to an arbitrary temperature below 4.5K. Further, when the compressor suction port is made to have a negative pressure, there is a problem that the discharge pressure decreases, the amount of refrigeration in the precooling refrigeration generation circuit decreases, and the cooling temperature rises to 4.5K or more. Further, there is no mention of ease of operation of the compressor and methods for reducing the size and weight of the compressor.

【0013】本発明の目的は、蒸発したヘリウムガスを
4.5K未満で凝縮する、または被冷却体を4.5K未
満特に大気圧下の液体ヘリウム温度4.2K以下に安定
に冷却する小型軽量で操作が簡便な、かつ、大ききな冷
凍量を安定に発生する冷凍装置を提供することにある。
[0013] The object of the present invention is to provide a compact and lightweight device that condenses evaporated helium gas at a temperature below 4.5K or stably cools an object to be cooled below 4.5K, particularly below the temperature of liquid helium at atmospheric pressure of 4.2K. It is an object of the present invention to provide a refrigeration device that is easy to operate and that stably generates a large amount of refrigeration.

【0014】[0014]

【課題を解決するための手段】上記目的は、真空ポンプ
等の補助排気手段を用いずにJ・T回路の低圧流路のヘ
リウムガスを圧縮機の吸気口入口で正圧から負圧の範囲
で回収し、同圧縮機で正圧に加圧したヘリウムガスをJ
・T回路の高圧流路に同一圧縮機で供給することにより
達成する。
[Means for Solving the Problems] The above object is to pump helium gas in the low pressure flow path of the J/T circuit to a range from positive pressure to negative pressure at the intake port of the compressor without using auxiliary exhaust means such as a vacuum pump. The helium gas collected by J and pressurized to positive pressure by the same compressor is
・Achieved by supplying the same compressor to the high pressure flow path of the T circuit.

【0015】即ち本発明は、予冷用の寒冷発生回路と隔
離された一連の高圧配管及び低圧配管を内蔵した熱交換
器と、前記高圧配管の極低温部に設けられた膨張弁とを
備え該膨張弁の出口が被冷却体を内蔵する冷媒容器内に
導かれ、前記低圧配管の低温部が前記冷媒容器内で前記
膨張弁の出口と連通し、前記高圧配管と前記低圧配管が
常温部で圧縮手段を介して連通した冷凍装置の該圧縮手
段が圧縮手段内の圧縮室内に多段、かつそれぞれが隔離
され連続の小圧縮室を有する圧縮手段であることを特徴
する。
That is, the present invention includes a heat exchanger incorporating a series of high-pressure piping and low-pressure piping isolated from a cold generation circuit for pre-cooling, and an expansion valve provided in the cryogenic part of the high-pressure piping. An outlet of the expansion valve is guided into a refrigerant container containing a cooled object, a low temperature part of the low pressure pipe communicates with the outlet of the expansion valve in the refrigerant container, and the high pressure pipe and the low pressure pipe are in a normal temperature part. The compression means of the refrigeration apparatus communicated through the compression means is characterized in that the compression means has multiple small compression chambers that are isolated and continuous within the compression chambers within the compression means.

【0016】また本発明は、高圧配管及び低圧配管を内
蔵した熱交換器と、前記高圧配管の極低温部に設けられ
た膨張弁とを備え、該膨張弁の出口を負圧にし、該出口
が被冷却体を内蔵する冷媒容器内に導かれ、前記低圧配
管の低温部が前記冷媒容器内で前記膨張弁の出口と連通
し、前記高圧配管と前記低圧配管が常温部で圧縮手段を
介して連通した冷凍装置の該圧縮手段が圧縮手段内の圧
縮室内に多段、かつそれぞれが隔離され連続の小圧縮室
を有する圧縮手段であることを特徴する。
Further, the present invention includes a heat exchanger incorporating high-pressure piping and low-pressure piping, and an expansion valve provided in the cryogenic part of the high-pressure piping, the outlet of the expansion valve is set to negative pressure, and the outlet is guided into a refrigerant container containing an object to be cooled, a low-temperature section of the low-pressure pipe communicates with an outlet of the expansion valve within the refrigerant container, and the high-pressure pipe and the low-pressure pipe are connected to each other through a compression means at a normal temperature section. The compression means of the refrigeration apparatus communicated with each other is characterized in that the compression means has multiple small compression chambers separated and continuous within the compression chambers within the compression means.

【0017】更に本発明は、予冷用の寒冷発生回路と隔
離された一連の高圧配管及び低圧配管を内蔵した熱交換
器と、前記高圧配管の極低温部に設けられた膨張弁とを
備え前記膨張弁の出口を負圧にし、かつ被冷却体を内蔵
する冷媒容器内に導かれ、前記低圧配管の低温部が前記
冷媒容器内で前記膨張弁の出口と連通し、前記高圧配管
と前記低圧配管が常温部で圧縮手段を介して連通した冷
凍装置の該圧縮手段が圧縮手段内の圧縮室内に多段の、
かつそれぞれが隔離され連続の小圧縮室を有する圧縮手
段であることを特徴する。
Furthermore, the present invention includes a heat exchanger incorporating a series of high-pressure piping and low-pressure piping isolated from a cold generating circuit for pre-cooling, and an expansion valve provided in the cryogenic part of the high-pressure piping. The outlet of the expansion valve is set to negative pressure and is guided into a refrigerant container containing a cooled object, and the low-temperature part of the low-pressure pipe communicates with the outlet of the expansion valve in the refrigerant container, and the high-pressure pipe and the low-pressure The compression means of the refrigeration system, in which the pipes communicate with each other through the compression means at a normal temperature section, has multiple stages in the compression chamber within the compression means.
The compressor is characterized in that each compressor has separate and continuous small compression chambers.

【0018】また本発明は、予冷用の寒冷発生回路と隔
離された一連の高圧配管及び低圧配管を内蔵した熱交換
器と、前記高圧配管の極低温部に設けられた膨張弁とを
備え前記膨張弁の出口が被冷却体を内蔵する冷媒容器内
に導かれ、前記低圧配管の低温部が前記冷媒容器内で前
記膨張弁の出口と連通し、前記高圧配管と前記低圧配管
が常温部で圧縮手段を介して連通し、圧縮室内に多段の
、かつそれぞれが隔離され連続の小圧縮室を有した圧縮
手段の吸入口の圧力を正圧から負圧の範囲で調整するこ
とを特徴する。
Further, the present invention includes a heat exchanger incorporating a series of high-pressure piping and low-pressure piping isolated from a cold generation circuit for pre-cooling, and an expansion valve provided in the cryogenic part of the high-pressure piping. An outlet of the expansion valve is guided into a refrigerant container containing a cooled object, a low temperature part of the low pressure pipe communicates with the outlet of the expansion valve in the refrigerant container, and the high pressure pipe and the low pressure pipe are in a normal temperature part. It is characterized by adjusting the pressure at the suction port of the compression means, which communicates through the compression means and has multiple small compression chambers isolated and continuous within the compression chamber, in a range from positive pressure to negative pressure.

【0019】上記各発明においては、(1)前記圧縮手
段が圧縮手段内の圧縮室内に多段のかつそれぞれが隔離
され連続の小圧縮室を有した圧縮手段を複数個を直列に
配置したこと、(2)前記圧縮手段が圧縮手段内の圧縮
室内に多段のかつそれぞれが隔離され連続の小圧縮室を
有したスクロール型圧縮機またはスクリュウ型圧縮機と
すること、(3)前記圧縮手段が圧縮手段内の圧縮室内
に多段のかつそれぞれが隔離され連続の小圧縮室を有し
た油潤滑式の圧縮手段であること、(4)前記圧縮手段
が圧縮手段内の圧縮室内に多段のかつそれぞれが隔離さ
れ連続の小圧縮室を有した1機の圧縮手段であること、
(5)前記圧縮手段が圧縮手段内の圧縮室内に多段のか
つそれぞれが隔離され連続の小圧縮室を有した1段で複
数機の圧縮手段であること、(6)前記圧縮手段が圧縮
手段内の圧縮室内に多段のかつそれぞれが隔離され連続
の小圧縮室を有した、複数機を1つに圧力容器に内蔵し
た圧縮手段であること、(7)少なくとも該圧縮手段の
処理風量、または該膨張弁の通過風量、高、低圧流路間
のバイパス風量を調整し、該冷媒容器内の温度または圧
力を制御すること、(8)前記高圧配管と前記低圧配管
が常温部で圧縮手段を介して連通した冷凍装置において
、常温部の前記低圧配管の接続部を大気に接触させない
ように隔離手段具備したこと、(9)常温部の該低圧配
管を前記高圧配管内に配置したこと、(10)前記高圧
配管の極低温部に膨張弁を設け前記膨張弁の出口が被冷
却体を保持する伝熱体に導かれ、前記低圧配管と前記膨
張弁の出口が連通し、前記高圧配管と前記低圧配管が常
温部で圧縮手段を介して連通した冷凍装置の該圧縮手段
が圧縮手段内の圧縮室内に多段の、かつそれぞれが隔離
され連続の小圧縮室を有した圧縮手段であること等の態
様が有効である。
[0019] In each of the above inventions, (1) the compression means has a plurality of compression means arranged in series, each having a multi-stage, isolated and continuous small compression chamber within the compression chamber within the compression means; (2) The compression means is a scroll-type compressor or screw-type compressor having multiple small compression chambers that are isolated and continuous within the compression chambers within the compression means; (3) The compression means is a (4) The compression means is an oil-lubricated compression means having multiple small compression chambers each separated and continuous within a compression chamber within the compression means; be a single compression means with isolated and continuous small compression chambers;
(5) The compression means is a one-stage, plurality of compression means each having a plurality of isolated and continuous small compression chambers in the compression chambers within the compression means; (6) the compression means is a compression means; (7) at least the processing air volume of the compression means, or (8) controlling the temperature or pressure in the refrigerant container by adjusting the air flow rate passing through the expansion valve and the bypass air flow between the high and low pressure flow paths; In the refrigeration equipment communicated through the refrigeration system, an isolating means is provided to prevent the connecting portion of the low-pressure pipe in the normal temperature section from coming into contact with the atmosphere; (9) the low-pressure pipe in the normal temperature section is arranged within the high-pressure pipe; 10) An expansion valve is provided in the cryogenic part of the high-pressure pipe, and the outlet of the expansion valve is guided to a heat transfer body that holds the object to be cooled, and the low-pressure pipe and the outlet of the expansion valve communicate with each other, and the high-pressure pipe and the outlet of the expansion valve communicate with each other. The compression means of the refrigeration system with which the low-pressure piping communicates through the compression means at room temperature is a compression means having multiple small compression chambers that are isolated and continuous within the compression chambers within the compression means. The following aspects are effective.

【0020】[0020]

【作用】予冷用の寒冷発生機に例えばギフォード・マク
マホン(G・M)式往復動形膨張機を使用し、予冷用の
寒冷発生回路と隔離したJ・T回路のJ・T弁出口の圧
力を正圧から負圧の任意の値に安定に制御する。それに
よって、J・T弁出口で4.5K未満の任意のヘリウム
温度を安定に発生できる。
[Operation] For example, a Gifford-McMahon (G.M.) type reciprocating expander is used as the cold generator for precooling, and the pressure at the J/T valve outlet of the J/T circuit isolated from the cold generation circuit for precooling is used. is stably controlled to any value from positive pressure to negative pressure. As a result, any helium temperature below 4.5 K can be stably generated at the J/T valve outlet.

【0021】また、J・T回路のヘリウムガス流量を増
加することにより、容易に4.5K未満の冷凍量を安定
に増加することができる。また、吸気口入口で正圧から
負圧の範囲で回収し、正圧に圧縮したヘリウムガスをJ
・T回路の高圧流路に供給する操作を同一圧縮機で行う
ことにより、小型軽量で簡便な冷凍装置となる。
Furthermore, by increasing the helium gas flow rate of the J/T circuit, the amount of refrigeration below 4.5K can be easily and stably increased. In addition, the helium gas collected at the inlet inlet in a range of positive pressure to negative pressure and compressed to positive pressure is
・By performing the operation of supplying to the high-pressure flow path of the T circuit using the same compressor, the refrigeration system becomes small, lightweight, and simple.

【0022】[0022]

【実施例】以下、本発明の一実施例を図1により説明す
る。予冷用の寒冷発生回路に配置した寒冷発生機1は、
例えば、ギフォード・マクマホン膨張機で構成される。
[Embodiment] An embodiment of the present invention will be explained below with reference to FIG. The cold generator 1 placed in the cold generating circuit for pre-cooling is
For example, it consists of a Gifford-McMahon expander.

【0023】ヘリウム圧縮機ユニット2の高圧ヘリウム
ガスは寒冷発生機1中に流入して内部で断熱膨張し、第
1ステージ3、第2ステージ4でそれぞれ温度約40K
、15Kの寒冷を発生する。膨張後のガスは、再び、圧
縮機ユニット2に戻る。
The high-pressure helium gas in the helium compressor unit 2 flows into the cold generator 1 and is adiabatically expanded inside, and the temperature reaches approximately 40K in the first stage 3 and second stage 4, respectively.
, generates a cold of 15K. The expanded gas returns to the compressor unit 2 again.

【0024】一方、予冷用の寒冷発生回路と隔離したJ
・T回路の圧縮機ユニット5で加圧された高圧のヘリウ
ムガスは、高圧配管16aを通り第1熱交換器6、第2
熱交換器7、第1吸着器8、第3熱交換器9、第4熱交
換器10、第2吸着器11、第5熱交換器12を通り温
度約6K以下に冷却され、J・T弁で断熱膨張してその
一部のガスが液化し、液体ヘリウム槽14に溜まり超電
導マグネット15等の被冷却体を冷却する。
On the other hand, the J
- High-pressure helium gas pressurized by the compressor unit 5 of the T circuit passes through the high-pressure pipe 16a to the first heat exchanger 6 and the second heat exchanger 6.
It passes through the heat exchanger 7, the first adsorber 8, the third heat exchanger 9, the fourth heat exchanger 10, the second adsorber 11, and the fifth heat exchanger 12, and is cooled to a temperature of about 6K or less, and the J.T. A portion of the gas is adiabatically expanded by the valve and liquefied, and is collected in the liquid helium tank 14 to cool objects to be cooled such as the superconducting magnet 15.

【0025】未液化のヘリウムガス、液体ヘリウム14
aの蒸発ガスは低圧配管16b内に流入し第5熱交換器
12、第3吸着器17、第3熱交換器9、第4吸着器1
8、第1熱交換器6そして第5吸着器18aを通り、ほ
ぼ常温となって低圧配管16bより圧縮機ユニット5に
戻る。クライオスッタト19内は真空断熱され、極低温
部は液体窒素槽21、及び、底板22、上板23で熱シ
ールドされている。
Unliquefied helium gas, liquid helium 14
The evaporated gas of a flows into the low pressure pipe 16b and is transferred to the fifth heat exchanger 12, the third adsorption device 17, the third heat exchanger 9, and the fourth adsorption device 1.
8, passes through the first heat exchanger 6 and the fifth adsorber 18a, reaches approximately room temperature, and returns to the compressor unit 5 via the low pressure pipe 16b. The inside of the cryostat 19 is vacuum insulated, and the cryogenic part is heat shielded by a liquid nitrogen tank 21, a bottom plate 22, and a top plate 23.

【0026】液体窒素20の蒸発ガスは、排気管24で
大気に放出され、液体窒素は液体窒素タンク25で定期
的に補充される。各吸着器ではヘリウムガス中の不純物
を除去する。
Evaporated gas of the liquid nitrogen 20 is discharged to the atmosphere through an exhaust pipe 24, and the liquid nitrogen is periodically replenished in a liquid nitrogen tank 25. Each adsorber removes impurities from helium gas.

【0027】圧縮機ユニット5の構成を図2,図3にス
クロール型圧縮機26の圧縮室の断面図を示す。圧縮機
ユニット5は、スクロール型圧縮機26と油、ガス混合
高圧流体冷却器27、油分離器28、油吸着器29、油
冷却器30で構成される。低圧配管16bの低圧ヘリウ
ムガスは、スクロール型圧縮機26内のスクロール型圧
縮室31に低圧入口32から流入し、固定スクロール3
1aと旋回スクロール31yとの間に移動しながら形成
される小圧縮室31a、31b,31c,31d,31
eで徐々に加圧される。
The structure of the compressor unit 5 is shown in FIGS. 2 and 3, which are sectional views of the compression chamber of the scroll compressor 26. The compressor unit 5 includes a scroll compressor 26, an oil/gas mixed high-pressure fluid cooler 27, an oil separator 28, an oil absorber 29, and an oil cooler 30. The low-pressure helium gas in the low-pressure pipe 16b flows into the scroll-type compression chamber 31 in the scroll-type compressor 26 from the low-pressure inlet 32, and the fixed scroll 3
Small compression chambers 31a, 31b, 31c, 31d, 31 are formed while moving between 1a and the orbiting scroll 31y.
Pressure is gradually increased with e.

【0028】ヘリウムガスは圧縮熱により高温になるた
め、スクロール型圧縮機26内の底部に溜めている高温
の潤滑油の一部を、配管33より油冷却器30に導き、
ほぼ常温にして配管34より中圧入口35を経てスクロ
ール型圧縮室31の中圧圧縮室31b内に供給する。こ
れにより、ヘリウムガスの温度は約350Kに冷却され
、さらに圧縮されてスクロール型圧縮室31の高圧出口
36からスクロール型圧縮機26内に吐出される。
Since helium gas becomes high in temperature due to the heat of compression, a portion of the high temperature lubricating oil stored at the bottom of the scroll compressor 26 is guided through the pipe 33 to the oil cooler 30.
It is supplied to the intermediate pressure compression chamber 31b of the scroll type compression chamber 31 from the pipe 34 through the intermediate pressure inlet 35 at approximately room temperature. As a result, the temperature of the helium gas is cooled to about 350 K, and the helium gas is further compressed and discharged from the high-pressure outlet 36 of the scroll-type compression chamber 31 into the scroll-type compressor 26 .

【0029】このようにスクロール型圧縮室31内では
、スクロールの中心部に向かって移動しながら、かつ、
隔離されて形成される小圧縮室31a、31b,31c
,31d,31eで、ヘリウムガスが徐々に加圧される
ため、各小圧縮室間のガスリーク量がほとんど無い。
In this way, inside the scroll type compression chamber 31, while moving toward the center of the scroll, and
Small compression chambers 31a, 31b, 31c formed in isolation
, 31d, and 31e, the helium gas is gradually pressurized, so there is almost no gas leakage between the small compression chambers.

【0030】したがって、1.0atm以下の圧力で小
圧縮室31aに流入するヘリウムガスを加圧し、高い圧
力まで圧縮して吐出することができる。
Therefore, the helium gas flowing into the small compression chamber 31a can be pressurized at a pressure of 1.0 atm or less, compressed to a high pressure, and then discharged.

【0031】一方、中圧圧縮室31b内に供給され高圧
出口36から出た潤滑油の大部分はスクロール型圧縮機
26内の底部に戻り、その他の潤滑油は高圧のヘリウム
ガスに同伴して、油、ガス混合高圧流体冷却器27に流
入する。ここで、混合流体は冷却されると共に約99.
99%の油が分離されその大半は油戻し配管37により
、配管34を介してスクロール型圧縮室31の中圧室内
に再供給される。残り0.01%の油を含む高圧のヘリ
ウムガスは例えば活性炭を充填した油吸着器29を通り
油濃度約0.01ppmまで精製され、高圧配管16a
を通り第1熱交換器6に供給される。
On the other hand, most of the lubricating oil supplied into the medium pressure compression chamber 31b and coming out from the high pressure outlet 36 returns to the bottom of the scroll compressor 26, and the remaining lubricating oil is entrained in the high pressure helium gas. , oil and gas flow into the high pressure fluid cooler 27 . Here, the mixed fluid is cooled and about 99% of the fluid is cooled.
99% of the oil is separated and most of it is re-supplied into the intermediate pressure chamber of the scroll type compression chamber 31 via the oil return piping 37 and the piping 34. The remaining high-pressure helium gas containing 0.01% oil passes through an oil absorber 29 filled with activated carbon, for example, and is purified to an oil concentration of approximately 0.01 ppm.
is supplied to the first heat exchanger 6.

【0032】J・T弁13出口の温度はJ・T弁で膨張
した後のヘリウムガスの圧力、すなわち、ヘリウム槽内
の液化飽和圧力で決まる。一方、ヘリウム槽内の圧力は
(1)J・T弁通過ヘリウムガス流量 (2)低圧配管、第1、第2、第3熱交換器内の低圧流
路、第3吸着器、第4吸着器内のヘリウムガス流動抵抗
による圧力損失 (3)スクロール型圧縮機の吸入風量 (4)高、低圧配管の間に設けた圧力調整弁16cを通
過するバイパスガス風量で定まる。
The temperature at the outlet of the J·T valve 13 is determined by the pressure of the helium gas after being expanded by the J·T valve, that is, the liquefaction saturation pressure in the helium tank. On the other hand, the pressure inside the helium tank is determined by (1) the flow rate of helium gas passing through the J/T valve, (2) the low pressure piping, the low pressure channels in the first, second, and third heat exchangers, the third adsorption device, and the fourth adsorption device. The pressure loss is determined by (3) the suction air volume of the scroll compressor (4) the air volume of the bypass gas that passes through the pressure regulating valve 16c provided between the high and low pressure pipes.

【0033】したがって、上記4条件を適切に制御する
ことによりヘリウム槽内の圧力を任意の値、すなわち、
J・T弁後のヘリウム温度を任意の値に設定できる。ま
たJ・T回路,特に低圧配管は予冷用の寒冷発生回路と
隔離されているため寒冷発生回路内の圧力変動がJ・T
弁出口の圧力に影響を与えることがない。よって、J・
T弁出口の圧力は1.2atm以下においても安定に維
持でき、4.5未満の冷却温度を安定に確保できる。
Therefore, by appropriately controlling the above four conditions, the pressure in the helium tank can be adjusted to an arbitrary value, that is,
The helium temperature after the J/T valve can be set to any value. In addition, the J/T circuit, especially the low-pressure piping, is isolated from the cold generation circuit for precooling, so pressure fluctuations in the cold generation circuit are
It does not affect the pressure at the valve outlet. Therefore, J.
The pressure at the T-valve outlet can be stably maintained even at 1.2 atm or less, and a cooling temperature of less than 4.5 can be stably maintained.

【0034】また、J・T弁により発生する寒冷は等エ
ンタルピー膨張で発生するので4.5K以下の冷凍量を
大きく取れる。したがって、単位冷凍量当りの圧縮機入
力電力量も小さくて済む効果がある。
Furthermore, since the cold generated by the J/T valve is generated by isenthalpic expansion, a large amount of refrigeration of 4.5K or less can be obtained. Therefore, the compressor input electric power per unit amount of refrigeration can also be reduced.

【0035】ヘリウム槽内の圧力は圧力検知器38、温
度は温度センサー39、温度検知器40で計測され、そ
のデータを圧縮機ユニット5内の制御器41に送り所定
の圧力、温度になるようにスクロール型圧縮機26の電
動機42の回転数やJ・T弁13の開度を調整する。
The pressure in the helium tank is measured by a pressure sensor 38, and the temperature is measured by a temperature sensor 39 and a temperature sensor 40, and the data is sent to a controller 41 in the compressor unit 5 to maintain a predetermined pressure and temperature. Then, the rotational speed of the electric motor 42 of the scroll compressor 26 and the opening degree of the J/T valve 13 are adjusted.

【0036】この制御によりJ・T弁出口の圧力を1.
2atm以下の範囲で調整でき、これにより、冷却温度
を4.5K未満の範囲で安定に制御できる。これは、J
・T回路のヘリウム圧縮機に圧縮室内に多段の、かつ、
それぞれが隔離された連続の小圧縮室を有し、かつ、圧
縮比10以上のスクロール型圧縮機を適用することによ
って、J・T回路の一台の圧縮機で可能となった。
With this control, the pressure at the outlet of the J/T valve is reduced to 1.
It can be adjusted in a range of 2 atm or less, and thereby the cooling temperature can be stably controlled in a range of less than 4.5K. This is J
・A T-circuit helium compressor has multiple stages inside the compression chamber, and
By applying a scroll compressor, each of which has a series of isolated small compression chambers, and a compression ratio of 10 or more, this has become possible with a single compressor in the J/T circuit.

【0037】超電導マグネット15を4.5K未満特に
4.2K以下に冷却することにより超電導マグネットの
蓄熱量が増加して、局部発熱等によるクエンチの発生が
抑制され、安定性が向上すると共に超電導マグネットの
印加電流を増して発生磁場強度を増加できる。
By cooling the superconducting magnet 15 to less than 4.5K, especially 4.2K or less, the amount of heat stored in the superconducting magnet increases, suppressing the occurrence of quenching due to local heat generation, etc., improving the stability of the superconducting magnet. The strength of the generated magnetic field can be increased by increasing the applied current.

【0038】また、上記冷却温度における冷凍量は、(
1)寒冷発生機の蓄冷材に低温蓄熱特性が大きな物質を
使用する (2)寒冷発生機の運転周波数を調整する(3)J・T
弁通過ヘリウムガス流量を増加する(4)スクロール型
圧縮機の運転周波数を増加して吸入・吐出風量を増加す
ることによって容易に増加できる。
[0038] Furthermore, the amount of refrigeration at the above cooling temperature is (
1) Use a material with high low-temperature heat storage properties as the cold storage material of the cold generator. (2) Adjust the operating frequency of the cold generator. (3) J.T.
Increasing the flow rate of helium gas passing through the valve (4) This can be easily increased by increasing the operating frequency of the scroll compressor to increase the suction/discharge air volume.

【0039】以上、本実施例によれば、予冷用の寒冷発
生回路と隔離したJ・T回路の低圧流路のヘリウムガス
を圧縮機の吸気口入口で正圧から負圧の範囲で回収し、
同圧縮機で高い正圧に加圧したヘリウムガスをJT回路
の高圧流路に供給できるのでJ・T弁出口の圧力を正圧
から負圧の任意の値に制御できる。これによって、J・
T弁出口で4.5K未満の任意のヘリウム温度を安定に
発生できるという効果がある。
As described above, according to this embodiment, the helium gas in the low pressure flow path of the J/T circuit isolated from the cold generation circuit for precooling is recovered at the inlet of the compressor in a range of positive pressure to negative pressure. ,
Since helium gas pressurized to a high positive pressure by the same compressor can be supplied to the high pressure flow path of the JT circuit, the pressure at the J·T valve outlet can be controlled to any value from positive pressure to negative pressure. As a result, J.
This has the effect that any helium temperature below 4.5K can be stably generated at the T-valve outlet.

【0040】また,本実施例によれば、予冷用の寒冷発
生回路と隔離したJ・T回路の低圧流路のヘリウムガス
を圧縮機の吸気口入口で正圧から負圧の範囲で回収して
も、予冷用の寒冷発生回路の運転圧力条件は変わらず所
定の寒冷量を安定に供給できる。従って、J・T回路の
予冷部を安定に冷却できるので、常に、J・T弁出口で
4.5K未満の任意のヘリウム温度を安定に発生できる
という効果がある。
Furthermore, according to this embodiment, the helium gas in the low-pressure flow path of the J/T circuit, which is isolated from the cold generation circuit for pre-cooling, is recovered at the inlet of the compressor in a range of positive pressure to negative pressure. However, the operating pressure conditions of the cold generating circuit for pre-cooling do not change and a predetermined amount of cold can be stably supplied. Therefore, since the precooling section of the J/T circuit can be cooled stably, an arbitrary helium temperature of less than 4.5 K can always be stably generated at the J/T valve outlet.

【0041】また、J・T回路のヘリウムガス流量を増
加する等のことにより、J・T弁により等エンタルピー
膨張で発生する4.5K未満の冷凍量を容易に増加する
ことができ、また、単位冷凍量当りの圧縮機入力電力量
も小さくて済む効果がある。
Furthermore, by increasing the helium gas flow rate of the J/T circuit, the amount of refrigeration of less than 4.5 K generated by isenthalpic expansion by the J/T valve can be easily increased, and This has the effect of requiring less input power to the compressor per unit amount of refrigeration.

【0042】さらに、ヘリウムガスをJ・T回路の高圧
流路に供給する操作を同一圧縮機で行うことにより、小
型軽量で簡便な冷凍装置となる効果がある。
Furthermore, by performing the operation of supplying helium gas to the high-pressure flow path of the J/T circuit using the same compressor, the refrigeration system can be made small, lightweight, and simple.

【0043】なお、本実施例では、寒冷発生機にG・M
サイクルの膨張機を適用した冷却温度4.5K未満の例
で説明したが、ソルベイサイクル、スターリングサイク
ル、ビルマイヤサイクル、タービン式、クロード式膨張
機を適用した冷凍サイクルやブレイトンサイクルでも同
等な効果があり、冷却温度が4.5K以上であっても温
度の安定性の向上に関して同等の適用できる。また、本
実施例では、圧縮機にスクロール型圧縮機を適用した例
で説明したが、スクリュウ圧縮機を適用しても同等な効
果がある。
[0043] In this embodiment, the cold generator is equipped with G.M.
Although the explanation was given using an example where a cooling temperature is less than 4.5K using a cycle expander, the same effect can be achieved with a refrigeration cycle or a Brayton cycle that uses a Solvay cycle, Stirling cycle, Billmeyer cycle, turbine type, or Claude type expander. However, even if the cooling temperature is 4.5K or higher, the same effect can be applied in terms of improving temperature stability. Further, in this embodiment, an example in which a scroll type compressor is applied to the compressor has been described, but the same effect can be obtained even if a screw compressor is applied.

【0044】また、本実施例では、超電導マグネットを
被冷却体にした場合について説明したが、熱物性測定装
置,ジョセフソン素子や各種センサー等の各種電子機器
や、高真空、高排気速度のクライオパネルを被冷却体に
しても、被冷却体の温度が低下することによりSN比の
向上や排気速度の高速化が増加する効果がある。
In this example, the case where a superconducting magnet is used as the object to be cooled has been explained, but it is also applicable to various electronic devices such as a thermophysical property measuring device, a Josephson element, various sensors, and a high-vacuum, high-pumping-speed cryostat. Even if the panel is used as the object to be cooled, the temperature of the object to be cooled decreases, thereby increasing the SN ratio and increasing the pumping speed.

【0045】本発明の他の実施例を図4に示す。本図は
、2個の圧縮室31を同一圧力容器内に並列に配置した
スクロール型圧縮機を使用した圧縮機ユニットの構成を
示している。
Another embodiment of the invention is shown in FIG. This figure shows the configuration of a compressor unit using a scroll compressor in which two compression chambers 31 are arranged in parallel in the same pressure vessel.

【0046】本実施例によれば、複数単段のスクロール
型圧縮機で吸入・吐出風量を増加できるので、より多量
のJ・T回路の低圧流路の排気ヘリウムガスを圧縮機の
吸気口入口で正圧から負圧の状態で回収し、同圧縮機で
正圧に加圧したヘリウムガスをJT回路の高圧流路に供
給できるので、J・T弁出口の圧力を正圧から負圧の任
意の値に制御できる範囲が広がり、これによって、J・
T弁出口で4.5K以下の広範囲の任意のヘリウム温度
を発生できるという効果がある。
According to this embodiment, since the suction/discharge air volume can be increased by using the multiple single-stage scroll compressor, a larger amount of the exhaust helium gas in the low pressure flow path of the J/T circuit can be transferred to the intake port of the compressor. The helium gas recovered from positive pressure to negative pressure by the same compressor can be supplied to the high pressure flow path of the JT circuit, so the pressure at the J・T valve outlet can be changed from positive pressure to negative pressure. The range that can be controlled to any value is expanded, and this allows J.
This has the advantage that any helium temperature within a wide range of 4.5 K or less can be generated at the T-valve outlet.

【0047】また、J・T回路のヘリウムガス流量を2
倍に増加できるので、容易に4.5K以下の冷凍量を増
加することが出来る。また、油分離系を1つにまとめる
ことができるので軽量化でき、かつ、ガス冷却用の潤滑
油取り出し及び注入系を1つにまとめることができるの
で軽量化と2台の圧縮機に同時に冷却油を注入する操作
が簡便になる。これは、2台の圧縮機の油面が常に一定
となるためである。
[0047] Also, the helium gas flow rate of the J/T circuit is set to 2.
Since it can be doubled, the amount of refrigeration below 4.5K can be easily increased. In addition, the oil separation system can be combined into one, which reduces weight, and the lubricating oil extraction and injection system for gas cooling can be combined into one, which reduces weight and allows simultaneous cooling of two compressors. The operation of injecting oil becomes easier. This is because the oil levels in the two compressors are always constant.

【0048】更に、吸気口入口で負圧の状態で回収し、
正圧に圧縮したヘリウムガスをJ・T回路の高圧流路に
供給する操作を同一圧縮機内で行うことにより、小型軽
量で簡便な冷凍装置となる効果がある。
Furthermore, it is collected under negative pressure at the inlet of the suction port,
By performing the operation of supplying helium gas compressed to positive pressure to the high-pressure flow path of the J/T circuit in the same compressor, the refrigeration system can be made small, lightweight, and simple.

【0049】本発明の他の実施例を図5に示す。本図は
、J・T回路においてJ・T弁出口と低圧配管とを凝縮
器38を介して連通した構成を示している。本実施例に
よれば、J・T回路と液体ヘリウム槽内とを隔離できる
ので、液体ヘリウム槽内の熱負荷の変動によって液体ヘ
リウム槽内の圧力が変動してもJ・T回路の流量及び低
圧配管の圧力は変動せず、したがって、凝縮器38の冷
却温度が安定するという効果がある。
Another embodiment of the invention is shown in FIG. This figure shows a configuration in which the J/T valve outlet and the low pressure pipe are communicated via a condenser 38 in the J/T circuit. According to this embodiment, the J/T circuit and the inside of the liquid helium tank can be isolated, so even if the pressure inside the liquid helium tank fluctuates due to changes in the heat load inside the liquid helium tank, the flow rate of the J/T circuit and The pressure in the low-pressure pipe does not fluctuate, and therefore the cooling temperature of the condenser 38 is stabilized.

【0050】本発明の他の実施例を図6に示す。本図は
、J・T回路において第5吸着器18aを通る低圧配管
16bと圧縮機ユニット5の吸入口配管16cを継手3
9を介して低圧配管16dで接続した場合を示している
。継手39の周りには、大気隔離冶具の容器40を設け
大気と隔離するとともに容器40と高圧配管16aを配
管16eで連通する。
Another embodiment of the invention is shown in FIG. This figure shows how the low pressure pipe 16b passing through the fifth adsorber 18a and the suction port pipe 16c of the compressor unit 5 are connected to the joint 3 in the J/T circuit.
9 is connected to the low pressure pipe 16d. A container 40 of an atmosphere isolation jig is provided around the joint 39 to isolate it from the atmosphere and communicate the container 40 with the high pressure pipe 16a through a pipe 16e.

【0051】本実施例によれば負圧下の低圧配管内に継
手39から不純物となる空気がJ・T回路に流入するこ
とを防止できJ・T弁の閉塞等による冷凍装置のトラブ
ルを防止できる効果がある
According to this embodiment, it is possible to prevent air that becomes an impurity from flowing into the J/T circuit from the joint 39 in the low pressure piping under negative pressure, and to prevent troubles in the refrigeration system due to blockage of the J/T valve, etc. effective

【0052】[0052]

【発明の効果】本発明によれば、予冷用の寒冷発生回路
と隔離されたJ・T弁出口の圧力を正圧から負圧の任意
の値に制御できるので、J・T弁出口で4.5K以下の
任意のヘリウム温度を発生でき、被冷却体の冷却温度を
4.5K以下の任意の温度に冷却できる効果がある。
According to the present invention, the pressure at the outlet of the J/T valve, which is isolated from the cold generation circuit for precooling, can be controlled to any value from positive pressure to negative pressure. An arbitrary helium temperature of .5K or less can be generated, and the cooling temperature of the object to be cooled can be cooled to an arbitrary temperature of 4.5K or less.

【0053】また、J・T回路のヘリウムガス流量を増
加することにより、容易に4.5K以下の冷凍量を増加
することが出来る。また、吸気口入口で負圧の状態で回
収し正圧に圧縮したヘリウムガスをJ・T回路の高圧流
路に供給する操作を同一圧縮機で行うことにより、本装
置が小型軽量で簡便な冷凍装置にできる効果がある。
Furthermore, by increasing the flow rate of helium gas in the J/T circuit, the amount of refrigeration below 4.5K can be easily increased. In addition, by using the same compressor to supply helium gas, which is collected under negative pressure at the inlet and compressed to positive pressure, to the high-pressure flow path of the J/T circuit, this device is small, lightweight, and simple. There is an effect that can be achieved by refrigeration equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の冷凍装置の構成を説明する
図である。
FIG. 1 is a diagram illustrating the configuration of a refrigeration system according to an embodiment of the present invention.

【図2】本発明の一実施例で使用したJ・T回路用の圧
縮機ユニットの構成を説明する図である。
FIG. 2 is a diagram illustrating the configuration of a compressor unit for a J/T circuit used in an embodiment of the present invention.

【図3】本発明の一実施例で使用したJ・T回路用の圧
縮機ユニットの圧縮室の断面を説明する図である。
FIG. 3 is a diagram illustrating a cross section of a compression chamber of a compressor unit for a J/T circuit used in an embodiment of the present invention.

【図4】本発明になる他の実施例で使用したJ・T回路
用の圧縮機ユニットの構成を説明する図である。
FIG. 4 is a diagram illustrating the configuration of a compressor unit for a J/T circuit used in another embodiment of the present invention.

【図5】本発明になる他の実施例の冷凍装置のJ・T弁
周りの構成の説明図である。
FIG. 5 is an explanatory diagram of the configuration around the J/T valve of a refrigeration system according to another embodiment of the present invention.

【図6】本発明になる他の実施例の圧縮機ユニットの低
圧配管の継手に、大気隔離冶具を設けた構成を説明する
図である。
FIG. 6 is a diagram illustrating a configuration in which an atmospheric isolation jig is provided at a joint of a low-pressure pipe of a compressor unit according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…膨張機、5…圧縮機ユニット、6,7,9,10,
12…熱交換器、13…J・T弁、14a…液体ヘリウ
ム、15…超電導マグネット。
1... Expander, 5... Compressor unit, 6, 7, 9, 10,
12...Heat exchanger, 13...J/T valve, 14a...Liquid helium, 15...Superconducting magnet.

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】予冷用の寒冷発生回路と隔離された一連の
高圧配管及び低圧配管を内蔵した熱交換器と、前記高圧
配管の極低温部に設けられた膨張弁とを備え、該膨張弁
の出口が被冷却体を内蔵する冷媒容器内に導かれ、前記
低圧配管の低温部が前記冷媒容器内で前記膨張弁の出口
と連通し、前記高圧配管と前記低圧配管が常温部で圧縮
手段を介して連通した冷凍装置の該圧縮手段が圧縮手段
内の圧縮室内に多段、かつそれぞれが隔離され連続の小
圧縮室を有する圧縮手段であることを特徴する冷凍装置
1. A heat exchanger incorporating a series of high-pressure piping and low-pressure piping isolated from a cold generation circuit for pre-cooling, and an expansion valve provided in a cryogenic part of the high-pressure piping, the expansion valve comprising: An outlet of the low pressure pipe is guided into a refrigerant container containing a cooled object, a low temperature part of the low pressure pipe communicates with an outlet of the expansion valve within the refrigerant container, and the high pressure pipe and the low pressure pipe are connected to a compression means in a normal temperature part. A refrigeration system characterized in that the compression means of the refrigeration system communicated with each other through the compression means is a compression means having multiple small compression chambers that are isolated and continuous within the compression chambers within the compression means.
【請求項2】高圧配管及び低圧配管を内蔵した熱交換器
と、前記高圧配管の極低温部に設けられた膨張弁とを備
え、該膨張弁の出口を負圧にし、該出口が被冷却体を内
蔵する冷媒容器内に導かれ、前記低圧配管の低温部が前
記冷媒容器内で前記膨張弁の出口と連通し、前記高圧配
管と前記低圧配管が常温部で圧縮手段を介して連通した
冷凍装置の該圧縮手段が圧縮手段内の圧縮室内に多段、
かつそれぞれが隔離され連続の小圧縮室を有する圧縮手
段であることを特徴する冷凍装置。
2. A heat exchanger having built-in high-pressure piping and low-pressure piping, and an expansion valve provided in the cryogenic part of the high-pressure piping, wherein the outlet of the expansion valve is set to negative pressure, and the outlet is cooled. The low-temperature part of the low-pressure pipe communicates with the outlet of the expansion valve within the refrigerant container, and the high-pressure pipe and the low-pressure pipe communicate with each other through a compression means at a normal temperature part. The compression means of the refrigeration device has multiple stages within the compression chamber within the compression means,
A refrigeration system characterized in that the compression means each has isolated and continuous small compression chambers.
【請求項3】予冷用の寒冷発生回路と隔離された一連の
高圧配管及び低圧配管を内蔵した熱交換器と、前記高圧
配管の極低温部に設けられた膨張弁とを備え、前記膨張
弁の出口を負圧にし、かつ被冷却体を内蔵する冷媒容器
内に導かれ、前記低圧配管の低温部が前記冷媒容器内で
前記膨張弁の出口と連通し、前記高圧配管と前記低圧配
管が常温部で圧縮手段を介して連通した冷凍装置の該圧
縮手段が圧縮手段内の圧縮室内に多段の、かつそれぞれ
が隔離され連続の小圧縮室を有する圧縮手段であること
を特徴する冷凍装置。
3. A heat exchanger incorporating a series of high-pressure piping and low-pressure piping isolated from a cold generation circuit for pre-cooling, and an expansion valve provided in a cryogenic part of the high-pressure piping, the expansion valve comprising: The outlet of the low-pressure pipe is set to negative pressure and is guided into a refrigerant container containing a cooled object, the low-temperature part of the low-pressure pipe communicates with the outlet of the expansion valve within the refrigerant container, and the high-pressure pipe and the low-pressure pipe are connected to each other. A refrigeration system, wherein the compression means of the refrigeration system communicates with each other through a compression means in a normal temperature part, and the compression means has multiple small compression chambers that are isolated and continuous within a compression chamber within the compression means.
【請求項4】予冷用の寒冷発生回路と隔離された一連の
高圧配管及び低圧配管を内蔵した熱交換器と、前記高圧
配管の極低温部に設けられた膨張弁とを備え、前記膨張
弁の出口が被冷却体を内蔵する冷媒容器内に導かれ、前
記低圧配管の低温部が前記冷媒容器内で前記膨張弁の出
口と連通し、前記高圧配管と前記低圧配管が常温部で圧
縮手段を介して連通し、圧縮室内に多段の、かつそれぞ
れが隔離され連続の小圧縮室を有した圧縮手段の吸入口
の圧力を正圧から負圧の範囲で調整することを特徴する
冷凍装置。
4. A heat exchanger incorporating a series of high-pressure piping and low-pressure piping isolated from a cold generation circuit for pre-cooling, and an expansion valve provided in a cryogenic part of the high-pressure piping, the expansion valve comprising: An outlet of the low pressure pipe is guided into a refrigerant container containing a cooled object, a low temperature part of the low pressure pipe communicates with an outlet of the expansion valve within the refrigerant container, and the high pressure pipe and the low pressure pipe are connected to a compression means in a normal temperature part. A refrigeration system that adjusts the pressure at the suction port of a compression means in a range from positive pressure to negative pressure.
【請求項5】補助排気手段を用いずにJ・T回路の低圧
流路のヘリウムガスを圧縮機の吸気口入口で正圧から負
圧の範囲で回収し、同圧縮機で正圧に加圧したヘリウム
ガスをJ・T回路の高圧流路に同一圧縮機で供給するこ
とを特徴とする冷凍装置。
[Claim 5] Helium gas in the low-pressure flow path of the J/T circuit is recovered at the inlet of the compressor in a range of positive pressure to negative pressure without using auxiliary exhaust means, and the compressor increases the pressure to positive pressure. A refrigeration system characterized by supplying pressurized helium gas to the high-pressure flow path of the J/T circuit using the same compressor.
【請求項6】前記圧縮手段が圧縮手段内の圧縮室内に多
段のかつそれぞれが隔離され連続の小圧縮室を有した圧
縮手段を複数個を直列に配置したことを特徴する請求項
1乃至5いずれか記載の冷凍装置。
6. The compression means is characterized in that a plurality of compression means are arranged in series, the compression means each having a continuous small compression chamber separated from each other in multiple stages within the compression chamber within the compression means. The refrigeration device described in any of the above.
【請求項7】前記圧縮手段が圧縮手段内の圧縮室内に多
段のかつそれぞれが隔離され連続の小圧縮室を有したス
クロール型圧縮機であることを特徴する請求項1乃至5
いずれか記載の冷凍装置。
7. Claims 1 to 5, wherein the compression means is a scroll compressor having multiple small compression chambers each separated and continuous within the compression chamber within the compression means.
The refrigeration device described in any of the above.
【請求項8】前記圧縮手段が圧縮手段内の圧縮室内に多
段のかつそれぞれが隔離され連続の小圧縮室を有したス
クリュウ型圧縮機であることを特徴する請求項1乃至5
いずれか記載の冷凍装置。
8. Claims 1 to 5, wherein the compression means is a screw type compressor having multiple small compression chambers separated from each other and continuous within the compression chambers within the compression means.
The refrigeration device described in any of the above.
【請求項9】前記圧縮手段が圧縮手段内の圧縮室内に多
段のかつそれぞれが隔離され連続の小圧縮室を有した、
油潤滑式の圧縮手段であることを特徴する請求項1乃至
5いずれか記載の冷凍装置。
9. The compression means has a plurality of continuous small compression chambers that are separated from each other in a compression chamber within the compression means.
The refrigeration system according to any one of claims 1 to 5, characterized in that it is an oil-lubricated compression means.
【請求項10】前記圧縮手段が圧縮手段内の圧縮室内に
多段のかつそれぞれが隔離され連続の小圧縮室を有した
、1機の圧縮手段であることを特徴する請求項1乃至5
いずれか記載の冷凍装置。
10. Claims 1 to 5, characterized in that the compression means is a single compression means having multiple small compression chambers each isolated and continuous within the compression chamber within the compression means.
The refrigeration device described in any of the above.
【請求項11】前記圧縮手段が圧縮手段内の圧縮室内に
多段のかつそれぞれが隔離され連続の小圧縮室を有した
、1段で複数機の圧縮手段であることを特徴する請求項
1乃至5いずれか記載の冷凍装置。
11. The compression means is a compression means having a plurality of units in one stage, each having a plurality of small compression chambers separated from each other and continuous in a compression chamber within the compression means. 5. The refrigeration device according to any one of 5.
【請求項12】前記圧縮手段が圧縮手段内の圧縮室内に
多段のかつそれぞれが隔離され連続の小圧縮室を有した
、複数機を1つに圧力容器に内蔵した圧縮手段であるこ
とを特徴する請求項1乃至5いずれか記載の冷凍装置。
12. The compression means is a compression means in which a plurality of small compression chambers are housed in one pressure vessel, each having a plurality of separate and continuous small compression chambers within the compression chamber thereof. The refrigeration apparatus according to any one of claims 1 to 5.
【請求項13】少なくとも該圧縮手段の処理風量、また
は該膨張弁の通過風量、高、低圧流路間のバイパス風量
を調整し、該冷媒容器内の温度または圧力を制御するこ
とを特徴する請求項1乃至5いずれか記載の冷凍装置。
13. A claim characterized in that the temperature or pressure within the refrigerant container is controlled by adjusting at least the amount of air processed by the compression means, the amount of air passing through the expansion valve, and the amount of bypass air between high and low pressure channels. Item 5. Refrigeration device according to any one of Items 1 to 5.
【請求項14】前記高圧配管と前記低圧配管が常温部で
圧縮手段を介して連通した冷凍装置において、常温部の
前記低圧配管の接続部を大気に接触させないように隔離
手段具備したことを特徴する請求項1乃至5記載の冷凍
装置。
14. A refrigeration system in which the high-pressure pipe and the low-pressure pipe communicate with each other through a compression means in a room temperature section, further comprising isolation means to prevent the connecting portion of the low-pressure pipe in the room temperature section from coming into contact with the atmosphere. The refrigeration apparatus according to any one of claims 1 to 5.
【請求項15】常温部の該低圧配管を前記高圧配管内に
配置したことを特徴する請求項1乃至5いずれか記載の
冷凍装置。
15. The refrigeration system according to claim 1, wherein the low-pressure pipe of the room temperature section is disposed within the high-pressure pipe.
【請求項16】前記高圧配管の極低温部に膨張弁を設け
前記膨張弁の出口が被冷却体を保持する伝熱体に導かれ
、前記低圧配管と前記膨張弁の出口が連通し、前記高圧
配管と前記低圧配管が常温部で圧縮手段を介して連通し
た冷凍装置の該圧縮手段が圧縮手段内の圧縮室内に多段
のかつ、それぞれが隔離され連続の小圧縮室を有した、
圧縮手段であることを特徴する請求項1乃至5いずれか
記載の冷凍装置。
16. An expansion valve is provided in a cryogenic part of the high-pressure pipe, an outlet of the expansion valve is guided to a heat transfer body that holds an object to be cooled, and an outlet of the low-pressure pipe and the expansion valve communicate with each other, The compression means of the refrigeration system in which the high pressure piping and the low pressure piping communicate with each other via the compression means at a normal temperature part has multiple small compression chambers that are isolated and continuous within the compression chambers within the compression means.
The refrigeration system according to any one of claims 1 to 5, characterized in that it is a compression means.
JP3037137A 1991-03-04 1991-03-04 Refrigeration equipment Expired - Lifetime JP2600506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3037137A JP2600506B2 (en) 1991-03-04 1991-03-04 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3037137A JP2600506B2 (en) 1991-03-04 1991-03-04 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH04278146A true JPH04278146A (en) 1992-10-02
JP2600506B2 JP2600506B2 (en) 1997-04-16

Family

ID=12489232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3037137A Expired - Lifetime JP2600506B2 (en) 1991-03-04 1991-03-04 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP2600506B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004350A (en) * 2001-06-20 2003-01-08 Mayekawa Mfg Co Ltd Method for injecting liquid helium into low temperature holder wherein superconducting coil is incorporated and held and cooling system of superconducting generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115267U (en) * 1983-01-26 1984-08-03 株式会社日立製作所 Piping for cryogenic equipment
JPS62268963A (en) * 1986-05-16 1987-11-21 ダイキン工業株式会社 Cryogenic refrigerator
JPS6383556U (en) * 1987-10-20 1988-06-01
JPH01125971U (en) * 1988-02-23 1989-08-28
JPH02203163A (en) * 1989-02-01 1990-08-13 Daikin Ind Ltd Helium refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115267U (en) * 1983-01-26 1984-08-03 株式会社日立製作所 Piping for cryogenic equipment
JPS62268963A (en) * 1986-05-16 1987-11-21 ダイキン工業株式会社 Cryogenic refrigerator
JPS6383556U (en) * 1987-10-20 1988-06-01
JPH01125971U (en) * 1988-02-23 1989-08-28
JPH02203163A (en) * 1989-02-01 1990-08-13 Daikin Ind Ltd Helium refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004350A (en) * 2001-06-20 2003-01-08 Mayekawa Mfg Co Ltd Method for injecting liquid helium into low temperature holder wherein superconducting coil is incorporated and held and cooling system of superconducting generator

Also Published As

Publication number Publication date
JP2600506B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
US20190120528A1 (en) System and Method for Cryogenic Cooling
Radenbaugh Refrigeration for superconductors
Longsworth et al. 80 K closed-cycle throttle refrigerator
Radebaugh Review of refrigeration methods
Alexeev et al. Further development of a mixed gas Joule Thomson refrigerator
US5347819A (en) Method and apparatus for manufacturing superfluidity helium
JP2910499B2 (en) Refrigeration equipment
JPH10246524A (en) Freezing device
JP2600506B2 (en) Refrigeration equipment
US6484516B1 (en) Method and system for cryogenic refrigeration
JPH06323663A (en) Refrigerator
JPH05322343A (en) Freezer device with reservoir tank
JPH1073333A (en) Cryogenic cooling apparatus
JPH06323664A (en) Refrigerator
JP3596825B2 (en) Low pressure control device for cryogenic refrigerator
Wu et al. A new type mixture refrigeration auto-cascade cycle with partial condensation and separation reflux exchanger and its preliminary experimental test
JPH06323661A (en) Refrigerator
Lashmet et al. A closed-cycle cascade helium refrigerator
Radebaugh F1. Review of Refrigeration Methods
JPH11108476A (en) Cryostatic cooling device
Litttle Advances in Joule-Thomson cooling
Kerney et al. A 50-Liters/hr helium liquefier for a superconducting magnetic energy storage system
Strobridge Refrigeration at 4 K
Quack et al. Part load, mixed duty and 1.8 K operation with a new high efficient helium refrigeration cycle
JPS63315868A (en) Cryogenic refrigerator device