JP2873513B2 - Paint composition and coated aluminum material - Google Patents

Paint composition and coated aluminum material

Info

Publication number
JP2873513B2
JP2873513B2 JP3857191A JP3857191A JP2873513B2 JP 2873513 B2 JP2873513 B2 JP 2873513B2 JP 3857191 A JP3857191 A JP 3857191A JP 3857191 A JP3857191 A JP 3857191A JP 2873513 B2 JP2873513 B2 JP 2873513B2
Authority
JP
Japan
Prior art keywords
bisphenol
epoxy resin
parts
aluminum material
skeleton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3857191A
Other languages
Japanese (ja)
Other versions
JPH04277577A (en
Inventor
弘往 田辺
修 小川
昌憲 永井
修 谷田
進 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Original Assignee
Dai Nippon Toryo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK filed Critical Dai Nippon Toryo KK
Priority to JP3857191A priority Critical patent/JP2873513B2/en
Publication of JPH04277577A publication Critical patent/JPH04277577A/en
Application granted granted Critical
Publication of JP2873513B2 publication Critical patent/JP2873513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】本発明は、耐食性、電着塗装性等に優れた
塗膜をアルミニウム材に形成することが可能な塗料組成
物及び該塗料組成物から得られた塗膜を有する、成形加
工性等に優れた被覆アルミニウム材に関する。
[0001] The present invention relates to a coating composition capable of forming a coating film having excellent corrosion resistance, electrodeposition coating property and the like on an aluminum material, and a molding processability having a coating film obtained from the coating composition. The present invention relates to a coated aluminum material having excellent properties.

【0002】[0002]

【従来の技術】近年、アルミニウムあるいはアルミニウ
ム合金からなるアルミニウム材が軽量であるため、自動
車の車体などの外板として、応用されるようになってき
ている。すなわち、自動車車体の外板として鋼材とアル
ミニウム材との組立てにより構成された自動車車体が上
市されつつある。
2. Description of the Related Art In recent years, aluminum materials made of aluminum or aluminum alloy have been used as outer plates of automobile bodies because of their light weight. That is, an automobile body constituted by assembling a steel material and an aluminum material as an outer plate of the automobile body is being put on the market.

【0003】ところでこのような鋼材とアルミニウム材
との組立てにより構成れれる自動車車体の製造方法の1
つとして、以下の方式が採用されている。
[0003] Incidentally, one of the methods of manufacturing an automobile body constituted by assembling such a steel material and an aluminum material is described below.
First, the following method is adopted.

【0004】鋼 材 成形加工─┐│→組立て
→脱脂→アルミニウム 成形加工 ┘化成処理→電着塗
装→中塗塗装→上塗塗装
[0004] Steel material forming process─┐ | → Assembly → degreasing → aluminum forming process ┘Chemical treatment → electrodeposition coating → intermediate coating → top coating

【0005】しかしながら上記従来の方法は、アルミニ
ウム材のプレス成形加工性が悪く、また成形加工する際
に使用したプレス油や防錆油がアルミニウム材の場合、
鋼材に比較して十分脱脂しにくく、その結果、リン酸亜
鉛処理等による加勢処理した際、アルミニウム材表面で
化成処理むらが発生し、耐食性、耐水二次密着性等が低
下したり、化成処理中にアルミニウムの溶出が起こり、
その量が一定量を越えると化成処理の進行が妨げられる
という問題点があった。さらに鋼材とアルミニウム材の
接触は、避けられず、その結果異種金属接触によるアル
ミニウム材の電食が生じるという問題点もあった。
[0005] However, the above-mentioned conventional method is inferior in press workability of aluminum material, and when the press oil or rust-preventive oil used for forming is aluminum material,
As compared to steel, it is difficult to degrease sufficiently, and as a result, when subjected to an energizing treatment by zinc phosphate treatment, etc., uneven chemical treatment occurs on the surface of the aluminum material, and the corrosion resistance, water-resistant secondary adhesion, etc. decrease, and the chemical treatment Elution of aluminum occurs inside,
If the amount exceeds a certain amount, there is a problem that the progress of the chemical conversion treatment is hindered. Further, contact between the steel material and the aluminum material is unavoidable, and as a result, there is a problem in that electrolytic corrosion of the aluminum material occurs due to contact with dissimilar metals.

【0006】一方前記問題点を改良するため、例えば成
形加工性を改良するため、アルミニウム合金中の金属組
成を変える方法(特開昭58−171547号、特開昭
61−201748号、特開昭61−201749号、
特開昭62−27544号等)、アルミニウム材表面を
粗面化する方法(特開昭61−276707号、特開平
1−21047号等)等があるが、前記耐食性、耐水二
次密着性、電食防止性については何等解決されていな
い。
On the other hand, in order to improve the above problems, for example, in order to improve the formability, a method of changing the metal composition in an aluminum alloy (JP-A-58-171547, JP-A-61-201748, JP-A-61-201748, No. 61-201749,
Japanese Patent Application Laid-Open No. 62-27544), a method of roughening the surface of an aluminum material (Japanese Patent Application Laid-Open No. 61-276707, Japanese Patent Application Laid-Open No. 1-21047), and the like. There is no solution to electrolytic corrosion prevention.

【0007】また、化成処理むらを防止するため、例え
ばアルミニウム材表面を化学的に清浄化する方法(特開
平1−240675号、特開平1−279788号、特
開平2−57692号等)、防錆油の粘度を下げて脱脂
を完全に行なう方法(特開平2−115385号等)等
があり、またアルミニウム材と鋼材の同一化成処理を可
能ならしめるために両者の表面積比率を規定した方法
(特開昭61−104089号等)があるが、いずれも
成形加工性等については何等解決されていない。
Further, in order to prevent the non-uniformity of the chemical conversion treatment, for example, a method of chemically cleaning the surface of an aluminum material (Japanese Patent Application Laid-Open Nos. 1-240675, 1-279788, 2-57692, etc.), There is a method of completely degreasing by lowering the viscosity of rust oil (Japanese Patent Laid-Open No. 2-115385, etc.), and a method of defining the surface area ratio of aluminum and steel in order to enable the same chemical conversion treatment of both ( Japanese Patent Application Laid-Open No. Sho 61-104089), but none of them have solved moldability and the like.

【0008】そこで前記従来方法において事前にアルミ
ニウム材表面を下地処理し、塗料被膜を施した被覆アル
ミニウム材を使用して成形加工し、鋼材と組立てる方法
も考えられているが、後工程における化成処理において
被膜が剥離しやすく、その結果耐食性が低下したり、さ
らに後工程における電着塗装性が悪かったり、さらに成
形加工性等が悪くなるといった問題点があり、これら耐
化成処理性、耐食性、成形加工性、電着塗装性等を満足
する実用性のある前記塗料は未だ開発されていない。
Therefore, in the above-mentioned conventional method, a method has been considered in which the surface of the aluminum material is preliminarily treated, molded using a coated aluminum material coated with a paint film, and assembled with a steel material. In this case, the coating is easily peeled off, and as a result, there is a problem that the corrosion resistance is reduced, the electrodeposition coating property in the subsequent process is poor, and the molding processability is further deteriorated. Practical paints satisfying workability, electrodeposition paintability and the like have not yet been developed.

【0009】本発明は、このような現状に鑑み、耐化成
処理性、耐食性、成形加工性、電着塗装性等に優れたア
ルミニウム材を得るための塗料組成物及びそれを塗装し
た被覆アルミニウム材を提供することを目的とするもの
である。
In view of the above situation, the present invention provides a coating composition for obtaining an aluminum material having excellent chemical conversion resistance, corrosion resistance, moldability, electrodeposition coating property, and the like, and a coated aluminum material coated with the same. The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】即ち本発明は(i) ビス
フェノールA骨格とビスフェノールF骨格との重量比率
(95:5〜60:40)からなるビスフェノール骨格
と、エピクロルヒドリン骨格とより構成される、1分子
中に2個以上のエポキシ基を有するビスフェノール型エ
ポキシ樹脂、及び(ii) 平均粒径0.1〜20μm の潤滑
剤粉末を含有するアルミニウム材用塗料組成物;及び該
塗料組成物を下地処理したアルミニウム材表面に塗装し
た被覆アルミニウム材に関する。
That is, the present invention comprises (i) a bisphenol skeleton comprising a bisphenol A skeleton and a bisphenol F skeleton in a weight ratio (95: 5 to 60:40), and an epichlorohydrin skeleton. A coating composition for aluminum materials containing a bisphenol type epoxy resin having two or more epoxy groups in one molecule, and (ii) a lubricant powder having an average particle size of 0.1 to 20 μm; The present invention relates to a coated aluminum material coated on the surface of a treated aluminum material.

【0011】以下、本発明について詳述する。本発明の
塗料組成物を構成するビスフェノール型エポキシ樹脂
(i)はビスフェノールAとビスフェノールFとからな
るビスフェノール類と、エピクロルヒドリンとを常法に
従って縮合反応せしめたビスフェノール骨格とエピクロ
ルヒドリン骨格とより構成される、1分子中に2個以上
のエポキシ基を有する樹脂であり、好ましくは分子量約
500〜100,000 の樹脂である。前記ビスフェノール類と
エピクロルヒドリンとの縮合反応は、ビスフェノールA
とビスフェノールFとを混合し、同時にエピクロルヒド
リンと反応させるのが適当であるが、ビスフェノールA
とエピクロルヒドリンとを反応させ、更にビスフェノー
ルFを加え反応させて得られるエポキシ樹脂あるいはビ
スフェノールFとエピクロルヒドリンとを反応させ、更
にビスフェノールAを加え反応させて得られるエポキシ
樹脂も本発明に含まれる。
Hereinafter, the present invention will be described in detail. The bisphenol-type epoxy resin (i) constituting the coating composition of the present invention comprises a bisphenol skeleton composed of bisphenol A and bisphenol F, a bisphenol skeleton obtained by subjecting epichlorohydrin to a condensation reaction according to a conventional method, and an epichlorohydrin skeleton. A resin having two or more epoxy groups in one molecule, preferably having a molecular weight of about
500-100,000 resins. The condensation reaction between the bisphenols and epichlorohydrin is carried out by bisphenol A
And bisphenol F, and simultaneously reacting with epichlorohydrin.
An epoxy resin obtained by reacting bisphenol F with epichlorohydrin and further reacting by adding bisphenol F or an epoxy resin obtained by reacting bisphenol F with epichlorohydrin and further adding bisphenol A to be reacted are also included in the present invention.

【0012】ところでビスフェノール類としてビスフェ
ノールAのみから得られる、ビスフェノールA型エポキ
シ樹脂は、得られる塗膜が耐水性、耐薬品性等に優れ、
かつアルミニウム材との密着性、上塗塗膜との密着性に
優れている一方、塗膜は、硬くて可撓性に劣り、また電
気絶縁性であるため電着塗装性がやや劣るものであっ
た。
By the way, the bisphenol A type epoxy resin obtained from bisphenol A alone as a bisphenol has a coating film which is excellent in water resistance, chemical resistance, etc.
In addition, while being excellent in adhesion to an aluminum material and adhesion to a top coating film, the coating film is hard and inferior in flexibility, and is slightly inferior in electrodeposition coating property due to its electrical insulation. Was.

【0013】そこで本発明者らはビスフェノールA型エ
ポキシ樹脂にビスフェノールF型エポキシ樹脂をブレン
ドしたものを試みたが、電着塗装性が向上しないことが
判明した。一方、ビスフェノールA骨格とビスフェノー
ルF骨格との特定比率からなるビスフェノール骨格とエ
ピクロルヒドリン骨格とより構成される1分子中に2個
以上のエポキシ基を有するビスフェノール型樹脂を使用
した場合、予想外にも成形加工性とともに電着塗装性も
大幅に改良されることが分った。
The inventors of the present invention have attempted to blend bisphenol A epoxy resin with bisphenol A epoxy resin, but have found that the electrodeposition coating property is not improved. On the other hand, when a bisphenol type resin having two or more epoxy groups in one molecule composed of a bisphenol skeleton composed of a specific ratio of a bisphenol A skeleton and a bisphenol F skeleton and an epichlorohydrin skeleton is used, molding is unexpectedly performed. It was found that the electrodeposition coating property was greatly improved as well as the workability.

【0014】このような効果が発揮されるためにはビス
フェノールA骨格とビスフェノールF骨格の重量比率は
(95:5〜60:40)のものが適当である。前記範
囲よりビスフェノールA骨格が多くなると、ビスフェノ
ールF骨格で置換する前記効果が十分認められなくな
り、逆に前記範囲よりビスフェノールA骨格が少なくな
ると塗膜がやわらかくなり過ぎて耐食性、耐水性等が低
下するので好ましくない。
In order to exert such effects, it is appropriate that the weight ratio of the bisphenol A skeleton to the bisphenol F skeleton is (95: 5 to 60:40). When the bisphenol A skeleton is larger than the above range, the effect of substitution with the bisphenol F skeleton is not sufficiently recognized. Conversely, when the bisphenol A skeleton is smaller than the above range, the coating film becomes too soft and the corrosion resistance, water resistance, etc. decrease. It is not preferable.

【0015】また、本発明で使用する前記ビスフェノー
ル型エポキシ樹脂は、耐アルカリ性、耐水二次密着性等
をさらに向上させるために、該樹脂のエポキシ基の20
〜100%を塩基性窒素化合物又は多塩基酸で変性させ
た変性エポキシ樹脂も使用可能である。なお、前記塩基
性窒素化合物としては例えばn−プロピルアミン、iso
−プロピルアミン、n−ブチルアミン、 sec−ブチルア
ミン、tert−ブチルアミン、ジエチルアミン、エチレン
ジアミン、ジエチレントリアミン、トリエチレンジアミ
ン、テトラエチレンジアミン、プロピレンジアミン、N
−メチルピペラジン、エタノールアミン、ジエタノール
アミン、N−メチルエタノールアミン、iso −プロパノ
ールアミン、ジイソプロパノールアミン、n−プロパノ
ールアミン、エチルエタノールアミン、3−メタノール
ピペリジン等が代表的なものとして挙げられる。
The bisphenol-type epoxy resin used in the present invention has an epoxy group of 20 to further improve alkali resistance, water-resistant secondary adhesion and the like.
A modified epoxy resin in which about 100% is modified with a basic nitrogen compound or a polybasic acid can also be used. Incidentally, as the basic nitrogen compound, for example, n-propylamine, iso
-Propylamine, n-butylamine, sec-butylamine, tert-butylamine, diethylamine, ethylenediamine, diethylenetriamine, triethylenediamine, tetraethylenediamine, propylenediamine, N
-Methylpiperazine, ethanolamine, diethanolamine, N-methylethanolamine, iso-propanolamine, diisopropanolamine, n-propanolamine, ethylethanolamine, 3-methanolpiperidine and the like are mentioned as typical ones.

【0016】また前記多塩基酸としてはイソフタル酸、
テレフタル酸、コハク酸、アジピン酸、フマル酸、イタ
コン酸、シトラコン酸、無水マレイン酸、無水フタル
酸、無水コハク酸、クエン酸、酒石酸、蓚酸、ロジン無
水マレイン酸、ベンゼントリカルボン酸無水物等が代表
的なものとして挙げられる。本発明の塗料組成物を構成
する潤滑剤粉末 (ii) は、常温及び塗膜形成後も粉末形
状を維持するものが望ましく、該潤滑剤粉末は、得られ
る塗膜表面を粗面化させ、潤滑性をもたせ、すなわち動
摩擦係数の低下をもたらし被覆アルミニウム材の成形加
工性、特にプレス成形加工性を向上させるために配合す
る。このような潤滑剤粉末としては、合成ワックス粉末
と固体潤滑剤粉末が代表的なものとして挙げられる。
The polybasic acids include isophthalic acid,
Representatives include terephthalic acid, succinic acid, adipic acid, fumaric acid, itaconic acid, citraconic acid, maleic anhydride, phthalic anhydride, succinic anhydride, citric acid, tartaric acid, oxalic acid, rosin maleic anhydride, benzenetricarboxylic anhydride, etc. It is mentioned as a typical thing. The lubricant powder (ii) constituting the coating composition of the present invention desirably maintains the powder shape even at room temperature and after the formation of the coating film, and the lubricant powder roughens the surface of the obtained coating film, It is blended in order to provide lubricity, that is, to reduce the dynamic friction coefficient and to improve the formability of the coated aluminum material, especially press formability. Representative examples of such lubricant powder include synthetic wax powder and solid lubricant powder.

【0017】合成ワックス粉末としては、合成炭化水
素;脂肪酸エステル;脂肪アミド、置換アミドなどの脂
肪酸窒素誘導体;モンタンワックス誘導体、酸化モンタ
ンワックスなどの変性ワックス;ポリエチレンワックス
などの高分子化合物;塩素化パラフィンなどの塩素化ワ
ックス等が代表的なものとして挙げられるが、特にケン
化価をもち、溶剤に対し難溶性で、かつ融点の高い合成
ワックス粉末が望ましい。
Examples of the synthetic wax powder include synthetic hydrocarbons; fatty acid esters; fatty acid nitrogen derivatives such as fatty amides and substituted amides; modified waxes such as montan wax derivatives and montan oxide wax; high molecular compounds such as polyethylene wax; chlorinated paraffins Typical examples thereof include chlorinated waxes and the like, and in particular, a synthetic wax powder having a saponification value, being hardly soluble in a solvent, and having a high melting point is desirable.

【0018】また固体潤滑剤粉末としては、黒鉛、二硫
化モリブデン、二硫化タングステン、窒化ホウ素、フッ
化黒鉛などの層状固体潤滑剤;ポリビニルクロライド、
ポリスチレン、ポリメチル(メタ)アクリレート、ポリ
アミド、高密度ポリエチレン、ポリプロピレン、ポリテ
トラフルオロエチレンなどのプラスチック潤滑剤;脂肪
酸のカルシウム、バリウム、リチウム、亜鉛あるいはア
ルミニウムなどの金属石けん等が代表的なものとして挙
げられるが、特に表面滑性が高いプラスチック潤滑剤、
金属石けんが望ましい。
Examples of the solid lubricant powder include layered solid lubricants such as graphite, molybdenum disulfide, tungsten disulfide, boron nitride, and graphite fluoride; polyvinyl chloride;
Plastic lubricants such as polystyrene, polymethyl (meth) acrylate, polyamide, high-density polyethylene, polypropylene, and polytetrafluoroethylene; and metal soaps such as fatty acids such as calcium, barium, lithium, zinc and aluminum are typical examples. But especially plastic lubricant with high surface lubricity,
Metallic soap is preferred.

【0019】このような潤滑剤粉末は、前記ビスフェノ
ール型エポキシ樹脂100重量部に対し、約1〜50重
量部配合するのが、塗膜の潤滑性が発揮され、また塗膜
の物理的、化学的強度も適度であるので望ましい。また
潤滑剤粉末の粒径は、平均粒径約0.1〜20μm が適当
であり、0.1μm未満のような小さすぎる場合には、塗
膜上に潤滑剤粒子が露出しにくくなるので潤滑性が不十
分となり、成形加工性に問題があり、逆に20μm を越
えて大きすぎる場合には塗膜の成膜性及び塗料安定性に
問題がある。なお、潤滑剤粉末の粒径の好ましい範囲は
0.5〜12μm のものである。
About 1 to 50 parts by weight of such a lubricant powder is mixed with 100 parts by weight of the bisphenol-type epoxy resin so that the lubricating property of the coating film is exhibited, and the physical and chemical properties of the coating film are improved. It is desirable because the target strength is also moderate. The average particle size of the lubricant powder is suitably about 0.1 to 20 μm. If the average particle size is too small, such as less than 0.1 μm, the lubricant particles are less likely to be exposed on the coating film. Insufficiency results in problems in molding processability. Conversely, if it exceeds 20 μm, it is problematic in film-forming properties and paint stability. The preferred range of the particle size of the lubricant powder is
It is 0.5 to 12 μm.

【0020】本発明の塗膜組成物は以上説明したビスフ
ェノール型エポキシ樹脂(i)と潤滑剤粉末 (ii) を必
須成分とする、好ましくは固形分10〜40重量%の塗
料である。その他の成分としては必要に応じ適宜配合さ
れる従来から公知の成分が配合される。具体的には水、
各種炭化水素系、エステル系、ケトン系、アルコール
系、アミド系等の有機溶剤;メラミン樹脂、ベンゾグア
ナミン樹脂、ポリブロック化イソシアネート化合物等の
架橋剤;有機又は無機系顔料;分散剤、沈降防止剤、レ
ベリング剤等の添加剤あるいは各種改質樹脂等を配合す
ることが可能である。
The coating composition of the present invention is a paint containing the bisphenol-type epoxy resin (i) and the lubricant powder (ii) described above as essential components, preferably having a solid content of 10 to 40% by weight. As other components, conventionally known components which are appropriately compounded as needed are compounded. Specifically, water,
Various hydrocarbon-based, ester-based, ketone-based, alcohol-based, and amide-based organic solvents; melamine resins, benzoguanamine resins, cross-linking agents such as polyblocked isocyanate compounds; organic or inorganic pigments; dispersants, anti-settling agents; Additives such as leveling agents or various modified resins can be blended.

【0021】次に本発明の被覆アルミニウム材の製造方
法について説明する。本発明に使用されるアルミニウム
材としては、通常の成形加工品の用途に使用されてい
る、例えば非熱処理型Al−Mg系の5000系金属、熱処
理型Al−Cu−Mg系の2000系合金、熱処理型Al−Mg−
Zn系の7000系合金、熱処理型Al−Mg−Si系の600
0系合金、非熱処理型Al−Mn系の3000系合金及び4
000系合金、非熱処理型純アルミニウム系の1000
系展伸材等が代表的なものとして挙げられるが、これら
に限定されるものではない。
Next, a method for producing a coated aluminum material of the present invention will be described. Examples of the aluminum material used in the present invention include non-heat-treated Al-Mg-based 5000-based metals, heat-treated Al-Cu-Mg-based 2000-based alloys, which are used for ordinary molded products. Heat treatment type Al-Mg-
Zn-based 7000-based alloy, heat-treated Al-Mg-Si-based 600
0 series alloy, non-heat-treated Al-Mn 3000 series alloy and 4
000 series alloy, non-heat treatment type pure aluminum series 1000
Typical wrought materials and the like are listed as typical examples, but the present invention is not limited to these.

【0022】本発明に使用されるアルミニウム材は、こ
れらを通常の手段、例えばクロミウムクロメート、リン
酸クロメートなどの反応型クロメート処理、塗布型クロ
メート処理、電解型クロメート処理等によるクロム系処
理あるいはリン酸ジルコン処理、シランカップリング処
理、チタンカップリング処理、ジルコンカップリング処
理、アルミニウムカップリング処理等による非クロム系
処理にて下地処理を施したアルミニウム材である。
The aluminum material used in the present invention may be prepared by a conventional method, for example, a chromium-based treatment such as a reaction-type chromate treatment such as chromium chromate or phosphoric acid chromate, a coating-type chromate treatment, or an electrolytic chromate treatment, or phosphoric acid. It is an aluminum material that has been subjected to a base treatment by a non-chromium-based treatment such as a zircon treatment, a silane coupling treatment, a titanium coupling treatment, a zircon coupling treatment, and an aluminum coupling treatment.

【0023】これら下地処理を施したアルミニウム材表
面に、前述の塗料組成物をスプレー、ロールコート、シ
ャワーコート等の手段により塗装し、80〜300℃、
好ましくは100〜250℃の温度下で硬化させること
により被覆アルミニウム材を製造する。なお、膜厚は数
μm 前後の薄膜でも十分性能を発揮するが、更に厚くす
ることを妨げるものではない。
The above-mentioned coating composition is applied to the surface of the aluminum material subjected to the undercoating treatment by means of spraying, roll coating, shower coating or the like.
Preferably, the coated aluminum material is produced by curing at a temperature of 100 to 250 ° C. It should be noted that although a thin film having a thickness of about several μm can exhibit sufficient performance, it does not prevent further increase in thickness.

【0024】このようにして得られた被覆アルミニウム
材は、電着塗装や通常の上塗塗装が施され、自動車車
体、家電製品、建材等の分野に適用される。
The coated aluminum material thus obtained is subjected to electrodeposition coating or ordinary top coating, and is applied to fields such as automobile bodies, home electric appliances, and building materials.

【0025】[0025]

【発明の効果】本発明の塗料組成物を塗装した被覆アル
ミニウム材により、耐食性、電着塗装性、密着性、成形
加工性等の優れた製品が得られる。また、鋼材とアルミ
ニウム材との組立てにより構成される自動車車体の前述
の製造方法において、アルミニウム材として本発明の被
覆アルミニウム材を使用した場合、脱脂工程におけるア
ルカリ処理に対し、耐久性すなわち耐アルカリ脱脂性に
優れ、またその後のリン酸亜鉛処理等の化成処理をする
と、鋼材のみに化成皮膜が形成され、被覆アルミニウム
材には全く化成皮膜が形成されないため、従来の化成処
理むらの欠点が解消され、耐化成処理性がよく、さらに
鋼材と被覆アルミニウム材との異種金属接触によるアル
ミニウム材の電食も防止出来るといった各種効果が得ら
れ、実用的価値の高い塗料、被覆アルミニウム材といえ
る。
According to the coated aluminum material coated with the coating composition of the present invention, a product excellent in corrosion resistance, electrodeposition coating property, adhesion, moldability and the like can be obtained. Further, in the above-described method for manufacturing an automobile body constituted by assembling steel and aluminum, when the coated aluminum material of the present invention is used as the aluminum material, it is durable, that is, resistant to alkali treatment in the degreasing step. When chemical conversion treatment such as zinc phosphate treatment is performed, a chemical conversion film is formed only on steel material and no chemical conversion film is formed on coated aluminum material, eliminating the disadvantage of conventional chemical conversion treatment unevenness. Various effects such as good chemical conversion resistance and prevention of electrolytic corrosion of aluminum due to dissimilar metal contact between steel and coated aluminum can be obtained, and it can be said that the coating and coated aluminum have high practical value.

【0026】[0026]

【実施例】以下、本発明を実施例により更に詳細に説明
する。なお、実施例中「部」、「%」は重量基準で示
す。(エポキシ樹脂溶液(1)の調製)還流冷却器、温
度計、撹拌機を取付けた三つ口フラスコ中にビスフェノ
ールA109.4部、ビスフェノールF64.0部及び60
部の苛性ソーダを600部の水に溶解させた苛性ソーダ
水溶液を加え、撹拌しながら50℃、10分間加熱し
た。継いでエピクロルヒドリン116部を加え徐々に昇
温し、20分間で100℃とし、この温度で撹拌しなが
ら40分間保った。
The present invention will be described in more detail with reference to the following examples. In the examples, "parts" and "%" are shown on a weight basis. (Preparation of epoxy resin solution (1)) In a three-necked flask equipped with a reflux condenser, a thermometer and a stirrer, 109.4 parts of bisphenol A, 64.0 parts of bisphenol F and 60 parts of bisphenol F
Of caustic soda was dissolved in 600 parts of water, and the mixture was heated at 50 ° C. for 10 minutes with stirring. Then, 116 parts of epichlorohydrin was added, and the temperature was gradually raised to 100 ° C. in 20 minutes, and kept at this temperature for 40 minutes with stirring.

【0027】次いで冷却後傾斜法にて、上澄み水層を除
き、更に600部の水を加え、90℃に加温し激しく撹
拌した後、再度の冷却後同様にして上澄み水層を除い
た。このような操作をアルカリ性を示さなくなるまで繰
返し、最後に水を充分分離した後、撹拌しながら150
℃、30分間加熱脱水し、分子量約900のエポキシ樹
脂を製造した。
Then, after cooling, the supernatant water layer was removed by a tilt method, 600 parts of water was further added, the mixture was heated to 90 ° C., stirred vigorously, cooled again, and the supernatant water layer was removed in the same manner. This operation was repeated until the solution no longer showed alkalinity. Finally, water was sufficiently separated.
The resultant was dehydrated by heating at 30 ° C. for 30 minutes to produce an epoxy resin having a molecular weight of about 900.

【0028】得られたエポキシ樹脂200部を80℃に
加温したエチレングリコールモノエチルエーテル200
部中に溶解し、固形分50%のエポキシ樹脂溶液(1)
を調製した。(エポキシ樹脂溶液(2)の調製)撹拌
機、温度計、滴下ロートを取付けたフラスコ中にビスフ
ェノールA729.6部、ビスフェノールF160部及び
10%苛性ソーダ水溶液2572部を加え、撹拌しなが
ら50℃、10分間加熱した。次いでエピクロルヒドリ
ン463部を加え、撹拌しながら100℃に加温し、3
0分間保った。
Ethylene glycol monoethyl ether 200 obtained by heating 200 parts of the obtained epoxy resin to 80 ° C.
Part 1) 50% solids epoxy resin solution (1)
Was prepared. (Preparation of Epoxy Resin Solution (2)) In a flask equipped with a stirrer, a thermometer and a dropping funnel, 729.6 parts of bisphenol A, 160 parts of bisphenol F and 2572 parts of a 10% aqueous solution of caustic soda were added, and stirred at 50 ° C. Heated for minutes. Next, 463 parts of epichlorohydrin was added, and the mixture was heated to 100 ° C. while stirring,
Hold for 0 minutes.

【0029】次いで傾斜法にて上澄み水層を除き、更に
沸騰水で洗浄を繰返し、アルカリ性を示さなくなった
後、150℃に加熱し、脱水し、分子量約1400のエ
ポキシ樹脂を製造した。得られたエポキシ樹脂300部
を80℃に加温したエチレングリコールモノブチルエー
テル300部に溶解し、固形分50%のエポキシ樹脂溶
液(2)を調製した。(エポキシ樹脂溶液(3)の調
製)還流冷却器、温度計、撹拌機を取付けた三つ口フラ
スコ中にエチレングリコールモノエチルエーテルアセテ
ート680部を加え、100℃に加熱した後、ビスフェ
ノールAとエピクロルヒドリンとを反応させて得られた
エポキシ当量2800〜3300のエポキシ樹脂100
0部を少しずつ添加し、溶解させた。次いでビスフェノ
ールF25部と塩化リチウム1部を加え200℃、60
分間反応させ、分子量約7000、固形分60%のエポ
キシ樹脂溶液(3)を調製した。(変性エポキシ樹脂溶
液(4)の調製)還流冷却器、温度計、撹拌機を取付け
た三つ口フラスコ中にビスフェノールA109.4部、ビ
スフェノールF64.0部及び60部の苛性ソーダを60
0部の水に溶解させた苛性ソーダ水溶液を加え、撹拌し
ながら50℃、10分間加熱した。次いでエピクロルヒ
ドリン116部を加え徐々に昇温し、20分間で100
℃とし、この温度で撹拌しながら40分間保った。
Next, the supernatant water layer was removed by a gradient method, and washing with boiling water was further repeated. After no longer showing alkalinity, the mixture was heated to 150 ° C. and dehydrated to produce an epoxy resin having a molecular weight of about 1400. 300 parts of the obtained epoxy resin was dissolved in 300 parts of ethylene glycol monobutyl ether heated to 80 ° C. to prepare an epoxy resin solution (2) having a solid content of 50%. (Preparation of Epoxy Resin Solution (3)) In a three-necked flask equipped with a reflux condenser, a thermometer, and a stirrer, 680 parts of ethylene glycol monoethyl ether acetate was added, heated to 100 ° C, and then bisphenol A and epichlorohydrin. And an epoxy resin 100 having an epoxy equivalent of 2800 to 3300 obtained by reacting
0 parts were added little by little and dissolved. Next, 25 parts of bisphenol F and 1 part of lithium chloride were added,
The reaction was carried out for about 1 minute to prepare an epoxy resin solution (3) having a molecular weight of about 7,000 and a solid content of 60%. (Preparation of modified epoxy resin solution (4)) In a three-necked flask equipped with a reflux condenser, a thermometer and a stirrer, 109.4 parts of bisphenol A, 64.0 parts of bisphenol F and 60 parts of caustic soda were added to a flask.
An aqueous solution of caustic soda dissolved in 0 parts of water was added, and the mixture was heated with stirring at 50 ° C. for 10 minutes. Next, 116 parts of epichlorohydrin was added, and the temperature was gradually raised.
C. and kept at this temperature for 40 minutes with stirring.

【0030】次いで冷却後傾斜法にて、上澄み水層を除
き、更に600部の水を加え90℃に加温し激しく撹拌
した後再度の冷却後同様にして上澄み水層を除いた。こ
のような操作をアルカリ性を示さなくなるまで繰返し、
最後に水を充分、分離した後、撹拌しながら150℃、
30分間加熱脱水し、分子量約900のエポキシ樹脂を
製造した。
Then, after cooling, the supernatant water layer was removed by a gradient method, and 600 parts of water was further added, the mixture was heated to 90 ° C., stirred vigorously, cooled again, and then the supernatant water layer was removed in the same manner. This operation is repeated until the solution no longer shows alkalinity,
Finally, after sufficiently separating water, 150 ° C. with stirring,
The resultant was dehydrated by heating for 30 minutes to produce an epoxy resin having a molecular weight of about 900.

【0031】得られたエポキシ樹脂200部を80℃に
加温したエチレングリコールモノエチルエーテル200
部中に溶解し、固形分50%のエポキシ樹脂溶液
(4′)を調製した。該エポキシ樹脂溶液(4′)18
0部を60℃に加温し、次いでジエタノールアミン17.
7部を2時間かけて滴下し、更に70℃で3時間反応さ
せて固形分55%の変性エポキシ樹脂溶液(4)を調製
した。(変性エポキシ樹脂溶液(5)の調製)還流冷却
器、温度計、撹拌機を取付けた三つ口フラスコ中にエチ
レングリコールモノエチルエーテルアセテート680部
を加え、100℃に加熱した後、ビスフェノールAとエ
ピクロルヒドリンとを反応させて得られたエポキシ当量
2800〜3300のエポキシ樹脂1000部を少しづ
つ添加し、溶解させた。次いでビスフェノールF25部
と塩化リチウム1部を加え200℃、60分間反応さ
せ、分子量約7000、固形分60%のエポキシ樹脂溶
液(5′)を調製した。該エポキシ樹脂溶液(5′)1
167部にN−メチルエタノールアミン7.5部を加え、
前述溶液(4)と同様にして反応させ、固形分60.2%
の変性エポキシ樹脂溶液(5)を調整した。(変性エポ
キシ樹脂溶液(6)の調製)還流冷却器、温度計、撹拌
機を取付けた三つ口フラスコ中にビスフェノールA10
9.4部、ビスフェノールF64.0部及び60部の苛性ソ
ーダを600部の水に溶解させた苛性ソーダ水溶液を加
え、撹拌しながら50℃、10分間加熱した。次いでエ
ピクロルヒドリン116部を加え徐々に昇温し、20分
間で100℃とし、この温度で撹拌しながら40分間保
った。
Ethylene glycol monoethyl ether 200 obtained by heating 200 parts of the obtained epoxy resin to 80 ° C.
And an epoxy resin solution (4 ') having a solid content of 50% was prepared. The epoxy resin solution (4 ') 18
0 parts was heated to 60 ° C., and then diethanolamine 17.
7 parts were added dropwise over 2 hours, and further reacted at 70 ° C. for 3 hours to prepare a modified epoxy resin solution (4) having a solid content of 55%. (Preparation of Modified Epoxy Resin Solution (5)) In a three-necked flask equipped with a reflux condenser, a thermometer, and a stirrer, 680 parts of ethylene glycol monoethyl ether acetate was added, and heated to 100 ° C. 1000 parts of an epoxy resin having an epoxy equivalent of 2800 to 3300 obtained by reacting with epichlorohydrin was added little by little and dissolved. Next, 25 parts of bisphenol F and 1 part of lithium chloride were added and reacted at 200 ° C. for 60 minutes to prepare an epoxy resin solution (5 ′) having a molecular weight of about 7,000 and a solid content of 60%. The epoxy resin solution (5 ') 1
To 167 parts was added 7.5 parts of N-methylethanolamine,
The reaction was carried out in the same manner as in the above solution (4), and the solid content was 60.2%.
To prepare a modified epoxy resin solution (5). (Preparation of modified epoxy resin solution (6)) Bisphenol A10 was placed in a three-necked flask equipped with a reflux condenser, a thermometer, and a stirrer.
An aqueous solution of caustic soda in which 9.4 parts, 64.0 parts of bisphenol F and 60 parts of caustic soda were dissolved in 600 parts of water was added, and the mixture was heated with stirring at 50 ° C. for 10 minutes. Next, 116 parts of epichlorohydrin was added and the temperature was gradually raised to 100 ° C. in 20 minutes, and kept at this temperature for 40 minutes with stirring.

【0032】次いで冷却後傾斜法にて、上澄み水層を除
き、更に600部の水を加え、90℃に加温し、激しく
撹拌した後、再度の冷却後同様にして上澄み水層を除い
た。このような操作をアルカリ性を示さなくなるまで繰
返し、最後に水を充分、分離した後、撹拌しながら15
0℃、30分間加熱、脱水し、分子量約900のエポキ
シ樹脂を製造した。
Then, after cooling, the supernatant water layer was removed by the inclined method, 600 parts of water was further added, the mixture was heated to 90 ° C., stirred vigorously, cooled again, and the supernatant water layer was removed in the same manner. . This operation is repeated until the solution no longer shows alkalinity.
Heating and dehydration at 0 ° C. for 30 minutes produced an epoxy resin having a molecular weight of about 900.

【0033】得られたエポキシ樹脂200部を80℃に
加温したエチレングリコールモノエチルエーテル200
部中に溶解し、固形分50%のエポキシ樹脂溶液
(6′)を調製した。該溶液(6′)180部を150
℃に加熱し、ハイドロキノン2部、ジメチルベンジルア
ミン1部及び無水フタル酸26.6部を添加し、5時間反
応させ、固形分56%の変性エポキシ樹脂溶液(6)を
調製した。(変性エポキシ樹脂溶液(7)の調製)還流
冷却器、温度計、撹拌機を取付けた三つ口フラスコ中に
エチレングリコールモノエチルエーテルアセテート68
0部を加え、100℃に加熱した後ビスフェノールAと
エピクロルヒドリンとを反応させて得られたエポキシ当
量2800〜3300のエポキシ樹脂1000部を少し
づつ添加し、溶解させた。次いでビスフェノールF25
部と塩化リチウム1部を加え200℃、60分間反応さ
せ、分子量約7000、固形分60%のエポキシ樹脂溶
液(7′)を調製した。
Ethylene glycol monoethyl ether 200 obtained by heating 200 parts of the obtained epoxy resin to 80 ° C.
And an epoxy resin solution (6 ') having a solid content of 50% was prepared. 180 parts of this solution (6 ')
C., 2 parts of hydroquinone, 1 part of dimethylbenzylamine and 26.6 parts of phthalic anhydride were added and reacted for 5 hours to prepare a modified epoxy resin solution (6) having a solid content of 56%. (Preparation of modified epoxy resin solution (7)) Ethylene glycol monoethyl ether acetate 68 was placed in a three-necked flask equipped with a reflux condenser, a thermometer and a stirrer.
After adding 0 parts and heating to 100 ° C, 1000 parts of an epoxy resin having an epoxy equivalent of 2800 to 3300 obtained by reacting bisphenol A with epichlorohydrin was added little by little and dissolved. Then bisphenol F25
And 1 part of lithium chloride were added and reacted at 200 ° C. for 60 minutes to prepare an epoxy resin solution (7 ′) having a molecular weight of about 7,000 and a solid content of 60%.

【0034】該溶液(7′)1167部にハイドロキノ
ン4.5部、ジメチルベンジルアミン3.8部及びアジピン
酸14.6部を添加し、前述溶液(6)と同様にして反応
させ、固形分60.5%の変性エポキシ樹脂溶液(7)を
調製した。(エポキシ樹脂溶液(8)の調製)ビスフェ
ノールA型エポキシ樹脂〔「エピコート1001」(シ
エル化学社製商品名)、エポキシ当量450〜500〕
300部をエチレングリコールモノエチルエーテル30
0部に溶解し、固形分50%のエポキシ樹脂溶液(8)
を調製した。(エポキシ樹脂溶液(9)の調製)ビスフ
ェノールF型エポキシ樹脂〔「エピクロン830」(大
日本インキ化学工業社製商品名)、エポキシ当量約17
5〕300部をエチレングリコールモノエチルエーテル
300部に溶解し、固形分50%のエポキシ樹脂溶液
(9)を調製した。実施例1エポキシ樹脂溶液(1)2
00部、ポリプロピレンワックス40部及びプロピレン
グリコールモノエチルエーテル497部を混合し、塗料
を調製した。
To 1167 parts of the solution (7 ') were added 4.5 parts of hydroquinone, 3.8 parts of dimethylbenzylamine and 14.6 parts of adipic acid, and the reaction was carried out in the same manner as in the solution (6). A 60.5% modified epoxy resin solution (7) was prepared. (Preparation of Epoxy Resin Solution (8)) Bisphenol A type epoxy resin [“Epicoat 1001” (trade name, manufactured by Ciel Chemical Co., Ltd.), epoxy equivalent 450-500]
300 parts of ethylene glycol monoethyl ether 30
0 parts, 50% solids epoxy resin solution (8)
Was prepared. (Preparation of Epoxy Resin Solution (9)) Bisphenol F type epoxy resin [Epiclon 830 (trade name, manufactured by Dainippon Ink and Chemicals, Inc.), epoxy equivalent: about 17
5] 300 parts of ethylene glycol monoethyl ether was dissolved in 300 parts to prepare an epoxy resin solution (9) having a solid content of 50%. Example 1 Epoxy resin solution (1) 2
00 parts, 40 parts of polypropylene wax and 497 parts of propylene glycol monoethyl ether were mixed to prepare a coating material.

【0035】得られた塗料を表1に示す各種下地処理し
たアルミニウム材(厚さ1.0mm)に乾燥膜厚が3μm と
なるようロールコート塗装し、最高到達板温が30秒で
150℃になるよう焼付け、耐食性、成形加工性、耐ア
ルカリ性、耐化成処理性、電着塗装性、上塗密着性、耐
水性、塗料安定性の各試験を行ない、その結果を表1下
欄に示した。実施例2〜7及び比較例1〜4エポキシ樹
脂溶液、潤滑剤粉末を表1に示す割合で配合した混合物
を固形分が20%になる量のプロピレングリコールモノ
エチルエーテルにて希釈し、塗料を調製した。得られた
塗料を実施例1と同様にして塗装し、各種試験を行な
い、その結果を表1下欄に示した。
The obtained paint was roll-coated on an aluminum material (thickness: 1.0 mm) which had been subjected to various surface treatments shown in Table 1 so as to have a dry film thickness of 3 μm. Each test for baking, corrosion resistance, molding workability, alkali resistance, chemical conversion resistance, electrodeposition coating property, top coat adhesion, water resistance, and paint stability was performed, and the results are shown in the lower column of Table 1. Examples 2 to 7 and Comparative Examples 1 to 4 A mixture obtained by mixing the epoxy resin solution and the lubricant powder in the proportions shown in Table 1 was diluted with propylene glycol monoethyl ether in an amount to give a solid content of 20%. Prepared. The obtained paint was applied in the same manner as in Example 1, and various tests were performed. The results are shown in the lower column of Table 1.

【0036】表1より明らかなように、本発明の塗料組
成物を使用した実施例においては、塗料安定性がよく、
また優れた塗膜性能を有していた。一方潤滑剤粉末を含
まない比較例1においては成形加工性等が不良であっ
た。またビスフェノール骨格としビスフェノールA骨格
のみからなるエポキシ樹脂を使用した比較例2において
は成形加工性、電着塗装性等が不良であった。またビス
フェノール骨格としてビスフェノールF骨格のみからな
るエポキシ樹脂を使用した比較例3においては耐食性、
耐アルカリ性、耐化成処理性、耐水性等が不良であっ
た。また液状潤滑剤を使用した比較例4においては電着
塗装性、上塗密着性、耐水性等が不良であった。
As is clear from Table 1, in the examples using the coating composition of the present invention, the coating stability was good.
Also, it had excellent coating performance. On the other hand, in Comparative Example 1 containing no lubricant powder, the moldability and the like were poor. In Comparative Example 2 in which an epoxy resin composed of only a bisphenol A skeleton was used as the bisphenol skeleton, moldability, electrodeposition coating property, and the like were poor. Further, in Comparative Example 3 using an epoxy resin composed of only a bisphenol F skeleton as the bisphenol skeleton, corrosion resistance was improved.
The alkali resistance, chemical conversion resistance, water resistance, etc. were poor. In Comparative Example 4 using a liquid lubricant, electrodeposition coating properties, top coat adhesion, water resistance, and the like were poor.

【0037】[0037]

【表1】 [Table 1]

【0038】注1) 「Shamrock Wax S-363」(Shamroc
k Chemicals 社製商品名)、平均粒径5μm注2)
「セリダスト3910」(ヘキスト社製商品名)、平均
粒径8μm注3) 「ヒタゾルGP−60」(日立粉末
冶金社製商品名)、平均粒径0.5μm注4) 「ルブロ
ンL−2」(ダイキン工業社製商品名)、平均粒径5μ
m注5) 「フェイメックスA−12」(味の素社製商
品名)、平均粒径10μm注6) 「SC−100」
(堺化学工業社製商品名)、平均粒径3μm注7)
「MD−40」(日立粉末冶金社製商品名)、平均粒径
1μm注8) 「KF945(A)」(信越化学工業社
製商品名)、液体注9) 試験板塗面にクロスカットを
入れ、JIS−Z−2371に基づく塩水噴霧試験を6
00時間行ない、白錆発生状況を観察○:全く異常なし
△:白錆点在×:全面白錆注10) 84mmφ打ち
抜いた試験板を径50mmφ、深さ25mmの円筒絞り加工
(BHF=1トン)し、加工後JIS−Z−2371に
基づく塩水噴霧試験400時間行ない、白錆発生状況を
観察○:白錆なし △:白錆5%未満 ×:白
錆5%以上注11) 試験板を50℃のアルカリ脱脂液に
浸漬し、水洗乾燥後、1mmゴバン目100個をカッター
ナイフで切り込み、セロハンテープを用いて、剥離試験
後の塗膜残存率を測定◎:浸漬時間6分間後の残存率
100%○: 〃 3分間 〃 100%△:
〃 〃 〃 90〜99%×: 〃
〃 〃 89%以下注12) 試験板を45℃
のリン酸亜鉛処理液に3分間浸漬し、水洗乾燥後の塗膜
観察○:塗膜の剥離なく、化成処理前と同じく均一な塗
膜×:塗膜の剥離あり注13) 試験板塗面にアミン付加
エポキシ樹脂−ブロックイソシアネート系カチオン電着
塗料を浴温28℃、100V×3分間の条件下でカチオ
ン電着塗装し、165℃×20分間焼付け、塗膜(面積
100cm2 )外観を観察 ○:ガスピン及びクレーター発生 0〜5点 △:ガスピン及びクレーター発生 6〜20点 ×:ガスピン及びクレーター発生 20点以上 注14) 注13)で得られたカチオン電着塗装板を1mmゴバン目100個をカッタ ーナイフで切り込み、セロハンテープを用いて剥離試験を行ない、電着 塗膜の残存率を測定 ○:95〜100% △:90〜94% ×:89%以下 注15) 注13)で得られたカチオン電着塗装板を40℃の水中に浸漬し、乾燥さ せた後、注14)と同様にして剥離試験を行ない、電着塗膜の残存率を測 定 ◎:浸漬時間500時間後の残存率 100% ○: 〃 300 〃 100% △: 〃 〃 〃 90〜99% ×: 〃 〃 〃 89%以下 注16) 表1に示す配合の各試料を50℃で3週間静置後、さらに室温で1日静 置した時の塗料状態を観察 ○:若干の分離発生し、 30分間撹拌で再分散可能 △:相当量の分離発生し、 〃 ×: 〃 30分間撹拌で再分散不可能
Note 1) "Shamrock Wax S-363" (Shamroc
k Chemicals company name), average particle size 5 μm Note 2)
"Seridust 3910" (trade name, manufactured by Hoechst), average particle size 8 μm Note 3) "Hitasol GP-60" (trade name, manufactured by Hitachi Powdered Metals), average particle size 0.5 μm Note 4) "Rubron L-2" (Trade name, manufactured by Daikin Industries, Ltd.), average particle size 5μ
m Note 5) “Famex A-12” (trade name, manufactured by Ajinomoto Co.), average particle size 10 μm Note 6) “SC-100”
(Trade name of Sakai Chemical Industry Co., Ltd.), average particle size 3μm Note 7)
“MD-40” (trade name, manufactured by Hitachi Powdered Metals Co., Ltd.), average particle size 1 μm Note 8) “KF945 (A)” (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), liquid Note 9) Cross-cut the painted surface of the test plate And a salt spray test based on JIS-Z-2371
Performed for 00 hours and observed the occurrence of white rust. ○: No abnormality at all △: Spots of white rust ×: White rust Note 10) Cylindrical drawing of a test plate punched out at 84 mmφ with a diameter of 50 mmφ and a depth of 25 mm (BHF = 1 ton) ) And after processing, perform a salt spray test based on JIS-Z-2371 for 400 hours and observe the state of white rust occurrence ○: no white rust △: less than 5% white rust ×: 5% or more white rust Note 11) After immersion in an alkaline degreasing solution at 50 ° C., washing with water and drying, 100 mm squares were cut with a cutter knife, and the residual ratio of the coating film after the peeling test was measured using a cellophane tape. rate
100% ○: 3 3 minutes 100 100% △:
〃 〃 90 90-99% ×: 〃
〃 89 89% or less Note 12) Test plate at 45 ° C
3 min., Immersed in zinc phosphate treatment solution for 3 minutes, and observed after washing and drying. ○: No coating film peeling, uniform coating film as before chemical conversion treatment ×: Coating film peeling. Amine-coated epoxy resin-blocked isocyanate-based cationic electrodeposition paint is applied at a bath temperature of 28 ° C. and 100 V × 3 minutes, and baked at 165 ° C. for 20 minutes to observe the appearance of the coating film (area 100 cm 2 ). ○: Gas pin and crater generation 0 to 5 points △: Gas pin and crater generation 6 to 20 points ×: Gas pin and crater generation 20 points or more Note 14) 100 pieces of the 1 mm-thick cationic electrodeposition coated plate obtained in Note 13) Is cut with a cutter knife and a peeling test is performed using a cellophane tape to measure the residual ratio of the electrodeposited coating film. ○: 95 to 100% △: 90 to 94% ×: 89% or less Note 15) Obtained by Note 13) Horn After immersing the on-electrodeposited plate in water at 40 ° C and drying, perform a peel test in the same manner as in Note 14) to measure the residual ratio of the electrodeposited film. ◎: 500 hours after immersion time Residual rate 100% ○: 300 300 〃 100% △: 〃 〃 90 90-99% ×: 〃 〃 89 89% or less Note 16) After leaving each sample of the composition shown in Table 1 at 50 ° C. for 3 weeks, Observation of paint state when left at room temperature for 1 day ○: Slight separation occurred, redispersible after stirring for 30 minutes △: Considerable amount of separation occurred, 〃 ×: 不可能 Redispersible after stirring for 30 minutes

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷田 修 栃木県那須郡西那須野町下永田3丁目 1172−4 (72)発明者 小川 進 栃木県大田原市美原3丁目3359−37 (56)参考文献 特開 平4−168172(JP,A) 特開 平3−111468(JP,A) 特開 平3−111466(JP,A) 特開 昭60−94466(JP,A) 特開 平2−155958(JP,A) (58)調査した分野(Int.Cl.6,DB名) C09D 163/02 C09D 5/08 C08G 59/06 C08G 59/14 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Osamu Yada, Inventor 3-Shimonaga, Nishinasuno-cho, Nasu-gun, Tochigi Pref. 1172-4 (72) Susumu Ogawa 3-359-337, Mihara, Otawara-City, Tochigi Pref. JP-A-4-168172 (JP, A) JP-A-3-111468 (JP, A) JP-A-3-111466 (JP, A) JP-A-60-94466 (JP, A) JP-A-2-155958 (JP JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C09D 163/02 C09D 5/08 C08G 59/06 C08G 59/14

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (i) ビスフェノールA骨格とビスフェノ
ールF骨格との重量比率(95:5〜60:40)から
なるビスフェノール骨格と、エピクロルヒドリン骨格と
より構成される、1分子中に2個以上のエポキシ基を有
するビスフェノール型エポキシ樹脂、及び(ii)平均粒径
0.1〜20μmの潤滑剤粉末を含有するアルミニウム材
用塗料組成物。
(I) a bisphenol A skeleton composed of a bisphenol A skeleton and a bisphenol F skeleton in a weight ratio (95: 5 to 60:40), and an epichlorohydrin skeleton, wherein two or more molecules are contained in one molecule; Bisphenol type epoxy resin having epoxy group, and (ii) average particle size
A coating composition for aluminum materials containing a lubricant powder of 0.1 to 20 μm.
【請求項2】 (i) 請求項1に記載のエポキシ樹脂を塩
基性窒素化合物又は多塩基酸で変性させた変性エポキシ
樹脂及び(ii)平均粒径0.1〜20μm の潤滑剤粉末を含
有するアルミニウム材用塗料組成物。
2. The composition of claim 1, further comprising (i) a modified epoxy resin obtained by modifying the epoxy resin according to claim 1 with a basic nitrogen compound or a polybasic acid, and (ii) a lubricant powder having an average particle size of 0.1 to 20 μm. Paint composition for aluminum materials.
【請求項3】 下地処理を施したアルミニウム材表面
に、請求項(1)または請求項(2)に記載の塗料組成
物を塗装した被覆アルミニウム材。
3. A coated aluminum material obtained by applying the coating composition according to claim 1 on a surface of the aluminum material which has been subjected to a base treatment.
【請求項4】 自動車車体用である請求項(3)に記載
の被覆アルミニウム材。
4. The coated aluminum material according to claim 3, which is used for an automobile body.
JP3857191A 1991-03-05 1991-03-05 Paint composition and coated aluminum material Expired - Fee Related JP2873513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3857191A JP2873513B2 (en) 1991-03-05 1991-03-05 Paint composition and coated aluminum material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3857191A JP2873513B2 (en) 1991-03-05 1991-03-05 Paint composition and coated aluminum material

Publications (2)

Publication Number Publication Date
JPH04277577A JPH04277577A (en) 1992-10-02
JP2873513B2 true JP2873513B2 (en) 1999-03-24

Family

ID=12528983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3857191A Expired - Fee Related JP2873513B2 (en) 1991-03-05 1991-03-05 Paint composition and coated aluminum material

Country Status (1)

Country Link
JP (1) JP2873513B2 (en)

Also Published As

Publication number Publication date
JPH04277577A (en) 1992-10-02

Similar Documents

Publication Publication Date Title
US3671331A (en) Coated metal and method
JP5255658B2 (en) Method for adjusting the coefficient of friction of metal workpieces
US3687738A (en) Coated metal and method
US3717509A (en) Coated metal and method
US3687739A (en) Coated metal and method
WO2005071052A1 (en) Lubricating aqueous polyurethane resin composition, method for lubricating surface of zinc-plated steel sheet using same, and surface-treated steel sheet
JP2788131B2 (en) Method for forming composite film on aluminum or aluminum alloy surface
US5931993A (en) Composition for forming a black, adherent coating on a metal substrate
JPS5911372A (en) Coating paint composition
US3708350A (en) Coated metal and method
JP2873513B2 (en) Paint composition and coated aluminum material
US3647730A (en) Masking compositions
JPH032257A (en) Composition capable of forming lubricant coating film
JPH0734030A (en) Coating composition and coated aluminum material
JPH07331171A (en) Water-based coating composition and aluminum material coated with the composition
JPH07331163A (en) Water-base coating composition and aluminum material coated therewith
JP4157953B2 (en) Painted steel sheet and paint composition with excellent galling resistance and coating film adhesion
US3390060A (en) Wax stopoff composition and process
JPH0565667A (en) Production of high-performance lubricative plated steel sheet
JPS60203677A (en) Coating compound composition for precoating of metallic material
JPS60120769A (en) Electrically conductive film-forming composition and method for treating metal surface using the same
JP2873502B2 (en) Corrosion resistant paint composition
JPH0780403A (en) Resin-coated steel plate with superb press-forming, and coating properties and corrosion-protective effect and its manufacture
JP2857989B2 (en) Surface treated metal sheet excellent in weldability and deep drawability and method for producing the same
JPH01110140A (en) Composite coated steel sheet excellent in corrosion resistance and lubrication property

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees