JPH04277577A - Coating composition and coated aluminum material - Google Patents

Coating composition and coated aluminum material

Info

Publication number
JPH04277577A
JPH04277577A JP3857191A JP3857191A JPH04277577A JP H04277577 A JPH04277577 A JP H04277577A JP 3857191 A JP3857191 A JP 3857191A JP 3857191 A JP3857191 A JP 3857191A JP H04277577 A JPH04277577 A JP H04277577A
Authority
JP
Japan
Prior art keywords
bisphenol
epoxy resin
parts
aluminum material
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3857191A
Other languages
Japanese (ja)
Other versions
JP2873513B2 (en
Inventor
Hironari Tanabe
弘往 田辺
Osamu Ogawa
修 小川
Yoshinori Nagai
昌憲 永井
Osamu Tanida
修 谷田
Susumu Ogawa
進 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Original Assignee
Dai Nippon Toryo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK filed Critical Dai Nippon Toryo KK
Priority to JP3857191A priority Critical patent/JP2873513B2/en
Publication of JPH04277577A publication Critical patent/JPH04277577A/en
Application granted granted Critical
Publication of JP2873513B2 publication Critical patent/JP2873513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To provide a coating compsn. which gives a coating film excellent in corrosion resistance, electrodeposition coating properties, etc., and an aluminum material coated with the compsn. and excellent in formability. CONSTITUTION:A coating compsn. which contains a bisphenol epoxy resin consisting of bisphenol A units, bisphenol F units, and epichlorohydrin units and a lubricant powder having a mean particle diameter of 0.1-20mum, and an aluminum material coated with the compsn.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】本発明は、耐食性、電着塗装性等に優れた
塗膜をアルミニウム材に形成することが可能な塗料組成
物及び該塗料組成物から得られた塗膜を有する、成形加
工性等に優れた被覆アルミニウム材に関する。
[0001] The present invention relates to a coating composition capable of forming a coating film having excellent corrosion resistance, electrodeposition coating properties, etc. on an aluminum material, and a coating film obtained from the coating composition having moldability, etc. Regarding coated aluminum materials with excellent properties.

【0002】0002

【従来の技術】近年、アルミニウムあるいはアルミニウ
ム合金からなるアルミニウム材が軽量であるため、自動
車の車体などの外板として、応用されるようになってき
ている。すなわち、自動車車体の外板として鋼材とアル
ミニウム材との組立てにより構成された自動車車体が上
市されつつある。
BACKGROUND OF THE INVENTION In recent years, aluminum materials made of aluminum or aluminum alloys have come to be used as outer panels of automobile bodies because of their light weight. That is, automobile bodies constructed by assembling steel materials and aluminum materials as outer panels of automobile bodies are being put on the market.

【0003】ところでこのような鋼材とアルミニウム材
との組立てにより構成れれる自動車車体の製造方法の1
つとして、以下の方式が採用されている。
By the way, there is one method for manufacturing an automobile body constructed by assembling such steel materials and aluminum materials.
As one of the methods, the following method is adopted.

【0004】鋼        材    成形加工─
┐│→組立て→脱脂→アルミニウム  成形加工  ┘
化成処理→電着塗装→中塗塗装→上塗塗装
[0004] Steel material forming process─
┐│→Assembly→Degreasing→Aluminum molding ┘
Chemical treatment → Electrodeposition painting → Intermediate coating → Top coating

【0005】しかしながら上記従来の方法は、アルミニ
ウム材のプレス成形加工性が悪く、また成形加工する際
に使用したプレス油や防錆油がアルミニウム材の場合、
鋼材に比較して十分脱脂しにくく、その結果、リン酸亜
鉛処理等による加勢処理した際、アルミニウム材表面で
化成処理むらが発生し、耐食性、耐水二次密着性等が低
下したり、化成処理中にアルミニウムの溶出が起こり、
その量が一定量を越えると化成処理の進行が妨げられる
という問題点があった。さらに鋼材とアルミニウム材の
接触は、避けられず、その結果異種金属接触によるアル
ミニウム材の電食が生じるという問題点もあった。
[0005] However, in the above conventional method, the press moldability of aluminum material is poor, and when the press oil or rust preventive oil used during molding is aluminum material,
Compared to steel materials, it is difficult to degrease sufficiently, and as a result, when subjected to reinforcement treatment such as zinc phosphate treatment, uneven chemical conversion treatment occurs on the surface of the aluminum material, reducing corrosion resistance, waterproof secondary adhesion, etc. Aluminum elution occurs during
There is a problem in that if the amount exceeds a certain amount, the progress of the chemical conversion treatment is hindered. Furthermore, contact between the steel material and the aluminum material is unavoidable, and as a result, there is a problem that electrical corrosion of the aluminum material occurs due to contact between different metals.

【0006】一方前記問題点を改良するため、例えば成
形加工性を改良するため、アルミニウム合金中の金属組
成を変える方法(特開昭58−171547号、特開昭
61−201748号、特開昭61−201749号、
特開昭62−27544号等)、アルミニウム材表面を
粗面化する方法(特開昭61−276707号、特開平
1−21047号等)等があるが、前記耐食性、耐水二
次密着性、電食防止性については何等解決されていない
On the other hand, in order to improve the above-mentioned problems, for example to improve the formability, methods of changing the metal composition in the aluminum alloy (JP-A-58-171547, JP-A-61-201748, JP-A-Sho 61-201748, JP-A-Sho 61-201748, No. 61-201749,
JP-A No. 62-27544, etc.), a method of roughening the surface of aluminum material (JP-A No. 61-276707, JP-A-1-21047, etc.), etc., but the corrosion resistance, water resistant secondary adhesion, There is no solution to the problem of preventing electrolytic corrosion.

【0007】また、化成処理むらを防止するため、例え
ばアルミニウム材表面を化学的に清浄化する方法(特開
平1−240675号、特開平1−279788号、特
開平2−57692号等)、防錆油の粘度を下げて脱脂
を完全に行なう方法(特開平2−115385号等)等
があり、またアルミニウム材と鋼材の同一化成処理を可
能ならしめるために両者の表面積比率を規定した方法(
特開昭61−104089号等)があるが、いずれも成
形加工性等については何等解決されていない。
[0007] In addition, in order to prevent uneven chemical conversion treatment, methods for chemically cleaning the surface of aluminum materials (JP-A-1-240675, JP-A-1-279788, JP-A-2-57692, etc.), There is a method of completely degreasing by lowering the viscosity of rust oil (Japanese Patent Application Laid-Open No. 2-115385, etc.), and there is also a method of specifying the surface area ratio of aluminum and steel to enable the same chemical conversion treatment of both materials (
JP-A No. 61-104089, etc.), but none of them have solved the problem of moldability or the like.

【0008】そこで前記従来方法において事前にアルミ
ニウム材表面を下地処理し、塗料被膜を施した被覆アル
ミニウム材を使用して成形加工し、鋼材と組立てる方法
も考えられているが、後工程における化成処理において
被膜が剥離しやすく、その結果耐食性が低下したり、さ
らに後工程における電着塗装性が悪かったり、さらに成
形加工性等が悪くなるといった問題点があり、これら耐
化成処理性、耐食性、成形加工性、電着塗装性等を満足
する実用性のある前記塗料は未だ開発されていない。
[0008] Therefore, in the conventional method described above, a method has been considered in which the surface of the aluminum material is pre-primed, and a coated aluminum material coated with paint is used to form and assemble it with steel materials, but chemical conversion treatment in the post-process is considered. There are problems such as the coating is easy to peel off, resulting in a decrease in corrosion resistance, poor electrodeposition coating properties in post-processes, and poor moldability. A practical coating material that satisfies processability, electrodeposition coating properties, etc. has not yet been developed.

【0009】本発明は、このような現状に鑑み、耐化成
処理性、耐食性、成形加工性、電着塗装性等に優れたア
ルミニウム材を得るための塗料組成物及びそれを塗装し
た被覆アルミニウム材を提供することを目的とするもの
である。
In view of the current situation, the present invention provides a coating composition for obtaining an aluminum material with excellent chemical conversion resistance, corrosion resistance, moldability, electrodeposition coating property, etc., and a coated aluminum material coated with the same. The purpose is to provide the following.

【0010】0010

【課題を解決するための手段】即ち本発明は(i)  
 ビスフェノールA骨格とビスフェノールF骨格との重
量比率(95:5〜60:40)からなるビスフェノー
ル骨格と、エピクロルヒドリン骨格とより構成される、
1分子中に2個以上のエポキシ基を有するビスフェノー
ル型エポキシ樹脂、及び(ii)  平均粒径0.1〜
20μm の潤滑剤粉末を含有するアルミニウム材用塗
料組成物;及び該塗料組成物を下地処理したアルミニウ
ム材表面に塗装した被覆アルミニウム材に関する。
[Means for Solving the Problems] That is, the present invention provides (i)
Consisting of a bisphenol skeleton consisting of a weight ratio of bisphenol A skeleton to bisphenol F skeleton (95:5 to 60:40) and an epichlorohydrin skeleton,
A bisphenol type epoxy resin having two or more epoxy groups in one molecule, and (ii) an average particle size of 0.1 to
The present invention relates to a coating composition for aluminum material containing a 20 μm lubricant powder; and a coated aluminum material in which the coating composition is applied to the surface of the aluminum material which has been pretreated.

【0011】以下、本発明について詳述する。本発明の
塗料組成物を構成するビスフェノール型エポキシ樹脂(
i)はビスフェノールAとビスフェノールFとからなる
ビスフェノール類と、エピクロルヒドリンとを常法に従
って縮合反応せしめたビスフェノール骨格とエピクロル
ヒドリン骨格とより構成される、1分子中に2個以上の
エポキシ基を有する樹脂であり、好ましくは分子量約 
500〜100,000 の樹脂である。前記ビスフェ
ノール類とエピクロルヒドリンとの縮合反応は、ビスフ
ェノールAとビスフェノールFとを混合し、同時にエピ
クロルヒドリンと反応させるのが適当であるが、ビスフ
ェノールAとエピクロルヒドリンとを反応させ、更にビ
スフェノールFを加え反応させて得られるエポキシ樹脂
あるいはビスフェノールFとエピクロルヒドリンとを反
応させ、更にビスフェノールAを加え反応させて得られ
るエポキシ樹脂も本発明に含まれる。
The present invention will be explained in detail below. Bisphenol-type epoxy resin (
i) is a resin having two or more epoxy groups in one molecule, which is composed of a bisphenol skeleton and an epichlorohydrin skeleton obtained by condensing bisphenols consisting of bisphenol A and bisphenol F with epichlorohydrin according to a conventional method. Yes, preferably with a molecular weight of approx.
500 to 100,000 resin. For the condensation reaction between bisphenols and epichlorohydrin, it is appropriate to mix bisphenol A and bisphenol F and react with epichlorohydrin at the same time. The present invention also includes an epoxy resin obtained by reacting the obtained epoxy resin or bisphenol F with epichlorohydrin, and further adding and reacting bisphenol A.

【0012】ところでビスフェノール類としてビスフェ
ノールAのみから得られる、ビスフェノールA型エポキ
シ樹脂は、得られる塗膜が耐水性、耐薬品性等に優れ、
かつアルミニウム材との密着性、上塗塗膜との密着性に
優れている一方、塗膜は、硬くて可撓性に劣り、また電
気絶縁性であるため電着塗装性がやや劣るものであった
By the way, bisphenol A type epoxy resin, which is obtained only from bisphenol A as a bisphenol, provides a coating film with excellent water resistance, chemical resistance, etc.
While it has excellent adhesion to aluminum materials and top coats, the paint film is hard and has poor flexibility, and is electrically insulating, so its electrodepositability is somewhat poor. Ta.

【0013】そこで本発明者らはビスフェノールA型エ
ポキシ樹脂にビスフェノールF型エポキシ樹脂をブレン
ドしたものを試みたが、電着塗装性が向上しないことが
判明した。一方、ビスフェノールA骨格とビスフェノー
ルF骨格との特定比率からなるビスフェノール骨格とエ
ピクロルヒドリン骨格とより構成される1分子中に2個
以上のエポキシ基を有するビスフェノール型樹脂を使用
した場合、予想外にも成形加工性とともに電着塗装性も
大幅に改良されることが分った。
[0013] The present inventors therefore attempted to use a blend of bisphenol A type epoxy resin and bisphenol F type epoxy resin, but it was found that the electrodeposition coating properties were not improved. On the other hand, when using a bisphenol-type resin having two or more epoxy groups in one molecule, which is composed of a bisphenol skeleton consisting of a specific ratio of a bisphenol A skeleton and a bisphenol F skeleton and an epichlorohydrin skeleton, unexpected molding results may occur. It was found that both processability and electrodeposition coating properties were significantly improved.

【0014】このような効果が発揮されるためにはビス
フェノールA骨格とビスフェノールF骨格の重量比率は
(95:5〜60:40)のものが適当である。前記範
囲よりビスフェノールA骨格が多くなると、ビスフェノ
ールF骨格で置換する前記効果が十分認められなくなり
、逆に前記範囲よりビスフェノールA骨格が少なくなる
と塗膜がやわらかくなり過ぎて耐食性、耐水性等が低下
するので好ましくない。
[0014] In order to exhibit such effects, it is appropriate that the weight ratio of the bisphenol A skeleton to the bisphenol F skeleton is (95:5 to 60:40). If the bisphenol A skeleton is more than the above range, the effect of substitution with the bisphenol F skeleton will not be sufficiently recognized, and conversely, if the bisphenol A skeleton is less than the above range, the coating film will become too soft and the corrosion resistance, water resistance, etc. will decrease. So I don't like it.

【0015】また、本発明で使用する前記ビスフェノー
ル型エポキシ樹脂は、耐アルカリ性、耐水二次密着性等
をさらに向上させるために、該樹脂のエポキシ基の20
〜100%を塩基性窒素化合物又は多塩基酸で変性させ
た変性エポキシ樹脂も使用可能である。なお、前記塩基
性窒素化合物としては例えばn−プロピルアミン、is
o −プロピルアミン、n−ブチルアミン、 sec−
ブチルアミン、tert−ブチルアミン、ジエチルアミ
ン、エチレンジアミン、ジエチレントリアミン、トリエ
チレンジアミン、テトラエチレンジアミン、プロピレン
ジアミン、N−メチルピペラジン、エタノールアミン、
ジエタノールアミン、N−メチルエタノールアミン、i
so −プロパノールアミン、ジイソプロパノールアミ
ン、n−プロパノールアミン、エチルエタノールアミン
、3−メタノールピペリジン等が代表的なものとして挙
げられる。
[0015] Furthermore, the bisphenol type epoxy resin used in the present invention has 20% of the epoxy group of the resin in order to further improve alkali resistance, water resistance and secondary adhesion.
Modified epoxy resins that are 100% modified with basic nitrogen compounds or polybasic acids can also be used. In addition, examples of the basic nitrogen compound include n-propylamine, is
o-propylamine, n-butylamine, sec-
Butylamine, tert-butylamine, diethylamine, ethylenediamine, diethylenetriamine, triethylenediamine, tetraethylenediamine, propylenediamine, N-methylpiperazine, ethanolamine,
Diethanolamine, N-methylethanolamine, i
Typical examples include so-propanolamine, diisopropanolamine, n-propanolamine, ethylethanolamine, and 3-methanolpiperidine.

【0016】また前記多塩基酸としてはイソフタル酸、
テレフタル酸、コハク酸、アジピン酸、フマル酸、イタ
コン酸、シトラコン酸、無水マレイン酸、無水フタル酸
、無水コハク酸、クエン酸、酒石酸、蓚酸、ロジン無水
マレイン酸、ベンゼントリカルボン酸無水物等が代表的
なものとして挙げられる。本発明の塗料組成物を構成す
る潤滑剤粉末 (ii) は、常温及び塗膜形成後も粉
末形状を維持するものが望ましく、該潤滑剤粉末は、得
られる塗膜表面を粗面化させ、潤滑性をもたせ、すなわ
ち動摩擦係数の低下をもたらし被覆アルミニウム材の成
形加工性、特にプレス成形加工性を向上させるために配
合する。このような潤滑剤粉末としては、合成ワックス
粉末と固体潤滑剤粉末が代表的なものとして挙げられる
[0016] Further, as the polybasic acid, isophthalic acid,
Typical examples include terephthalic acid, succinic acid, adipic acid, fumaric acid, itaconic acid, citraconic acid, maleic anhydride, phthalic anhydride, succinic anhydride, citric acid, tartaric acid, oxalic acid, rosin maleic anhydride, benzenetricarboxylic anhydride, etc. It is mentioned as something like that. The lubricant powder (ii) constituting the coating composition of the present invention is desirably one that maintains its powder form at room temperature and after coating film formation, and the lubricant powder roughens the surface of the resulting coating film, It is blended to provide lubricity, that is, to reduce the coefficient of dynamic friction, and to improve the formability, particularly press formability, of the coated aluminum material. Typical examples of such lubricant powder include synthetic wax powder and solid lubricant powder.

【0017】合成ワックス粉末としては、合成炭化水素
;脂肪酸エステル;脂肪アミド、置換アミドなどの脂肪
酸窒素誘導体;モンタンワックス誘導体、酸化モンタン
ワックスなどの変性ワックス;ポリエチレンワックスな
どの高分子化合物;塩素化パラフィンなどの塩素化ワッ
クス等が代表的なものとして挙げられるが、特にケン化
価をもち、溶剤に対し難溶性で、かつ融点の高い合成ワ
ックス粉末が望ましい。
Synthetic wax powders include synthetic hydrocarbons; fatty acid esters; fatty acid nitrogen derivatives such as fatty amides and substituted amides; modified waxes such as montan wax derivatives and montan oxide wax; polymeric compounds such as polyethylene wax; chlorinated paraffins. Typical waxes include chlorinated waxes such as chlorinated waxes, but synthetic wax powders that have a saponification value, are poorly soluble in solvents, and have a high melting point are particularly desirable.

【0018】また固体潤滑剤粉末としては、黒鉛、二硫
化モリブデン、二硫化タングステン、窒化ホウ素、フッ
化黒鉛などの層状固体潤滑剤;ポリビニルクロライド、
ポリスチレン、ポリメチル(メタ)アクリレート、ポリ
アミド、高密度ポリエチレン、ポリプロピレン、ポリテ
トラフルオロエチレンなどのプラスチック潤滑剤;脂肪
酸のカルシウム、バリウム、リチウム、亜鉛あるいはア
ルミニウムなどの金属石けん等が代表的なものとして挙
げられるが、特に表面滑性が高いプラスチック潤滑剤、
金属石けんが望ましい。
Solid lubricant powders include layered solid lubricants such as graphite, molybdenum disulfide, tungsten disulfide, boron nitride, and graphite fluoride; polyvinyl chloride;
Typical examples include plastic lubricants such as polystyrene, polymethyl (meth)acrylate, polyamide, high-density polyethylene, polypropylene, and polytetrafluoroethylene; metal soaps containing fatty acids such as calcium, barium, lithium, zinc, and aluminum. However, plastic lubricants with particularly high surface smoothness,
Metallic soap is preferred.

【0019】このような潤滑剤粉末は、前記ビスフェノ
ール型エポキシ樹脂100重量部に対し、約1〜50重
量部配合するのが、塗膜の潤滑性が発揮され、また塗膜
の物理的、化学的強度も適度であるので望ましい。また
潤滑剤粉末の粒径は、平均粒径約0.1〜20μm が
適当であり、0.1μm未満のような小さすぎる場合に
は、塗膜上に潤滑剤粒子が露出しにくくなるので潤滑性
が不十分となり、成形加工性に問題があり、逆に20μ
m を越えて大きすぎる場合には塗膜の成膜性及び塗料
安定性に問題がある。なお、潤滑剤粉末の粒径の好まし
い範囲は0.5〜12μm のものである。
It is recommended that such a lubricant powder be blended in an amount of about 1 to 50 parts by weight to 100 parts by weight of the above-mentioned bisphenol type epoxy resin in order to exhibit the lubricity of the coating film and to improve the physical and chemical properties of the coating film. It is desirable because the target strength is also moderate. In addition, the appropriate particle size of the lubricant powder is an average particle size of about 0.1 to 20 μm; if it is too small, such as less than 0.1 μm, the lubricant particles will be difficult to expose on the coating film, so the lubricant powder will be difficult to expose. 20μ
If it is too large, exceeding m, there will be problems with the film-forming properties of the coating and the stability of the coating. Note that the preferred range of particle size of the lubricant powder is 0.5 to 12 μm.

【0020】本発明の塗膜組成物は以上説明したビスフ
ェノール型エポキシ樹脂(i)と潤滑剤粉末 (ii)
 を必須成分とする、好ましくは固形分10〜40重量
%の塗料である。その他の成分としては必要に応じ適宜
配合される従来から公知の成分が配合される。具体的に
は水、各種炭化水素系、エステル系、ケトン系、アルコ
ール系、アミド系等の有機溶剤;メラミン樹脂、ベンゾ
グアナミン樹脂、ポリブロック化イソシアネート化合物
等の架橋剤;有機又は無機系顔料;分散剤、沈降防止剤
、レベリング剤等の添加剤あるいは各種改質樹脂等を配
合することが可能である。
The coating composition of the present invention comprises the above-described bisphenol-type epoxy resin (i) and lubricant powder (ii).
The paint preferably has a solid content of 10 to 40% by weight. As other components, conventionally known components that are appropriately blended as necessary are blended. Specifically, water, organic solvents such as various hydrocarbons, esters, ketones, alcohols, and amide; crosslinking agents such as melamine resin, benzoguanamine resin, and polyblocked isocyanate compounds; organic or inorganic pigments; dispersion It is possible to add additives such as antisettling agents, antisettling agents, and leveling agents, or various modified resins.

【0021】次に本発明の被覆アルミニウム材の製造方
法について説明する。本発明に使用されるアルミニウム
材としては、通常の成形加工品の用途に使用されている
、例えば非熱処理型Al−Mg系の5000系金属、熱
処理型Al−Cu−Mg系の2000系合金、熱処理型
Al−Mg−Zn系の7000系合金、熱処理型Al−
Mg−Si系の6000系合金、非熱処理型Al−Mn
系の3000系合金及び4000系合金、非熱処理型純
アルミニウム系の1000系展伸材等が代表的なものと
して挙げられるが、これらに限定されるものではない。
Next, the method for manufacturing the coated aluminum material of the present invention will be explained. Examples of the aluminum material used in the present invention include non-heat-treated Al-Mg 5000-series metals, heat-treated Al-Cu-Mg 2000-series alloys, which are used in ordinary molded products. Heat treatment type Al-Mg-Zn 7000 series alloy, heat treatment type Al-
Mg-Si 6000 series alloy, non-heat treated Al-Mn
Typical examples include 3000 series alloys and 4000 series alloys, and 1000 series wrought materials of non-heat-treated pure aluminum, but are not limited to these.

【0022】本発明に使用されるアルミニウム材は、こ
れらを通常の手段、例えばクロミウムクロメート、リン
酸クロメートなどの反応型クロメート処理、塗布型クロ
メート処理、電解型クロメート処理等によるクロム系処
理あるいはリン酸ジルコン処理、シランカップリング処
理、チタンカップリング処理、ジルコンカップリング処
理、アルミニウムカップリング処理等による非クロム系
処理にて下地処理を施したアルミニウム材である。
[0022] The aluminum materials used in the present invention are subjected to chromium-based treatment by conventional means such as reactive chromate treatment such as chromium chromate or phosphoric acid chromate treatment, coating type chromate treatment, electrolytic chromate treatment, or phosphoric acid chromate treatment. This is an aluminum material that has undergone surface treatment using non-chromium-based treatments such as zircon treatment, silane coupling treatment, titanium coupling treatment, zircon coupling treatment, and aluminum coupling treatment.

【0023】これら下地処理を施したアルミニウム材表
面に、前述の塗料組成物をスプレー、ロールコート、シ
ャワーコート等の手段により塗装し、80〜300℃、
好ましくは100〜250℃の温度下で硬化させること
により被覆アルミニウム材を製造する。なお、膜厚は数
μm 前後の薄膜でも十分性能を発揮するが、更に厚く
することを妨げるものではない。
[0023] The above-mentioned coating composition is applied to the surface of the aluminum material which has been subjected to the base treatment by means such as spraying, roll coating, shower coating, etc., and then heated at 80 to 300°C.
Preferably, the coated aluminum material is produced by curing at a temperature of 100 to 250°C. It should be noted that although a thin film of around several μm in thickness can exhibit sufficient performance, it is not prohibited to make the film even thicker.

【0024】このようにして得られた被覆アルミニウム
材は、電着塗装や通常の上塗塗装が施され、自動車車体
、家電製品、建材等の分野に適用される。
The thus obtained coated aluminum material is subjected to electrodeposition coating or ordinary top coating, and is applied to fields such as automobile bodies, home appliances, and building materials.

【0025】[0025]

【発明の効果】本発明の塗料組成物を塗装した被覆アル
ミニウム材により、耐食性、電着塗装性、密着性、成形
加工性等の優れた製品が得られる。また、鋼材とアルミ
ニウム材との組立てにより構成される自動車車体の前述
の製造方法において、アルミニウム材として本発明の被
覆アルミニウム材を使用した場合、脱脂工程におけるア
ルカリ処理に対し、耐久性すなわち耐アルカリ脱脂性に
優れ、またその後のリン酸亜鉛処理等の化成処理をする
と、鋼材のみに化成皮膜が形成され、被覆アルミニウム
材には全く化成皮膜が形成されないため、従来の化成処
理むらの欠点が解消され、耐化成処理性がよく、さらに
鋼材と被覆アルミニウム材との異種金属接触によるアル
ミニウム材の電食も防止出来るといった各種効果が得ら
れ、実用的価値の高い塗料、被覆アルミニウム材といえ
る。
Effects of the Invention By coating coated aluminum materials with the coating composition of the present invention, products with excellent corrosion resistance, electrodeposition coating properties, adhesion properties, moldability, etc. can be obtained. In addition, in the above-mentioned manufacturing method of an automobile body constructed by assembling steel materials and aluminum materials, when the coated aluminum material of the present invention is used as the aluminum material, it is durable, that is, resistant to alkali degreasing, against alkali treatment in the degreasing process. Furthermore, when a subsequent chemical conversion treatment such as zinc phosphate treatment is applied, a chemical conversion film is formed only on the steel material, and no chemical conversion film is formed on the coated aluminum material, eliminating the disadvantages of uneven chemical conversion treatment. It can be said to be a paint and coated aluminum material with high practical value, as it has good resistance to chemical conversion treatment and can prevent electrolytic corrosion of the aluminum material due to contact between different metals between the steel material and the coated aluminum material.

【0026】[0026]

【実施例】以下、本発明を実施例により更に詳細に説明
する。なお、実施例中「部」、「%」は重量基準で示す
。(エポキシ樹脂溶液(1)の調製)還流冷却器、温度
計、撹拌機を取付けた三つ口フラスコ中にビスフェノー
ルA109.4部、ビスフェノールF64.0部及び6
0部の苛性ソーダを600部の水に溶解させた苛性ソー
ダ水溶液を加え、撹拌しながら50℃、10分間加熱し
た。継いでエピクロルヒドリン116部を加え徐々に昇
温し、20分間で100℃とし、この温度で撹拌しなが
ら40分間保った。
[Examples] The present invention will be explained in more detail below with reference to Examples. In the examples, "parts" and "%" are expressed on a weight basis. (Preparation of epoxy resin solution (1)) In a three-necked flask equipped with a reflux condenser, a thermometer, and a stirrer, 109.4 parts of bisphenol A, 64.0 parts of bisphenol F, and 6
A caustic soda aqueous solution prepared by dissolving 0 parts of caustic soda in 600 parts of water was added, and the mixture was heated at 50° C. for 10 minutes with stirring. Subsequently, 116 parts of epichlorohydrin was added and the temperature was gradually raised to 100° C. over 20 minutes, and this temperature was maintained for 40 minutes while stirring.

【0027】次いで冷却後傾斜法にて、上澄み水層を除
き、更に600部の水を加え、90℃に加温し激しく撹
拌した後、再度の冷却後同様にして上澄み水層を除いた
。このような操作をアルカリ性を示さなくなるまで繰返
し、最後に水を充分分離した後、撹拌しながら150℃
、30分間加熱脱水し、分子量約900のエポキシ樹脂
を製造した。
After cooling, the supernatant water layer was removed by the decanting method, and 600 parts of water was further added, heated to 90° C. and vigorously stirred. After cooling again, the supernatant water layer was removed in the same manner. Repeat this operation until it no longer shows alkalinity, and after thoroughly separating the water, heat to 150℃ with stirring.
The mixture was heated and dehydrated for 30 minutes to produce an epoxy resin having a molecular weight of about 900.

【0028】得られたエポキシ樹脂200部を80℃に
加温したエチレングリコールモノエチルエーテル200
部中に溶解し、固形分50%のエポキシ樹脂溶液(1)
を調製した。(エポキシ樹脂溶液(2)の調製)撹拌機
、温度計、滴下ロートを取付けたフラスコ中にビスフェ
ノールA729.6部、ビスフェノールF160部及び
10%苛性ソーダ水溶液2572部を加え、撹拌しなが
ら50℃、10分間加熱した。次いでエピクロルヒドリ
ン463部を加え、撹拌しながら100℃に加温し、3
0分間保った。
200 parts of the obtained epoxy resin was heated to 80°C to add 200 parts of ethylene glycol monoethyl ether.
Epoxy resin solution (1) with a solid content of 50% dissolved in
was prepared. (Preparation of epoxy resin solution (2)) Add 729.6 parts of bisphenol A, 160 parts of bisphenol F, and 2572 parts of a 10% caustic soda aqueous solution into a flask equipped with a stirrer, thermometer, and dropping funnel, and heat at 50°C for 10 minutes while stirring. Heated for minutes. Next, 463 parts of epichlorohydrin was added, heated to 100°C with stirring, and
It was held for 0 minutes.

【0029】次いで傾斜法にて上澄み水層を除き、更に
沸騰水で洗浄を繰返し、アルカリ性を示さなくなった後
、150℃に加熱し、脱水し、分子量約1400のエポ
キシ樹脂を製造した。得られたエポキシ樹脂300部を
80℃に加温したエチレングリコールモノブチルエーテ
ル300部に溶解し、固形分50%のエポキシ樹脂溶液
(2)を調製した。(エポキシ樹脂溶液(3)の調製)
還流冷却器、温度計、撹拌機を取付けた三つ口フラスコ
中にエチレングリコールモノエチルエーテルアセテート
680部を加え、100℃に加熱した後、ビスフェノー
ルAとエピクロルヒドリンとを反応させて得られたエポ
キシ当量2800〜3300のエポキシ樹脂1000部
を少しずつ添加し、溶解させた。次いでビスフェノール
F25部と塩化リチウム1部を加え200℃、60分間
反応させ、分子量約7000、固形分60%のエポキシ
樹脂溶液(3)を調製した。(変性エポキシ樹脂溶液(
4)の調製)還流冷却器、温度計、撹拌機を取付けた三
つ口フラスコ中にビスフェノールA109.4部、ビス
フェノールF64.0部及び60部の苛性ソーダを60
0部の水に溶解させた苛性ソーダ水溶液を加え、撹拌し
ながら50℃、10分間加熱した。次いでエピクロルヒ
ドリン116部を加え徐々に昇温し、20分間で100
℃とし、この温度で撹拌しながら40分間保った。
Next, the supernatant water layer was removed by a decanting method, and the mixture was washed repeatedly with boiling water until it no longer showed alkalinity. Then, it was heated to 150° C. and dehydrated to produce an epoxy resin having a molecular weight of about 1400. 300 parts of the obtained epoxy resin was dissolved in 300 parts of ethylene glycol monobutyl ether heated to 80°C to prepare an epoxy resin solution (2) with a solid content of 50%. (Preparation of epoxy resin solution (3))
Epoxy equivalent obtained by adding 680 parts of ethylene glycol monoethyl ether acetate to a three-necked flask equipped with a reflux condenser, thermometer, and stirrer and heating it to 100°C, then reacting bisphenol A and epichlorohydrin. 1000 parts of 2800-3300 epoxy resin was added little by little and dissolved. Next, 25 parts of bisphenol F and 1 part of lithium chloride were added and reacted at 200°C for 60 minutes to prepare an epoxy resin solution (3) with a molecular weight of about 7000 and a solid content of 60%. (Modified epoxy resin solution (
4) Preparation) In a three-necked flask equipped with a reflux condenser, thermometer, and stirrer, 109.4 parts of bisphenol A, 64.0 parts of bisphenol F, and 60 parts of caustic soda were added.
An aqueous solution of caustic soda dissolved in 0 parts of water was added, and the mixture was heated at 50° C. for 10 minutes with stirring. Next, 116 parts of epichlorohydrin was added and the temperature was gradually raised to 100 parts in 20 minutes.
℃ and kept at this temperature for 40 minutes with stirring.

【0030】次いで冷却後傾斜法にて、上澄み水層を除
き、更に600部の水を加え90℃に加温し激しく撹拌
した後再度の冷却後同様にして上澄み水層を除いた。こ
のような操作をアルカリ性を示さなくなるまで繰返し、
最後に水を充分、分離した後、撹拌しながら150℃、
30分間加熱脱水し、分子量約900のエポキシ樹脂を
製造した。
After cooling, the supernatant aqueous layer was removed by the decanting method, and 600 parts of water was further added, heated to 90° C., vigorously stirred, cooled again, and the supernatant aqueous layer was removed in the same manner. Repeat this operation until it no longer shows alkalinity.
Finally, after sufficiently separating water, heat at 150℃ while stirring.
The mixture was heated and dehydrated for 30 minutes to produce an epoxy resin having a molecular weight of about 900.

【0031】得られたエポキシ樹脂200部を80℃に
加温したエチレングリコールモノエチルエーテル200
部中に溶解し、固形分50%のエポキシ樹脂溶液(4′
)を調製した。該エポキシ樹脂溶液(4′)180部を
60℃に加温し、次いでジエタノールアミン17.7部
を2時間かけて滴下し、更に70℃で3時間反応させて
固形分55%の変性エポキシ樹脂溶液(4)を調製した
。(変性エポキシ樹脂溶液(5)の調製)還流冷却器、
温度計、撹拌機を取付けた三つ口フラスコ中にエチレン
グリコールモノエチルエーテルアセテート680部を加
え、100℃に加熱した後、ビスフェノールAとエピク
ロルヒドリンとを反応させて得られたエポキシ当量28
00〜3300のエポキシ樹脂1000部を少しづつ添
加し、溶解させた。次いでビスフェノールF25部と塩
化リチウム1部を加え200℃、60分間反応させ、分
子量約7000、固形分60%のエポキシ樹脂溶液(5
′)を調製した。該エポキシ樹脂溶液(5′)1167
部にN−メチルエタノールアミン7.5部を加え、前述
溶液(4)と同様にして反応させ、固形分60.2%の
変性エポキシ樹脂溶液(5)を調整した。(変性エポキ
シ樹脂溶液(6)の調製)還流冷却器、温度計、撹拌機
を取付けた三つ口フラスコ中にビスフェノールA109
.4部、ビスフェノールF64.0部及び60部の苛性
ソーダを600部の水に溶解させた苛性ソーダ水溶液を
加え、撹拌しながら50℃、10分間加熱した。次いで
エピクロルヒドリン116部を加え徐々に昇温し、20
分間で100℃とし、この温度で撹拌しながら40分間
保った。
200 parts of ethylene glycol monoethyl ether obtained by heating 200 parts of the obtained epoxy resin to 80°C.
An epoxy resin solution with a solid content of 50% (4'
) was prepared. 180 parts of the epoxy resin solution (4') was heated to 60°C, then 17.7 parts of diethanolamine was added dropwise over 2 hours, and the reaction was further carried out at 70°C for 3 hours to form a modified epoxy resin solution with a solid content of 55%. (4) was prepared. (Preparation of modified epoxy resin solution (5)) Reflux condenser,
680 parts of ethylene glycol monoethyl ether acetate was added to a three-necked flask equipped with a thermometer and a stirrer, and after heating to 100°C, an epoxy equivalent of 28% was obtained by reacting bisphenol A and epichlorohydrin.
00-3300 epoxy resin was added little by little and dissolved. Next, 25 parts of bisphenol F and 1 part of lithium chloride were added and reacted at 200°C for 60 minutes to form an epoxy resin solution (5
') was prepared. The epoxy resin solution (5') 1167
7.5 parts of N-methylethanolamine was added to the solution and reacted in the same manner as the solution (4) above to prepare a modified epoxy resin solution (5) with a solid content of 60.2%. (Preparation of modified epoxy resin solution (6)) Bisphenol A109 was added to a three-necked flask equipped with a reflux condenser, a thermometer, and a stirrer.
.. 4 parts of bisphenol F, 64.0 parts of bisphenol F, and a caustic soda aqueous solution prepared by dissolving 60 parts of caustic soda in 600 parts of water were added, and the mixture was heated at 50° C. for 10 minutes with stirring. Next, 116 parts of epichlorohydrin was added and the temperature was gradually raised to 20 parts.
The temperature was raised to 100° C. for 40 minutes and maintained at this temperature for 40 minutes with stirring.

【0032】次いで冷却後傾斜法にて、上澄み水層を除
き、更に600部の水を加え、90℃に加温し、激しく
撹拌した後、再度の冷却後同様にして上澄み水層を除い
た。このような操作をアルカリ性を示さなくなるまで繰
返し、最後に水を充分、分離した後、撹拌しながら15
0℃、30分間加熱、脱水し、分子量約900のエポキ
シ樹脂を製造した。
After cooling, the supernatant water layer was removed by the decanting method, and 600 parts of water was added, heated to 90°C, and vigorously stirred. After cooling again, the supernatant water layer was removed in the same manner. . Repeat this operation until it no longer shows alkalinity.Finally, after thoroughly separating the water, add water for 15 minutes while stirring.
The mixture was heated at 0° C. for 30 minutes and dehydrated to produce an epoxy resin having a molecular weight of about 900.

【0033】得られたエポキシ樹脂200部を80℃に
加温したエチレングリコールモノエチルエーテル200
部中に溶解し、固形分50%のエポキシ樹脂溶液(6′
)を調製した。該溶液(6′)180部を150℃に加
熱し、ハイドロキノン2部、ジメチルベンジルアミン1
部及び無水フタル酸26.6部を添加し、5時間反応さ
せ、固形分56%の変性エポキシ樹脂溶液(6)を調製
した。(変性エポキシ樹脂溶液(7)の調製)還流冷却
器、温度計、撹拌機を取付けた三つ口フラスコ中にエチ
レングリコールモノエチルエーテルアセテート680部
を加え、100℃に加熱した後ビスフェノールAとエピ
クロルヒドリンとを反応させて得られたエポキシ当量2
800〜3300のエポキシ樹脂1000部を少しづつ
添加し、溶解させた。次いでビスフェノールF25部と
塩化リチウム1部を加え200℃、60分間反応させ、
分子量約7000、固形分60%のエポキシ樹脂溶液(
7′)を調製した。
200 parts of ethylene glycol monoethyl ether obtained by heating 200 parts of the obtained epoxy resin to 80°C.
An epoxy resin solution (6'
) was prepared. 180 parts of the solution (6') was heated to 150°C, and 2 parts of hydroquinone and 1 part of dimethylbenzylamine were added.
and 26.6 parts of phthalic anhydride were added thereto and reacted for 5 hours to prepare a modified epoxy resin solution (6) with a solid content of 56%. (Preparation of modified epoxy resin solution (7)) Add 680 parts of ethylene glycol monoethyl ether acetate to a three-necked flask equipped with a reflux condenser, thermometer, and stirrer, and after heating to 100°C, add bisphenol A and epichlorohydrin. Epoxy equivalent 2 obtained by reacting with
1000 parts of 800-3300 epoxy resin was added little by little and dissolved. Next, 25 parts of bisphenol F and 1 part of lithium chloride were added and reacted at 200°C for 60 minutes.
Epoxy resin solution with a molecular weight of approximately 7000 and a solid content of 60% (
7′) was prepared.

【0034】該溶液(7′)1167部にハイドロキノ
ン4.5部、ジメチルベンジルアミン3.8部及びアジ
ピン酸14.6部を添加し、前述溶液(6)と同様にし
て反応させ、固形分60.5%の変性エポキシ樹脂溶液
(7)を調製した。(エポキシ樹脂溶液(8)の調製)
ビスフェノールA型エポキシ樹脂〔「エピコート100
1」(シエル化学社製商品名)、エポキシ当量450〜
500〕300部をエチレングリコールモノエチルエー
テル300部に溶解し、固形分50%のエポキシ樹脂溶
液(8)を調製した。(エポキシ樹脂溶液(9)の調製
)ビスフェノールF型エポキシ樹脂〔「エピクロン83
0」(大日本インキ化学工業社製商品名)、エポキシ当
量約175〕300部をエチレングリコールモノエチル
エーテル300部に溶解し、固形分50%のエポキシ樹
脂溶液(9)を調製した。実施例1エポキシ樹脂溶液(
1)200部、ポリプロピレンワックス40部及びプロ
ピレングリコールモノエチルエーテル497部を混合し
、塗料を調製した。
4.5 parts of hydroquinone, 3.8 parts of dimethylbenzylamine and 14.6 parts of adipic acid were added to 1167 parts of the solution (7') and reacted in the same manner as in the solution (6) above to reduce the solid content. A 60.5% modified epoxy resin solution (7) was prepared. (Preparation of epoxy resin solution (8))
Bisphenol A type epoxy resin ["Epicote 100"
1” (trade name manufactured by Ciel Chemical Co., Ltd.), epoxy equivalent 450~
500] was dissolved in 300 parts of ethylene glycol monoethyl ether to prepare an epoxy resin solution (8) with a solid content of 50%. (Preparation of epoxy resin solution (9)) Bisphenol F type epoxy resin ["Epicron 83
0'' (trade name, manufactured by Dainippon Ink Chemical Industries, Ltd.), with an epoxy equivalent of about 175, was dissolved in 300 parts of ethylene glycol monoethyl ether to prepare an epoxy resin solution (9) with a solid content of 50%. Example 1 Epoxy resin solution (
1) 200 parts of polypropylene wax, 40 parts of polypropylene wax, and 497 parts of propylene glycol monoethyl ether were mixed to prepare a paint.

【0035】得られた塗料を表1に示す各種下地処理し
たアルミニウム材(厚さ1.0mm)に乾燥膜厚が3μ
m となるようロールコート塗装し、最高到達板温が3
0秒で150℃になるよう焼付け、耐食性、成形加工性
、耐アルカリ性、耐化成処理性、電着塗装性、上塗密着
性、耐水性、塗料安定性の各試験を行ない、その結果を
表1下欄に示した。実施例2〜7及び比較例1〜4エポ
キシ樹脂溶液、潤滑剤粉末を表1に示す割合で配合した
混合物を固形分が20%になる量のプロピレングリコー
ルモノエチルエーテルにて希釈し、塗料を調製した。得
られた塗料を実施例1と同様にして塗装し、各種試験を
行ない、その結果を表1下欄に示した。
[0035] The obtained paint was applied to aluminum materials (thickness 1.0 mm) that had been subjected to various surface treatments as shown in Table 1, with a dry film thickness of 3 μm.
Roll coated so that the maximum board temperature is 3.
Baking at 150℃ in 0 seconds, corrosion resistance, moldability, alkali resistance, chemical conversion treatment resistance, electrodeposition coating properties, topcoat adhesion, water resistance, and paint stability tests were conducted, and the results are listed in Table 1. Shown in the column below. Examples 2 to 7 and Comparative Examples 1 to 4 A mixture of an epoxy resin solution and a lubricant powder in the proportions shown in Table 1 was diluted with propylene glycol monoethyl ether in an amount to give a solid content of 20%, and a paint was prepared. Prepared. The obtained paint was applied in the same manner as in Example 1, and various tests were conducted, and the results are shown in the lower column of Table 1.

【0036】表1より明らかなように、本発明の塗料組
成物を使用した実施例においては、塗料安定性がよく、
また優れた塗膜性能を有していた。一方潤滑剤粉末を含
まない比較例1においては成形加工性等が不良であった
。またビスフェノール骨格としビスフェノールA骨格の
みからなるエポキシ樹脂を使用した比較例2においては
成形加工性、電着塗装性等が不良であった。またビスフ
ェノール骨格としてビスフェノールF骨格のみからなる
エポキシ樹脂を使用した比較例3においては耐食性、耐
アルカリ性、耐化成処理性、耐水性等が不良であった。 また液状潤滑剤を使用した比較例4においては電着塗装
性、上塗密着性、耐水性等が不良であった。
As is clear from Table 1, in the Examples using the coating composition of the present invention, the coating stability was good;
It also had excellent coating film performance. On the other hand, in Comparative Example 1, which did not contain lubricant powder, moldability and the like were poor. Furthermore, in Comparative Example 2, which used an epoxy resin having a bisphenol skeleton and only a bisphenol A skeleton, moldability, electrodeposition coating properties, etc. were poor. Furthermore, in Comparative Example 3 in which an epoxy resin consisting only of bisphenol F skeleton was used as the bisphenol skeleton, corrosion resistance, alkali resistance, chemical conversion treatment resistance, water resistance, etc. were poor. Furthermore, in Comparative Example 4 using a liquid lubricant, electrodeposition coating properties, topcoat adhesion, water resistance, etc. were poor.

【0037】[0037]

【表1】[Table 1]

【0038】注1)  「Shamrock Wax 
S−363」(Shamrock Chemicals
 社製商品名)、平均粒径5μm注2)  「セリダス
ト3910」(ヘキスト社製商品名)、平均粒径8μm
注3)  「ヒタゾルGP−60」(日立粉末冶金社製
商品名)、平均粒径0.5μm注4)  「ルブロンL
−2」(ダイキン工業社製商品名)、平均粒径5μm注
5)  「フェイメックスA−12」(味の素社製商品
名)、平均粒径10μm注6)  「SC−100」(
堺化学工業社製商品名)、平均粒径3μm注7)  「
MD−40」(日立粉末冶金社製商品名)、平均粒径1
μm注8)  「KF945(A)」(信越化学工業社
製商品名)、液体注9)  試験板塗面にクロスカット
を入れ、JIS−Z−2371に基づく塩水噴霧試験を
600時間行ない、白錆発生状況を観察○:全く異常な
し      △:白錆点在×:全面白錆注10)  
84mmφ打ち抜いた試験板を径50mmφ、深さ25
mmの円筒絞り加工(BHF=1トン)し、加工後JI
S−Z−2371に基づく塩水噴霧試験400時間行な
い、白錆発生状況を観察○:白錆なし      △:
白錆5%未満      ×:白錆5%以上注11) 
 試験板を50℃のアルカリ脱脂液に浸漬し、水洗乾燥
後、1mmゴバン目100個をカッターナイフで切り込
み、セロハンテープを用いて、剥離試験後の塗膜残存率
を測定◎:浸漬時間6分間後の残存率    100%
○:  〃    3分間    〃  100%△:
  〃    〃        〃        
90〜99%×:  〃    〃      〃  
      89%以下注12)  試験板を45℃の
リン酸亜鉛処理液に3分間浸漬し、水洗乾燥後の塗膜観
察○:塗膜の剥離なく、化成処理前と同じく均一な塗膜
×:塗膜の剥離あり注13)  試験板塗面にアミン付
加エポキシ樹脂−ブロックイソシアネート系カチオン電
着塗料を浴温28℃、100V×3分間の条件下でカチ
オン電着塗装し、165℃×20分間焼付け、塗膜(面
積100cm2 )外観を観察           ○:ガスピン及びクレーター発生
      0〜5点          △:ガスピ
ン及びクレーター発生      6〜20点    
      ×:ガスピン及びクレーター発生    
  20点以上注14)  注13)で得られたカチオ
ン電着塗装板を1mmゴバン目100個をカッタ   
     ーナイフで切り込み、セロハンテープを用い
て剥離試験を行ない、電着        塗膜の残存
率を測定           ○:95〜100%      
△:90〜94%      ×:89%以下注15)
  注13)で得られたカチオン電着塗装板を40℃の
水中に浸漬し、乾燥さ        せた後、注14
)と同様にして剥離試験を行ない、電着塗膜の残存率を
測        定
Note 1) “Shamrock Wax
S-363” (Shamrock Chemicals
(product name manufactured by Hoechst), average particle size 5 μm Note 2) “Ceridust 3910” (product name manufactured by Hoechst), average particle size 8 μm
Note 3) “Hitazol GP-60” (trade name manufactured by Hitachi Powder Metallurgy Co., Ltd.), average particle size 0.5 μm Note 4) “Rubron L
-2" (trade name manufactured by Daikin Industries, Ltd.), average particle size 5 μm Note 5) "Famex A-12" (trade name manufactured by Ajinomoto Co., Ltd.), average particle size 10 μm Note 6) "SC-100" (
Sakai Chemical Industry Co., Ltd. product name), average particle size 3 μm Note 7)
MD-40” (trade name manufactured by Hitachi Powder Metallurgy Co., Ltd.), average particle size 1
μm Note 8) “KF945(A)” (product name manufactured by Shin-Etsu Chemical Co., Ltd.), liquid Note 9) A cross cut was made on the coated surface of the test plate, and a salt spray test based on JIS-Z-2371 was conducted for 600 hours. Observe the rust occurrence ○: No abnormality at all △: White rust scattered ×: All white rust Note 10)
A test plate with a diameter of 50 mmφ and a depth of 25 mm was punched out with a diameter of 84 mmφ.
mm cylindrical drawing (BHF = 1 ton), and after processing JI
A salt water spray test was conducted for 400 hours based on S-Z-2371, and the occurrence of white rust was observed. ○: No white rust △:
White rust less than 5% ×: white rust 5% or more Note 11)
The test plate was immersed in an alkaline degreasing solution at 50°C, washed with water and dried, then cut 100 1mm gobs with a cutter knife, and measured the coating film remaining rate after the peel test using cellophane tape ◎: Immersion time 6 minutes Survival rate after: 100%
○: 〃 3 minutes 〃 100%△:
〃 〃 〃
90-99%×: 〃 〃 〃
89% or less Note 12) The test plate was immersed in a zinc phosphate treatment solution at 45°C for 3 minutes, and the coating film was observed after washing with water and drying ○: The coating film remained uniform as before chemical conversion treatment without peeling. Peeling of film Note 13) Apply amine-added epoxy resin-blocked isocyanate-based cationic electrodeposition paint to the coated surface of the test plate at a bath temperature of 28°C and 100V for 3 minutes, and bake at 165°C for 20 minutes. , Observe the appearance of the paint film (area 100 cm2) ○: Gas pins and craters generated 0 to 5 points △: Gas pins and craters generated 6 to 20 points
×: Gas pin and crater generation
20 points or more Note 14) Cut 100 1 mm goblets from the cationic electrodeposition coated plate obtained in Note 13).
- Make a cut with a knife, perform a peel test using cellophane tape, and measure the residual rate of the electrodeposition film. ○: 95-100%
△: 90-94% ×: 89% or less Note 15)
The cationic electrodeposition coated plate obtained in Note 13) was immersed in water at 40°C, dried, and then coated with Note 14.
) to measure the residual rate of the electrodeposited coating.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  (i) ビスフェノールA骨格とビス
フェノールF骨格との重量比率(95:5〜60:40
)からなるビスフェノール骨格と、エピクロルヒドリン
骨格とより構成される、1分子中に2個以上のエポキシ
基を有するビスフェノール型エポキシ樹脂、及び(ii
)平均粒径0.1〜20μmの潤滑剤粉末を含有するア
ルミニウム材用塗料組成物。
Claim 1: (i) Weight ratio of bisphenol A skeleton to bisphenol F skeleton (95:5 to 60:40
) and an epichlorohydrin skeleton, and has two or more epoxy groups in one molecule, and (ii
) A coating composition for aluminum materials containing lubricant powder having an average particle size of 0.1 to 20 μm.
【請求項2】  (i) 請求項1に記載のエポキシ樹
脂を塩基性窒素化合物又は多塩基酸で変性させた変性エ
ポキシ樹脂及び(ii)平均粒径0.1〜20μm の
潤滑剤粉末を含有するアルミニウム材用塗料組成物。
2. Contains (i) a modified epoxy resin obtained by modifying the epoxy resin according to claim 1 with a basic nitrogen compound or a polybasic acid, and (ii) a lubricant powder with an average particle size of 0.1 to 20 μm. Coating composition for aluminum materials.
【請求項3】  下地処理を施したアルミニウム材表面
に、請求項(1)または請求項(2)に記載の塗料組成
物を塗装した被覆アルミニウム材。
3. A coated aluminum material obtained by applying the coating composition according to claim (1) or claim (2) to the surface of an aluminum material that has been subjected to a base treatment.
【請求項4】  自動車車体用である請求項(3)に記
載の被覆アルミニウム材。
4. The coated aluminum material according to claim 3, which is used for automobile bodies.
JP3857191A 1991-03-05 1991-03-05 Paint composition and coated aluminum material Expired - Fee Related JP2873513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3857191A JP2873513B2 (en) 1991-03-05 1991-03-05 Paint composition and coated aluminum material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3857191A JP2873513B2 (en) 1991-03-05 1991-03-05 Paint composition and coated aluminum material

Publications (2)

Publication Number Publication Date
JPH04277577A true JPH04277577A (en) 1992-10-02
JP2873513B2 JP2873513B2 (en) 1999-03-24

Family

ID=12528983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3857191A Expired - Fee Related JP2873513B2 (en) 1991-03-05 1991-03-05 Paint composition and coated aluminum material

Country Status (1)

Country Link
JP (1) JP2873513B2 (en)

Also Published As

Publication number Publication date
JP2873513B2 (en) 1999-03-24

Similar Documents

Publication Publication Date Title
US4373050A (en) Process and composition for coating metals
US3795546A (en) Rinsing coated metallic surfaces
US4030945A (en) Rinsing coated metallic surfaces
JP5255658B2 (en) Method for adjusting the coefficient of friction of metal workpieces
US4183772A (en) Composition and method for coating metal surfaces
US3960610A (en) Process for coating metals
US5213846A (en) Corrison resistant coating composition
US3687738A (en) Coated metal and method
US3687739A (en) Coated metal and method
WO2005071052A1 (en) Lubricating aqueous polyurethane resin composition, method for lubricating surface of zinc-plated steel sheet using same, and surface-treated steel sheet
US5931993A (en) Composition for forming a black, adherent coating on a metal substrate
JPH0692567B2 (en) Weldable rust preventive lubricity coating forming composition and method for producing surface-treated steel sheet using the same
US4104424A (en) Process for coating metals
JPS5911372A (en) Coating paint composition
US3708350A (en) Coated metal and method
JPH032257A (en) Composition capable of forming lubricant coating film
JP2873513B2 (en) Paint composition and coated aluminum material
JP3614190B2 (en) Two-component lubricating chromate treatment composition for metal materials and treatment method
JPH0734030A (en) Coating composition and coated aluminum material
JPH07331171A (en) Water-based coating composition and aluminum material coated with the composition
JPH07331163A (en) Water-base coating composition and aluminum material coated therewith
JPH0565666A (en) Production of lubricative plated steel sheet excellent in sliding property and press-workability
JP4157953B2 (en) Painted steel sheet and paint composition with excellent galling resistance and coating film adhesion
JPH0565667A (en) Production of high-performance lubricative plated steel sheet
JPS60203677A (en) Coating compound composition for precoating of metallic material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees