JPH04277434A - Electron emitting electrode and its manufacture - Google Patents

Electron emitting electrode and its manufacture

Info

Publication number
JPH04277434A
JPH04277434A JP3037022A JP3702291A JPH04277434A JP H04277434 A JPH04277434 A JP H04277434A JP 3037022 A JP3037022 A JP 3037022A JP 3702291 A JP3702291 A JP 3702291A JP H04277434 A JPH04277434 A JP H04277434A
Authority
JP
Japan
Prior art keywords
etching
substrate
holes
electrode
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3037022A
Other languages
Japanese (ja)
Inventor
Keizo Yamada
恵三 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3037022A priority Critical patent/JPH04277434A/en
Publication of JPH04277434A publication Critical patent/JPH04277434A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To fabricate an electron emitting electrode having an acute tip on a base board easily in uniform shape. CONSTITUTION:A (100) Si substrate 11 is subjected to anisotropic etching to form pyramidal holes 14 of several mums square, and thereover W is built up in several thousands of Angstrom thick to construct foil-form pyramidal electrodes 18 and wirings 16. Further thereover a resin is deposited to form a supporting base board 17, and then the Si substrate solely is removed by etching. Because the etching holes 14 can be formed in a very uniform shape over the whole base board surface, the foil-form pyramidal electrodes deposited thereon can be embodied in a very uniform shape.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電子放出電極とその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron-emitting electrode and a method for manufacturing the same.

【0002】0002

【従来の技術】従来の真空管に代り、シリコンの微細加
工技術を用いた微小真空管が製造されるようになってき
た。この技術では、従来の真空管に比較して電極管の距
離を非常に短くすることが可能であり、高速デバイスと
して、機能させることが可能である。また、従来の真空
管で必要であった、電子を放出させるためのフィラメン
トが無く電極を加熱するための、電源を持つ必要が無い
、などの特徴を有している。そのため、従来の真空管で
は出来なかった高集積を実現することが出来る。又、集
積された電子放出デバイスをブラウン菅と同じ原理で表
示デバイスとして用いる研究も行われている。
2. Description of the Related Art In place of conventional vacuum tubes, micro vacuum tubes using silicon microfabrication technology have come to be manufactured. With this technology, the distance between the electrode tubes can be made much shorter than in conventional vacuum tubes, and it is possible to function as a high-speed device. In addition, it has the characteristics of not having a filament to emit electrons, which is required in conventional vacuum tubes, and there is no need to have a power source to heat the electrodes. Therefore, it is possible to achieve a high degree of integration that was not possible with conventional vacuum tubes. Research is also being conducted to use integrated electron-emitting devices as display devices using the same principle as Brownian tubes.

【0003】図2に半導体を用いた真空管の従来の製造
工程を示す。初めに、低抵抗の半導体基板3を用意する
。(1)その上に、7000A程度の酸化膜2を成長さ
せる。その上にタングステンなどの金属を堆積1する。 そのタングステンをエッチングによって開孔し、その下
の酸化膜もエッチングによって取り除く。(2)次に、
犠牲層4として、先ほどの金属とは異なった化学的性質
を持つ金属層を堆積する。次に、基板を回転させながら
斜め方向から金属を堆積し、コーン形成用のひさし5を
作製する。ひさし中央には、小さな孔が開いており、そ
の孔に対して垂直にモリブデンを蒸着する。 (3)最後に先ほど堆積した犠牲層を化学エッチングに
よって、取り除き尖端が鋭利になっている電極7を得る
(4)。
FIG. 2 shows a conventional manufacturing process for vacuum tubes using semiconductors. First, a low resistance semiconductor substrate 3 is prepared. (1) An oxide film 2 of about 7000A is grown thereon. A metal such as tungsten is deposited 1 thereon. A hole is made in the tungsten by etching, and the oxide film underneath is also removed by etching. (2) Next,
As the sacrificial layer 4, a metal layer having chemical properties different from those of the previous metal is deposited. Next, metal is deposited from an oblique direction while rotating the substrate to produce the eaves 5 for forming a cone. There is a small hole in the center of the eaves, and molybdenum is deposited perpendicular to the hole. (3) Finally, the sacrificial layer deposited earlier is removed by chemical etching to obtain the electrode 7 with a sharp tip (4).

【0004】0004

【発明が解決しようとする課題】従来から、シリコン基
板上に真空デバイスを作製する試みが行われているが、
その製造を行うには、例えば、回転機構を備えた蒸着機
などの特別の装置が必要とされた。また、蒸着量は、一
枚の基板内あるいは基板間で異なるため、前述の方法で
は基板全体に均一な形状をした突起構造を作製すること
は非常に困難なことであった。そのため、特性分布が生
じたり歩留りが低下するという問題があった。
[Problem to be Solved by the Invention] Conventionally, attempts have been made to fabricate vacuum devices on silicon substrates, but
For its manufacture, special equipment was required, such as a vapor deposition machine with a rotating mechanism. Further, since the amount of vapor deposition varies within a single substrate or between substrates, it is extremely difficult to produce a protrusion structure having a uniform shape over the entire substrate using the above-described method. Therefore, there were problems in that characteristic distribution occurred and the yield decreased.

【0005】[0005]

【課題を解決するための手段】本発明は、絶縁体からな
る基板上に箔状の導電性材料からなる尖端鋭利な突起を
有する事を特徴とする電子放出電極である。またこの電
子放出電極の製造方法は、単結晶半導体を異方性エッチ
ングして、断面がV字形の微細な孔を設けた後に導電性
薄膜をそのうえに堆積し、更に、そのうえに絶縁体から
なる支持層を設けた後に、単結晶半導体をエッチング除
去する工程を有する。
[Means for Solving the Problems] The present invention is an electron-emitting electrode characterized by having a sharp-pointed protrusion made of a foil-like conductive material on a substrate made of an insulator. In addition, the manufacturing method of this electron-emitting electrode involves anisotropically etching a single crystal semiconductor to form fine holes with a V-shaped cross section, then depositing a conductive thin film thereon, and then layering a supporting layer made of an insulator on top of that. After providing the single crystal semiconductor, there is a step of etching away the single crystal semiconductor.

【0006】[0006]

【作用】単結晶シリコン基板を出発材料として用いれば
、異方性エッチング液などの溶液を用いてエッチングを
行うことにより、容易に尖端の鋭利な微小構造体が作製
可能である。例えば、(100)面を主面とする単結晶
シリコン基板の表面に酸化膜を予め設けておき、<11
0>結晶軸にそって、酸化膜を正方形に除いた領域を作
製し、その領域をヒドラジンの様な異方性エッチング液
でエッチングすれば、ピラミッド状の孔を正確に形成で
きしかも非常に再現性良く作製できる。そこで、この孔
の表面にシリコンのエッチング液では侵されない導電性
材料を堆積する。さらに、その材料を支持するために絶
縁体をその上に取り付けて、補強をする。この様な作業
の後、シリコンのみをエッチングする溶液中に投入すれ
ば、シリコン基板がエッチングされ、尖端鋭利な導電性
材料の微小構造体が容易に作製できる。
[Operation] If a single crystal silicon substrate is used as a starting material, a microstructure with a sharp point can be easily produced by etching with a solution such as an anisotropic etching solution. For example, an oxide film is previously provided on the surface of a single crystal silicon substrate whose main surface is the (100) plane, and
0> By creating a square region of the oxide film along the crystal axis and etching that region with an anisotropic etching solution such as hydrazine, pyramid-shaped holes can be formed accurately and are highly reproducible. It can be easily manufactured. Therefore, a conductive material that is not attacked by silicon etching solution is deposited on the surface of this hole. Additionally, insulators are installed on top of the material to provide support and reinforcement. After such an operation, if the silicon substrate is placed in a solution that etches only silicon, the silicon substrate will be etched, and a microstructure made of a conductive material with a sharp point can be easily produced.

【0007】[0007]

【実施例】図1に本発明の実施例を示した。電極構造は
ポリイミド樹脂などの絶縁体の上に、金属からなる箔状
ピラミッドの電極を備えた構造を有している。このピラ
ミッド状の突起は、表面だけが導電性を帯びており、そ
の中は、電極の支持体となる絶縁体材料によって、埋め
られている。この構造によって薄い箔状のピラミッドの
強度が増強されている。
[Example] Fig. 1 shows an example of the present invention. The electrode structure includes a foil pyramid electrode made of metal on an insulator such as polyimide resin. Only the surface of this pyramid-shaped protrusion is conductive, and the inside is filled with an insulating material that serves as a support for the electrode. This structure increases the strength of the thin foil pyramid.

【0008】以下に、その製造方法について示す。先ず
、(100)面方位のシリコン基板11を用意し、熱酸
化等で表面に酸化膜12を設ける。ピラミッドの形状を
異方性エッチングによって得るために、酸化膜12をエ
ッチングして<110>方向に数μm角の正方形の開口
部13を必要数設ける(A図)。この酸化膜12をマス
クとしてヒドラジン等のアルカリ溶液を用いて異方性エ
ッチングを行うと正確なピラミッド状のエッチング孔1
4が基板全面できわめて均一に形成できる。そのあと酸
化膜12を除去する(B図)。次に全面に厚さ数千Aの
タングステン等の導電体薄膜をスパッタ法で堆積する。 この薄膜に対してエッチングを行ないエッチング孔14
の中の部分及び配線16とまる部分の薄膜を残す。 本実施例では一つ一つのエッチング孔に対して別々の配
線になるようにした(C図)。この後に、支持基板17
となるポリイミド樹脂を堆積させる(D図)。この場合
穴を充填するための樹脂を最初に薄く塗った後に、支持
のための厚い樹脂を堆積する方法が望ましい。最後にシ
リコン基板のみを溶解するエッチング液例えば、アルカ
リ溶液や、弗硝酸溶液を用いてエッチングしてピラミッ
ド状の電極18を得る(E図)。
[0008] The manufacturing method will be described below. First, a (100)-oriented silicon substrate 11 is prepared, and an oxide film 12 is provided on the surface by thermal oxidation or the like. In order to obtain the pyramid shape by anisotropic etching, the oxide film 12 is etched to form a required number of square openings 13 of several μm square in the <110> direction (see Fig. A). Using this oxide film 12 as a mask, anisotropic etching is performed using an alkaline solution such as hydrazine to form a precise pyramid-shaped etching hole 1.
4 can be formed extremely uniformly over the entire surface of the substrate. After that, the oxide film 12 is removed (Figure B). Next, a conductive thin film of tungsten or the like having a thickness of several thousand amps is deposited over the entire surface by sputtering. This thin film is etched to form etching holes 14.
The thin film in the inner part and the part where the wiring 16 is fixed is left. In this embodiment, separate wiring is provided for each etching hole (Figure C). After this, the support substrate 17
Deposit polyimide resin (Figure D). In this case, it is desirable to first apply a thin layer of resin to fill the holes, followed by a thick layer of resin for support. Finally, etching is performed using an etching solution that dissolves only the silicon substrate, such as an alkaline solution or a fluoronitric acid solution, to obtain a pyramid-shaped electrode 18 (Fig. E).

【0009】なお電極材料には種々の材料を用いること
ができ、導電性の高分子なども使うことができる。
[0009] Various materials can be used for the electrode material, including conductive polymers.

【0010】また本実施例では箔状のピラミッド電極1
8と配線16を同じタングステンの薄膜から形成したが
、必ずしもその必要はなく、エッチング孔14とその周
囲のみ導電性薄膜を形成し、全面に一旦SiO2 等の
絶縁膜を堆積して、必要な箇所にコンタクトホールを設
け、その上に配線金属16を形成し、コンタクトホール
を介して必要な接続すれば配線金属16と電極18に異
なった材料を用いることが出来る。
Furthermore, in this embodiment, a foil-shaped pyramid electrode 1 is used.
8 and the wiring 16 are formed from the same tungsten thin film, but it is not necessary to do so. Instead, a conductive thin film is formed only in and around the etching hole 14, and an insulating film such as SiO2 is deposited on the entire surface, and then the necessary parts are formed. Different materials can be used for the wiring metal 16 and the electrode 18 by providing a contact hole in the contact hole, forming the wiring metal 16 thereon, and making necessary connections through the contact hole.

【0011】また本実施例ではシリコンのエッチング孔
14の上に直接導電性薄膜を形成したが、エッング孔1
4の表面を薄く酸化してから導電性薄膜を形成するか、
図1(E)のようにピラミッド電極18を形成したあと
電極表面を薄く酸化すると電子の放出効率が高くなる。
Furthermore, in this embodiment, a conductive thin film was formed directly on the silicon etching hole 14, but the etching hole 14
Either oxidize the surface of 4 thinly and then form a conductive thin film, or
If the pyramid electrode 18 is formed and then the electrode surface is thinly oxidized as shown in FIG. 1(E), the electron emission efficiency will be increased.

【0012】またエッチング孔を形成するのに必ずしも
シリコン基板は必要でなく、ガラス基板上にシリコン単
結晶膜を形成した基板を用意し、この単結晶膜にエッチ
ング孔を形成してもよい。この基板を安く作れればコス
トを低減することができ、またシリコン基板では困難な
大面積のものを得ることもできる。
Furthermore, a silicon substrate is not necessarily required to form the etching holes; instead, a substrate in which a silicon single crystal film is formed on a glass substrate may be prepared, and the etching holes may be formed in this single crystal film. If this substrate can be made cheaply, the cost can be reduced, and it is also possible to obtain a large area, which is difficult to do with a silicon substrate.

【0013】支持層となる絶縁体にも種々の材料を用い
ることができ、ポリイミド以外にアラミド樹脂等でもよ
い。電子の放出効率を上げるためには電極を加熱するこ
とが効果的であるが、その場合酸化珪素を含んだ無機ガ
ラスを形成できる材料(例えばSOG(スピンオングラ
ス))を支持層として用いれば電極が高温になっても基
板が溶融、軟化等をおこすことがない。
Various materials can be used for the insulator serving as the support layer, and in addition to polyimide, aramid resin or the like may be used. Heating the electrode is effective in increasing electron emission efficiency, but in this case, if a material containing silicon oxide that can form an inorganic glass (for example, SOG (spin-on glass)) is used as a support layer, the electrode can be heated. Even at high temperatures, the substrate will not melt or soften.

【0014】また従来のピラミッド状電極は中身がむく
の金属でできており、電流が集中する尖端部分の冷却が
難しく、電流密度が高いと尖端部が発熱によって溶ける
(メルトダウン)ことがあった。しかし電極が箔状であ
れば中を空洞にすることができ、この空洞に冷媒を流せ
ば尖端部分を十分冷却することができる。なお本発明の
製造方法でも従来のように中身がむくの金属からなるコ
ーンを形成することができその場合も尖端形状を均一に
することができ有効である。
[0014] In addition, conventional pyramid-shaped electrodes are made of solid metal, and it is difficult to cool the tip where the current is concentrated, and when the current density is high, the tip can melt due to heat generation (meltdown). . However, if the electrode is shaped like a foil, it can be made hollow, and by flowing a coolant into this cavity, the tip can be sufficiently cooled. It should be noted that the manufacturing method of the present invention can also form a cone made of solid metal as in the conventional method, and in that case, it is also effective because the shape of the tip can be made uniform.

【0015】また本発明ではどの様な材料であっても尖
端鋭利に成形が可能であるから、超電導体を電極とする
ことが可能である。超電導体では電子のエネルギー分散
が非常に小さな状態に縮退しているため、非常にエネル
ギー分散の小さな電子の放出つまり、単色の近い電子流
を得ることが出来る特徴がある。実施例では、シリコン
基板を最初の型取り材料として用いたが、他にもシリコ
ン同様のエッチング特性をしめす材料があればそれを用
いることが出来る。また実施例ではピラミッド状の微細
な孔を形成したがピラミッド形状でなくても断面がV字
形であればコーンの尖端を形成するときに用いることが
できる。
Furthermore, in the present invention, since any material can be formed into a sharp tip, it is possible to use a superconductor as an electrode. In superconductors, the energy dispersion of electrons is degenerated to a very small state, so it is possible to emit electrons with a very small energy dispersion, that is, to obtain a nearly monochromatic electron flow. In the embodiment, a silicon substrate was used as the initial molding material, but any other material that exhibits etching characteristics similar to silicon may be used. Further, in the embodiment, pyramid-shaped fine holes were formed, but even if the holes are not pyramid-shaped, if the cross section is V-shaped, it can be used when forming the tip of the cone.

【0016】[0016]

【発明の効果】尖端鋭利な電極構造を得るために従来か
ら広く使用されている、シリコンの異方性エッチングを
直接用いる方法や、狭いスリットから金属を蒸着して、
コーンを得る手法に比較して、本発明では、予め、確実
な方法でピラミッド状の穴を作製し、その上に導電性の
材料を堆積するため尖端の形状を基板全体で均一にする
ことが容易になる。また本発明では特殊な製造装置や複
雑な工程が必要ない。
[Effects of the Invention] A method of directly using anisotropic etching of silicon, which has been widely used in the past to obtain a sharp electrode structure, or a method of depositing metal through a narrow slit,
Compared to the method of obtaining a cone, in the present invention, a pyramid-shaped hole is created in advance in a reliable manner, and a conductive material is deposited thereon, so that the shape of the tip can be made uniform over the entire substrate. becomes easier. Further, the present invention does not require special manufacturing equipment or complicated processes.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例を示した真空管の製造工程図で
ある。
FIG. 1 is a manufacturing process diagram of a vacuum tube showing an embodiment of the present invention.

【図2】従来の半導体真空管の製造工程図である。FIG. 2 is a diagram showing the manufacturing process of a conventional semiconductor vacuum tube.

【符号の説明】[Explanation of symbols]

1  金属ゲート 2  酸化膜 3  シリコン基板 4  犠牲層 5  コーン形成用ひさし 6  金属ゲート 7  電極 11  シリコン基板 12  酸化膜 13  開口部 14  エッチング孔 15  導電体 16  配線金属 17  支持基板 18  電極 1 Metal gate 2 Oxide film 3 Silicon substrate 4. Sacrificial layer 5 Eaves for cone formation 6 Metal gate 7 Electrode 11 Silicon substrate 12 Oxide film 13 Opening 14 Etching hole 15 Conductor 16 Wiring metal 17 Support board 18 Electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  絶縁体からなる基板上に箔状の導電性
材料からなる尖端鋭利な突起を有する事を特徴とする電
子放出電極。
1. An electron-emitting electrode characterized in that it has a sharp-pointed protrusion made of a foil-like conductive material on a substrate made of an insulator.
【請求項2】  単結晶半導体を異方性エッチングして
、断面がV字形の微細な孔を設けた後に、孔の上に導電
性薄膜を堆積し、更に、その上に絶縁体からなる支持層
を設けた後に、単結晶半導体をエッチング除去する工程
を有する電子放出電極の製造方法。
2. After a single crystal semiconductor is anisotropically etched to form fine holes with a V-shaped cross section, a conductive thin film is deposited over the holes, and a support made of an insulator is further deposited on top of the holes. A method for manufacturing an electron emitting electrode, which includes a step of etching away a single crystal semiconductor after forming a layer.
JP3037022A 1991-03-04 1991-03-04 Electron emitting electrode and its manufacture Pending JPH04277434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3037022A JPH04277434A (en) 1991-03-04 1991-03-04 Electron emitting electrode and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3037022A JPH04277434A (en) 1991-03-04 1991-03-04 Electron emitting electrode and its manufacture

Publications (1)

Publication Number Publication Date
JPH04277434A true JPH04277434A (en) 1992-10-02

Family

ID=12486029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3037022A Pending JPH04277434A (en) 1991-03-04 1991-03-04 Electron emitting electrode and its manufacture

Country Status (1)

Country Link
JP (1) JPH04277434A (en)

Similar Documents

Publication Publication Date Title
US6448701B1 (en) Self-aligned integrally gated nanofilament field emitter cell and array
US6440763B1 (en) Methods for manufacture of self-aligned integrally gated nanofilament field emitter cell and array
EP0460173A1 (en) Field emitter structure and fabrication process
EP0508737B1 (en) Method of producing metallic microscale cold cathodes
JPH04319224A (en) Electric-field discharging device
US5483118A (en) Field emission cold cathode and method for production thereof
JPH0799666B2 (en) Method and structure for manufacturing integrated vacuum microelectronic device
JPH05152640A (en) Cold cathode emitter element
US7670203B2 (en) Process for making an on-chip vacuum tube device
KR100243990B1 (en) Field emission cathode and method for manufacturing the same
JPH08329824A (en) Field emission type cold cathode device and its manufacture
US20050255613A1 (en) Manufacturing of field emission display device using carbon nanotubes
JPH04277434A (en) Electron emitting electrode and its manufacture
JPH06131970A (en) Manufacture of micro-vacuum element
JPH0817330A (en) Field emission type electron source and its manufacture
JP3502883B2 (en) Cold electron-emitting device and method of manufacturing the same
RU2678192C1 (en) Method of manufacturing of a field emission element
KR100486613B1 (en) Elecron beam source module with carbon nano tube and method for fabricating the same
JP3622406B2 (en) Cold electron-emitting device and manufacturing method thereof
JPH07296717A (en) Electric field discharging type cold negative electrode
KR100264396B1 (en) Method for producing a laternal field emission device
JP3832070B2 (en) Method for manufacturing cold electron-emitting device
JPH0541152A (en) Manufacture of electric field emission cathode
JP3627838B2 (en) Method for producing diamond-coated cold cathode
KR100286454B1 (en) Field emission emitter and method of manufacturing the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001205