JPH04277467A - Manufacture of electrode of hydrogen storage alloy - Google Patents

Manufacture of electrode of hydrogen storage alloy

Info

Publication number
JPH04277467A
JPH04277467A JP3038697A JP3869791A JPH04277467A JP H04277467 A JPH04277467 A JP H04277467A JP 3038697 A JP3038697 A JP 3038697A JP 3869791 A JP3869791 A JP 3869791A JP H04277467 A JPH04277467 A JP H04277467A
Authority
JP
Japan
Prior art keywords
electrode
hydrogen storage
storage alloy
alloy
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3038697A
Other languages
Japanese (ja)
Inventor
Takashi Mizuno
隆司 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP3038697A priority Critical patent/JPH04277467A/en
Publication of JPH04277467A publication Critical patent/JPH04277467A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To enhance the electrode characteristic including effect to occlude and release hydrogen by removing impurities remaining in the H storage alloy, for example non-compound metal such as Mn, Co, Al, and by accomplishing high pureness. CONSTITUTION:A base board for an electrode of H storage alloy is treated with alcohol and immersed in an alkaline water solution.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、水素吸蔵合金による電
極の製造方法の改良に関するものであり、該合金内の不
純物を除去して、水素の吸蔵及び放出を十分に達成せし
め、優れた性能を有する密閉型アルカリ蓄電池の電極を
えんとするものである。
[Industrial Application Field] The present invention relates to an improvement in a method for manufacturing an electrode using a hydrogen storage alloy, and improves the method of manufacturing an electrode using a hydrogen storage alloy by removing impurities in the alloy to achieve sufficient hydrogen storage and release, thereby achieving excellent performance. The electrode is intended for a sealed alkaline storage battery having the following characteristics.

【0002】0002

【従来の技術】近時アルカリ蓄電池の電極として使用さ
れる水素吸蔵合金は、従来から負極活物質として使用さ
れているカドミウム、鉄などとは異り、アルカリ性電解
液中にて充放電を行うと、活物質である水素を吸蔵、放
出するという作用を有しているものである。
[Prior Art] Hydrogen storage alloys used as electrodes in alkaline storage batteries these days differ from cadmium, iron, etc., which have traditionally been used as negative electrode active materials, when charged and discharged in an alkaline electrolyte. , which has the function of absorbing and releasing hydrogen, which is an active material.

【0003】然しながらこの水素の吸蔵、放出を繰返し
行うことにより水素吸蔵合金微細化をおこして電極から
脱落し、電池の容量低下をまねくと共に電極の機械的強
度及び導電性の低下が著しく電極の容量を維持すること
が困難であるため、通常該合金に結着剤として未焼成ポ
リテトラクロロエチレン(PTEF)、ポリエチレン等
を添加して強化しており、特に耐アルカリ性に優れるフ
ッ素樹脂が用いられている。
However, by repeatedly storing and desorbing hydrogen, the hydrogen storage alloy becomes fine and falls off from the electrode, leading to a decrease in the capacity of the battery, as well as a significant decrease in the mechanical strength and conductivity of the electrode. Since it is difficult to maintain this, the alloy is usually strengthened by adding unsintered polytetrachloroethylene (PTEF), polyethylene, etc. as a binder, and in particular, fluororesin, which has excellent alkali resistance, is used.

【0004】また、上記合金内には水素吸蔵合金として
の作用を阻害する不純物例えば合金化することなくCo
,Mn、Al等の金属が単独のまま残存するため、これ
らの不純物を除去する必要がある。この処理方法とて水
素吸蔵合金による電極基板をそのままアルカリ水溶液中
に浸漬して該不純物を溶出せしめる方法が特開昭62−
157604号に開示されている。然しながら該合金に
は前記の如く、結着剤として疾水性を有するフッ素系樹
脂を添加混入せしめているため、上記の如く合金を単に
アルカリ性水溶液中に浸漬したのみでは疾水性の影響を
うけて該合金内に水溶液が浸透せず十分に不純物を溶出
して、除去することが出来ないものであった。従って水
素吸蔵合金においてアルカリ性水溶液との濡れ性を改善
し、該合金内の不純物を除去する方法の出現が要望され
ているものであった。
[0004] In addition, there are impurities in the above alloy that inhibit its function as a hydrogen storage alloy, such as Co without being alloyed.
Since metals such as , Mn, and Al remain alone, it is necessary to remove these impurities. This treatment method involves immersing an electrode substrate made of a hydrogen storage alloy in an alkaline aqueous solution to elute the impurities.
It is disclosed in No. 157604. However, as mentioned above, the alloy contains a fluororesin with water repellency as a binder, so if the alloy is simply immersed in an alkaline aqueous solution as described above, it will be affected by the water repellency and the water repellency will be affected. The aqueous solution did not penetrate into the alloy and the impurities could not be sufficiently eluted and removed. Therefore, there has been a need for a method for improving the wettability of hydrogen storage alloys with alkaline aqueous solutions and for removing impurities within the alloys.

【0005】[0005]

【発明が解決しようとする課題】本発明はかかる要望に
応じ鋭意研究を行った結果、水素吸蔵合金による電極成
型体をアルカリ性水溶液にて処理しやすいようにして、
該合金中の不純物を容易に除去し純度の高くして水素の
吸蔵及び放出を十分に達成しうる水素吸蔵合金電極の製
造方法を開発したものである。
[Problems to be Solved by the Invention] As a result of intensive research in response to such demands, the present invention has developed an electrode molded body made of a hydrogen storage alloy that can be easily treated with an alkaline aqueous solution.
The present invention has developed a method for manufacturing a hydrogen storage alloy electrode that can easily remove impurities from the alloy and achieve high purity to sufficiently store and release hydrogen.

【0006】[0006]

【課題を解決するための手段】本発明は、水素吸蔵合金
による電極をアルコールにて処理した後、次いでアルカ
リ性水溶液中に浸漬して処理したことを特徴とするもの
である。
[Means for Solving the Problems] The present invention is characterized in that an electrode made of a hydrogen storage alloy is treated with alcohol and then immersed in an alkaline aqueous solution.

【0007】[0007]

【作用】本発明は、水素吸蔵合金粉末に結着剤として例
えばテトラクロロエチレン樹脂を添加し、混和し、成型
してなる電極基板をアルコールにて処理し該極板に親水
性を附与せしめるものである。このアルコール処理とは
該電極を常温のアルコール中に2〜3分間浸漬するとか
、該電極に常温のアルコールを噴霧状に吹付けることに
より行うものである。
[Operation] The present invention involves adding, for example, tetrachlorethylene resin as a binder to hydrogen storage alloy powder, mixing the mixture, and molding the electrode substrate. The electrode substrate is then treated with alcohol to impart hydrophilicity to the electrode plate. be. This alcohol treatment is carried out by immersing the electrode in alcohol at room temperature for 2 to 3 minutes, or by spraying alcohol at room temperature onto the electrode.

【0008】かかる処理を行った後、該電極をアルカリ
性水溶液例えば濃度15Wt%程度、温度60〜70℃
の苛性が水溶液中に6〜8時間浸漬せしめることにより
、該電極は前記の如くアルコールにて濡れ性が著しく改
善されているため、該電極中にアルカリ性水溶液は容易
に浸入することが出来、電極内の不純物はアルカリ水溶
液により溶け易い状態となって除去され純度の高い水素
吸蔵合金のみによって電極を形成することが出来るので
ある。
[0008] After performing such treatment, the electrode is placed in an alkaline aqueous solution, for example, at a concentration of about 15 Wt% and at a temperature of 60 to 70°C.
By immersing the electrode in a caustic aqueous solution for 6 to 8 hours, the wettability of the electrode with alcohol is significantly improved as described above, so the alkaline aqueous solution can easily penetrate into the electrode. The impurities inside become easily soluble in the alkaline aqueous solution and are removed, making it possible to form electrodes using only highly pure hydrogen storage alloys.

【0009】[0009]

【実施例】水素吸蔵合金(SLmNi40Co0.5 
Al0.5 )を機械的に粉末化して得た水素吸蔵合金
粉末にポリフッ化ビニリデン粉末を6.0Wt%、Ni
粉を15Wt%夫々添加し更に増粘剤としてカルボキシ
ルメチルセルロ―ス(CMC)を1Wt%添加して混和
したスラリーを予め薄状鉄板にニッケルメッキを施した
多孔性シートの両面に塗着し、乾燥及び圧延を行った後
190℃の真空雰囲気中にて1時間熱処理を行って電極
を成型した。この電極を常温のエチルアルコール中に2
分間浸漬せしめて親水性を有する電極とする。然る後該
電極を濃度15Wt%、60℃の苛性カリ水溶液中に6
時間浸漬せしめて該合金内の不純物を溶出せしめて除去
し41mm×107.6mm×0.398mmの形状を
有する本発明水素吸蔵合金電極をえた。
[Example] Hydrogen storage alloy (SLmNi40Co0.5
6.0 wt% of polyvinylidene fluoride powder and Ni
A slurry made by adding 15 wt% of each powder and 1 wt% of carboxylmethylcellulose (CMC) as a thickener was applied to both sides of a porous sheet that had been nickel-plated on a thin iron plate in advance. After drying and rolling, heat treatment was performed in a vacuum atmosphere at 190° C. for 1 hour to form an electrode. Place this electrode in ethyl alcohol at room temperature for 2 hours.
The electrode is immersed for a minute to form a hydrophilic electrode. Thereafter, the electrode was placed in a caustic potassium aqueous solution with a concentration of 15 Wt% and a temperature of 60°C.
Impurities in the alloy were eluted and removed by immersion for a period of time to obtain a hydrogen storage alloy electrode of the present invention having a shape of 41 mm x 107.6 mm x 0.398 mm.

【0010】なお、本発明電極と比較するために実施例
においてアルコールによる処理工程を行うことなく、そ
の他はすべて実施例と同様にして同形状の比較例水素吸
蔵合金電極(比較例1)をえた。又、実施例においてア
ルコールによる処理工程およびアルカリ性水溶液による
処理工程を行うことなくその他はすべて実施例と同様に
して同形状の比較例水素吸蔵合金電極(比較例2)をえ
た。
[0010] In order to compare with the electrode of the present invention, a comparative hydrogen storage alloy electrode (Comparative Example 1) having the same shape was obtained in the same manner as in the example without performing the treatment step with alcohol in the example. . In addition, a comparative hydrogen storage alloy electrode (Comparative Example 2) having the same shape as in the example was obtained in the same manner as in the example except that the alcohol treatment step and the alkaline aqueous solution treatment step were not performed.

【0011】又、正極としてカーボニルニッケル粉末に
CMCの増粘剤1Wt%を添加し混和して該スラリーを
薄鉄板にニッケルメッキを施した。多孔性シートの両面
に塗着し、乾燥及び焼結を行って多孔性ニッケル焼結板
とし、該板にニッケル化活物質を充填して形状が41m
m×77.6mm×0.48mmのものをえた。
Further, as a positive electrode, 1 wt % of a CMC thickener was added and mixed with carbonyl nickel powder, and the resulting slurry was used to nickel plate a thin iron plate. It is coated on both sides of a porous sheet, dried and sintered to form a porous nickel sintered plate, and the plate is filled with nickeled active material to give a shape of 41 m.
I got one with dimensions of m x 77.6 mm x 0.48 mm.

【0012】斯くして得た負極(本発明電極、比較例電
極(1)及び比較例電極(2))と正極とを夫々ナイロ
ンセパレータを介して巻回し、缶体内に収納した後、七
NKOH水溶液を注入して定格容量800mAh の円
筒密閉形電池を作製し、その性能を比較するため初期性
能試験を行った。その結果は表1に示す通りである。
The negative electrodes thus obtained (the electrode of the present invention, the comparative electrode (1), and the comparative electrode (2)) and the positive electrode were each wound through a nylon separator and housed in a can. A sealed cylindrical battery with a rated capacity of 800 mAh was prepared by injecting an aqueous solution, and an initial performance test was conducted to compare the performance. The results are shown in Table 1.

【0013】なお初期性能試験とは室温にて充電を0.
2℃にて150%、放電を0.2Cにて1Vの条件にて
5サイクル充放電を行って電池の容量、放電平均電圧及
び内圧を測定したものである。
[0013] The initial performance test refers to charging at room temperature to 0.
The battery capacity, average discharge voltage, and internal pressure were measured after 5 cycles of charging and discharging at 150% at 2°C and 1V at 0.2C.

【0014】[0014]

【表1】[Table 1]

【0015】表1より明らかな如く本発明方法により得
た電極を使用して構成した密閉型アルカリ蓄電池によれ
ば初期から容量および放電平均電圧が高く且つ内圧の上
昇するのを抑止することが出来うることが認められた。
As is clear from Table 1, the sealed alkaline storage battery constructed using the electrode obtained by the method of the present invention has a high capacity and a high average discharge voltage from the beginning, and can prevent the internal pressure from increasing. It was confirmed that it could be used.

【0016】[0016]

【発明の効果】本発明方法によれば、水素吸蔵合金に親
水性を附与せしめ、アルカリ性水溶液との濡れ性を向上
しうるため水素吸蔵合金内の不純物を容易に溶出して除
去せしめることが出来ると共に高純度の水素吸蔵合金を
電極とする密閉型アルカリ蓄電池において水素の吸蔵及
び放出の作用を十分に達成せしめるこどか出来る。従っ
て蓄電池において初期容量を高く且つ内圧を上昇せしめ
ることなく長期に亘り劣化することなく使用しうる等工
業上有用なものである。
[Effects of the Invention] According to the method of the present invention, impurities in the hydrogen storage alloy can be easily eluted and removed because it can impart hydrophilicity to the hydrogen storage alloy and improve its wettability with an alkaline aqueous solution. In addition, it is possible to fully achieve hydrogen storage and release in a sealed alkaline storage battery using a high-purity hydrogen storage alloy as an electrode. Therefore, it is industrially useful in that it can be used in storage batteries with a high initial capacity, without increasing internal pressure, and without deteriorating over a long period of time.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】水素吸蔵合金による電極をアルコールにて
処理した後、次いでアルカリ性水溶液中に浸漬して処理
したことを特徴とする水素吸蔵合金電極の製造方法。
1. A method for producing a hydrogen storage alloy electrode, which comprises treating the hydrogen storage alloy electrode with alcohol and then immersing it in an alkaline aqueous solution.
JP3038697A 1991-03-05 1991-03-05 Manufacture of electrode of hydrogen storage alloy Pending JPH04277467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3038697A JPH04277467A (en) 1991-03-05 1991-03-05 Manufacture of electrode of hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3038697A JPH04277467A (en) 1991-03-05 1991-03-05 Manufacture of electrode of hydrogen storage alloy

Publications (1)

Publication Number Publication Date
JPH04277467A true JPH04277467A (en) 1992-10-02

Family

ID=12532503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3038697A Pending JPH04277467A (en) 1991-03-05 1991-03-05 Manufacture of electrode of hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPH04277467A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1652714A2 (en) 1997-11-24 2006-05-03 Ovonic Battery Company, Inc. Hybrid electric vehicle and propulsion system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1652714A2 (en) 1997-11-24 2006-05-03 Ovonic Battery Company, Inc. Hybrid electric vehicle and propulsion system
EP1652715A2 (en) 1997-11-24 2006-05-03 Ovonic Battery Company, Inc. Hybrid electric vehicle and propulsion system
EP1652713A2 (en) 1997-11-24 2006-05-03 Ovonic Battery Company, Inc. Hybrid electric vehicle and propulsion system

Similar Documents

Publication Publication Date Title
JPH0773878A (en) Manufacture of metal hydride electrode
JPH04277467A (en) Manufacture of electrode of hydrogen storage alloy
US4139423A (en) Sintered negative plate
JP4475720B2 (en) Method for producing hydrogen storage alloy electrode and nickel metal hydride storage battery
JP3387314B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH05174869A (en) Processing method for sealed type nickel-hydrogen battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JP2966493B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2000113871A (en) Alkaline secondary battery
JPH0644964A (en) Hydrogen storage electrode and its manufacture
JPH0799690B2 (en) Method for manufacturing hydrogen storage electrode
JP2003045420A (en) Non-sintered positive electrode, its manufacturing method, and alkaline storage battery using same
JPH09231969A (en) Nickel-hydrogen storage battery
JP2003173772A (en) Hydrogen storage alloy powder for electrode and its manufacturing method
JPH0513077A (en) Manufacture of hydrogen storage alloy electrode
JP2001035526A (en) Nickel hydrogen storage battery
JP2966497B2 (en) Method for producing cadmium negative electrode plate for alkaline storage battery
JP2002279955A (en) Separator for alkaline storage battery, manufacturing method therefor and alkaline storage battery
JPS5836834B2 (en) Manufacturing method for sealed storage batteries
JPH0797495B2 (en) Hydrogen storage electrode
JP3448886B2 (en) Method for producing cadmium negative electrode plate for alkaline storage battery
JP2003197185A (en) Hydrogen occlusion alloy electrode, its manufacturing method, and nickel hydrogen storage battery using it
JPH0521058A (en) Manufacture of hydrogen storage alloy electrode
JPH06150923A (en) Manufacture of hydrogen storage alloy electrode for sealed battery