JPH04276669A - Superconducting magnetic shielding body - Google Patents

Superconducting magnetic shielding body

Info

Publication number
JPH04276669A
JPH04276669A JP3062404A JP6240491A JPH04276669A JP H04276669 A JPH04276669 A JP H04276669A JP 3062404 A JP3062404 A JP 3062404A JP 6240491 A JP6240491 A JP 6240491A JP H04276669 A JPH04276669 A JP H04276669A
Authority
JP
Japan
Prior art keywords
superconducting
alloy
layer
magnetic field
metal layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3062404A
Other languages
Japanese (ja)
Other versions
JP2920846B2 (en
Inventor
Ikuo Ito
郁夫 伊藤
Shigeru Minamino
南野 繁
Yasuhiro Shimizu
清水 庸宏
Tsutomu Sasaki
勉 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3062404A priority Critical patent/JP2920846B2/en
Publication of JPH04276669A publication Critical patent/JPH04276669A/en
Application granted granted Critical
Publication of JP2920846B2 publication Critical patent/JP2920846B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To obtain a superconducting magnetic shielding body which is excellent in the stability of a superconducting state even in a fluctuating magnetic field having a fairly large exciting and demagnetizing speed and whose magnetic shielding characteristic is high. CONSTITUTION:The title shielding body is formed by laminating superconducting layers 2 and normal conducting metal layers alternately in their thickness direction and are formed as a cylindrical shape in which no connecting part exists in the peripheral direction and in the axial direction. The normal conducting metal layers are all composed of high-resistance metal layers 3 or are formed by laminating the high-resistance metal layers 3 and highly conductive metal layers alternately. The highly conductive metal layers may be divided into a plurality of stripes by using stripe-shaped high-resistance metal belts. An eddy current generated by a fluctuating magnetic field or a coupling electric current between the superconducting layers can be suppressed, and the stability of a superconducting state a is enhanced. The title shielding body displays an effect as a magnetic shielding cylinder for fluctuating magnetic-field use.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は励磁や減磁の速度が大き
い変動磁場中でも超電導状態の安定性に優れ、かつ磁気
シールド特性の高い筒形状の超電導磁気シールド体に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical superconducting magnetic shield that exhibits excellent stability in a superconducting state even in a fluctuating magnetic field with high excitation and demagnetization rates and has high magnetic shielding properties.

【0002】0002

【従来の技術】従来、超電導を利用した磁気シールド材
として第1種超電導体および第2種超電導体が用いられ
ていた。両者は磁場の強さによって使い分けられ、第1
種超電導体はマイスナー効果によりかなり低い磁場まで
ではあるが完全に磁気シールドすることができる。第2
種超電導体は下部臨界磁場Bc1と上部臨界磁場Bc2
を有し、Bc1まではかなり低い磁場ではあるがマイス
ナー効果により完全磁気シールドすることができる。B
c1からBc2の間では超電導状態と常電導状態の混合
状態となり磁気シールドを行うことができるが、Bc2
が高い材料を用いれば高磁場の磁気シールドも可能であ
る。
2. Description of the Related Art Hitherto, type 1 superconductors and type 2 superconductors have been used as magnetic shielding materials that utilize superconductivity. Both are used depending on the strength of the magnetic field, and the first
Seed superconductors can be completely magnetically shielded by the Meissner effect, albeit down to fairly low magnetic fields. Second
The seed superconductor has a lower critical magnetic field Bc1 and an upper critical magnetic field Bc2
Although the magnetic field is quite low up to Bc1, complete magnetic shielding can be achieved due to the Meissner effect. B
Between c1 and Bc2, it becomes a mixed state of superconducting state and normal conducting state, and magnetic shielding can be performed, but Bc2
If a material with a high magnetic field is used, magnetic shielding of a high magnetic field is also possible.

【0003】ここで形状がたとえば円筒等の筒形状の第
2種超電導体を用いれば、外から磁界がかかるとそれを
打ち消す向きに筒形材料中を環状に超電導遮蔽電流が流
れる。外部磁界の強さがある値以下で、筒の軸方向の長
さが無限であれば、筒の内部空間の磁場は完全に0に保
たれる。同様のことが内部に磁気発生源がある場合にも
適用できる。すなわち内部磁界の強さがある値以下で、
筒の軸方向の長さが無限であれば、外部空間への筒の内
部からの磁気漏洩を完全になくすことができる。そして
軸方向の長さはもちろん有限であるが、筒形を用いた上
記2種類の超電導磁気シールドの形態が、現在最も実用
化にふさわしいものとして技術開発が進められている。
If a type 2 superconductor having a cylindrical shape, for example, is used, when a magnetic field is applied from the outside, a superconducting shielding current flows annularly through the cylindrical material in a direction that cancels the magnetic field. If the strength of the external magnetic field is below a certain value and the length of the cylinder in the axial direction is infinite, the magnetic field in the internal space of the cylinder is maintained at completely zero. The same thing can be applied when there is an internal magnetic source. In other words, when the strength of the internal magnetic field is below a certain value,
If the length of the cylinder in the axial direction is infinite, magnetic leakage from the inside of the cylinder into the external space can be completely eliminated. Although the length in the axial direction is, of course, limited, the above two types of superconducting magnetic shields using a cylindrical shape are currently being technologically developed as being most suitable for practical use.

【0004】0004

【発明が解決しようとする課題】超電導材には、超電導
特性を安定化させるためCuやAl等の高導電金属を接
合させることが望ましい。これは、超電導層内部への磁
束の急激な侵入によって発熱が生じるが、高導電金属層
が超電導層の両側に接合していることによってこの熱を
すみやかに外部の液体He中に放散させることができる
ことによる。また、部分的に超電導状態が破壊されて高
抵抗部になったとしても、高導電金属が超電導電流の非
常に導電性の良いバイパスの役目を果たし、超電導状態
に再び復することを可能にする。また、第2種超電導体
に特有の励減磁の際のヒステリシスロスをできるだけ小
さくし、超電導状態の安定性を増すために超電導層1層
当りの厚さをできるだけ小さくする必要がある。したが
って、これらの事情から筒形の厚さ方向に高導電金属層
と超電導層との交互多層構造とすることは有力な方法の
一つであった。
[Problems to be Solved by the Invention] It is desirable to bond a highly conductive metal such as Cu or Al to the superconducting material in order to stabilize the superconducting properties. This is because heat is generated due to the rapid penetration of magnetic flux into the superconducting layer, but because the highly conductive metal layers are bonded to both sides of the superconducting layer, this heat can be quickly dissipated into the external liquid He. Depends on what you can do. In addition, even if the superconducting state is partially destroyed and a high-resistance region occurs, the highly conductive metal acts as a highly conductive bypass for the superconducting current, making it possible to restore the superconducting state again. . Furthermore, it is necessary to minimize the hysteresis loss during excitation and demagnetization, which is characteristic of type 2 superconductors, and to minimize the thickness of each superconducting layer in order to increase the stability of the superconducting state. Therefore, in view of these circumstances, one of the effective methods is to create a multilayer structure of highly conductive metal layers and superconducting layers alternating in the thickness direction of the cylindrical shape.

【0005】このような考え方による技術としては、た
とえば特願平2−71863号におけるCu/Nb−T
i系合金の多層複合構造を有する円筒等が挙げられる。
[0005] As a technique based on this idea, for example, Cu/Nb-T in Japanese Patent Application No. 2-71863
Examples include a cylinder having a multilayer composite structure of an i-based alloy.

【0006】しかしながら、この多層複合筒形において
は、励減磁速度の大きい変動磁場中にあっては高導電金
属中に渦電流が、また磁束線の方向にもよるが超電導層
間に結合電流が無視しえない程度に生じてくる。これら
の電流はいずれも抵抗を有する材料中に発生するため発
熱の原因となり、はなはだしくは超電導状態を破壊する
に至り、超電導不安定性の一因となる。
However, in this multilayer composite cylinder, in a fluctuating magnetic field with a large excitation/demagnetization rate, eddy currents occur in the highly conductive metal, and depending on the direction of the magnetic flux lines, coupling currents occur between the superconducting layers. It occurs to such an extent that it cannot be ignored. Since both of these currents are generated in materials having resistance, they cause heat generation, and even lead to destruction of the superconducting state, contributing to superconducting instability.

【0007】[0007]

【課題を解決するための手段】本発明の要旨は、超電導
層と常電導金属層がその厚さ方向に少なくとも1層交互
に積層され、周方向かつ軸方向に接続部が無く、全体も
しくは一部に底を有する筒形または底無し筒形で、常電
導金属層が高抵抗金属からなるか、または高抵抗金属層
と高導電金属層がその厚さ方向に各々少なくとも1層交
互に積層されてなることを特徴とする超電導磁気シール
ド体である。
[Means for Solving the Problems] The gist of the present invention is that at least one superconducting layer and one normal-conducting metal layer are alternately laminated in the thickness direction, there are no connecting parts in the circumferential direction and the axial direction, and the entire or one part It has a cylindrical shape with a bottom at the bottom or a bottomless cylindrical shape, and the normal conductive metal layer is made of a high resistance metal, or at least one high resistance metal layer and one high conductivity metal layer are each alternately laminated in the thickness direction. This is a superconducting magnetic shield body characterized by the following.

【0008】また、上記高導電金属層が筋状の高抵抗金
属帯によって複数の筋状に分割されていることは好まし
い。ここで1本の筋状高導電金属帯は、隣接する他の筋
状高導電金属帯とつながらないように筋状高抵抗金属帯
が配置されていればよい。したがって、筋状高抵抗金属
帯同士はお互いに交わる点がなく、各1列ずつであって
もよいし、交叉点が各所にある、すなわち高抵抗金属帯
の壁によって高導電金属が細胞状(セル状)に取り囲ま
れた構造であってもよい。
Preferably, the highly conductive metal layer is divided into a plurality of stripes by striped high-resistance metal bands. Here, it is sufficient that one striped high-resistance metal strip is arranged so as not to be connected to another adjacent striped high-conductivity metal strip. Therefore, the striped high-resistance metal strips may have no points where they intersect with each other, and may be in one row each, or they may have intersection points at various locations, that is, the walls of the high-resistance metal strips allow the highly conductive metal to form a cellular shape ( It may be a structure surrounded by cells (cell-like).

【0009】上記高抵抗金属がCu−Ni合金、Cu−
Mn合金、Cu−Co合金のうちいずれかであり、高導
電金属がCu、Cu合金、Al、Al合金、Agまたは
Ag合金のうちいずれかであることは好ましい。このう
ち高抵抗金属としては、各Cu合金とも十分な高抵抗を
有するためには各第2元素が3wt%以上含まれている
ことが望ましい。また、高導電金属としては導電性とコ
ストを勘案するとCuまたはAlが最適であるが、導電
率をあまり低下させない程度に小量の他元素を添加する
ことも可能である。
[0009] The above-mentioned high-resistance metal is a Cu-Ni alloy, a Cu-
It is preferable that the highly conductive metal is either Mn alloy or Cu-Co alloy, and the highly conductive metal is Cu, Cu alloy, Al, Al alloy, Ag, or Ag alloy. Among these high-resistance metals, in order for each Cu alloy to have sufficiently high resistance, it is desirable that each second element be contained in an amount of 3 wt % or more. In addition, Cu or Al is most suitable as a highly conductive metal in consideration of conductivity and cost, but it is also possible to add small amounts of other elements to the extent that the conductivity is not significantly reduced.

【0010】上記超電導層の超電導材としては、Nb、
Nb−Ti系合金、Nb−Zr系合金のほか、Nb3 
Sn、V3 Ga、Nb3Al、Nb3 Ga、Nb3
 Ge、Nb3 (AlGe)等のA15型金属間化合
物が挙げられる。また、La−Sr−Cu−O系、Y−
Ba−Ca−O系、Bi−Sr−Ca−O系、Tl−B
a−Ca−Cu−O系等のセラミックス超電導材も挙げ
られる。
[0010] As the superconducting material of the superconducting layer, Nb,
In addition to Nb-Ti alloy, Nb-Zr alloy, Nb3
Sn, V3 Ga, Nb3Al, Nb3 Ga, Nb3
Examples include A15 type intermetallic compounds such as Ge and Nb3 (AlGe). In addition, La-Sr-Cu-O system, Y-
Ba-Ca-O system, Bi-Sr-Ca-O system, Tl-B
Ceramic superconducting materials such as a-Ca-Cu-O-based materials may also be mentioned.

【0011】ここで超電導層がNb−Ti系合金または
Nb−Zr系合金である場合において、その常電導金属
層との界面にNbもしくはTaまたは両者の合金からな
る拡散防止のためのバリヤー層があっても何等さしつか
えない。これら超電導合金においては、その超電導特性
を上げるためや加工時に熱を加えることがあり、このバ
リヤー層は超電導合金中のTiやZrと常電導金属元素
が拡散しあって硬くて脆い金属間化合物が形成されるの
を防止する役目を有する。この金属間化合物によりその
後の加工に支障が生じたり、超電導合金の成分比が変化
し、ひいては超電導特性が低下するという不都合が生じ
る。
When the superconducting layer is an Nb-Ti alloy or a Nb-Zr alloy, a barrier layer for preventing diffusion made of Nb or Ta or an alloy of both is provided at the interface with the normal conducting metal layer. I don't have any problem with it. In these superconducting alloys, heat is sometimes applied to improve their superconducting properties or during processing, and this barrier layer is formed by the diffusion of Ti and Zr in the superconducting alloy and normal conductive metal elements into hard and brittle intermetallic compounds. It has the role of preventing the formation of This intermetallic compound may cause problems in subsequent processing, change the component ratio of the superconducting alloy, and ultimately deteriorate the superconducting properties.

【0012】筒形の断面形状は、その用途に応じて円形
、多角形等と自由に選択できる。
[0012] The cross-sectional shape of the cylinder can be freely selected from circular, polygonal, etc. depending on its use.

【0013】[0013]

【作用】周方向かつ軸方向に接続部の無い筒形超電導体
は、その軸方向に平行な外部磁場に対し、その方向に垂
直に超電導遮蔽電流が外部磁場に反対向きの磁場をつく
るべく閉ループをつくって流れる。この閉ループの途中
に接続部や常電導部があると、超電導遮蔽電流が時間と
ともに減衰し、超電導磁気シールド特性も失われる。し
たがって、本発明によれば筒形の全周長にわたって閉ル
ープ状に超電導遮蔽電流が減衰することなく流れること
ができ、高い磁気シールド特性が半永久的に得られる。
[Operation] A cylindrical superconductor with no connections in the circumferential and axial directions has a closed loop in which a superconducting shielding current perpendicular to an external magnetic field parallel to the axial direction creates a magnetic field in the opposite direction to the external magnetic field. Create and flow. If there is a connection or normally conducting part in the middle of this closed loop, the superconducting shielding current will attenuate over time and the superconducting magnetic shielding properties will also be lost. Therefore, according to the present invention, the superconducting shielding current can flow in a closed loop over the entire circumference of the cylinder without attenuation, and high magnetic shielding characteristics can be obtained semi-permanently.

【0014】上記筒形の片端が同じ材質の板でふさがっ
ている場合、すなわち底を有する筒形となっている場合
も基本的には同じである。両端が開放された筒形は、開
放端から内部空間にある程度の磁場が侵入している。そ
れに対し底を有する筒形の場合、その底のある方の内部
空間では磁場強度にもよるが、全く磁場が侵入しない。 したがって、比較的軸方向の長さが短い筒形で、より効
率良く磁気シールドする場合は、底を有する筒形が適す
ると言える。ただし、筒形の外から内へ、またはその逆
方向に物体または生体を通過させる必要のある場合も多
く、その場合は底の中心に通過用の穴をあけておくこと
が磁場の対称性、即ち均一性を保持する上で便利である
。この場合、一部底を有する筒形となる。
[0014] The same is basically true when one end of the cylindrical shape is closed with a plate made of the same material, that is, when the cylindrical shape has a bottom. In a cylindrical shape with both ends open, a certain amount of magnetic field penetrates into the internal space from the open ends. On the other hand, in the case of a cylindrical shape with a bottom, no magnetic field penetrates into the inner space of the bottom, depending on the magnetic field strength. Therefore, if a cylindrical shape with a relatively short axial length is desired for more efficient magnetic shielding, a cylindrical shape with a bottom is suitable. However, there are many cases where it is necessary to pass an object or living body from the outside to the inside of the cylinder, or in the opposite direction. That is, it is convenient for maintaining uniformity. In this case, it has a cylindrical shape with a partial bottom.

【0015】常電導金属層がすべて高抵抗金属である場
合、放熱媒体または超電導電流のバイパスとしての効果
は低下するものの、変動磁場によって生じる渦電流や超
電導層間の結合電流を相当に抑制することができ、変動
磁場用の磁気シールド体として効果を発揮することがで
きる。
[0015] When all the normal conducting metal layers are made of high resistance metal, although the effectiveness as a heat dissipation medium or a bypass for superconducting current is reduced, it is possible to considerably suppress eddy currents caused by a fluctuating magnetic field and coupling current between superconducting layers. It can be used effectively as a magnetic shield for fluctuating magnetic fields.

【0016】常電導金属層が、高抵抗金属層と高導電金
属層とがその厚さ方向に各々少なくとも1層交互に積層
されてなる場合、そのうち特に超電導層に接合される側
が両方とも高導電金属層で、それらに高抵抗金属層がは
さまれたサンドイッチ構造である場合、常電導金属層の
断面積比が同じであれば大きな渦電流の流れる領域が減
り、かつ超電導層間の結合電流を高抵抗金属層によって
大幅に低減することが可能になる。また放熱媒体または
超電導電流のバイパスとしての効果もある程度保持され
る。高抵抗金属と高導電金属が入れ替わったサンドイッ
チ構造でも同様の理由で効果が発揮される。
[0016] In the case where the normal conductive metal layer is made up of at least one high resistance metal layer and one high conductivity metal layer each alternately laminated in the thickness direction, both of them are highly conductive, especially on the side bonded to the superconducting layer. If the metal layers have a sandwich structure with a high-resistance metal layer sandwiched between them, if the cross-sectional area ratio of the normal-conducting metal layers is the same, the area where large eddy currents flow will be reduced, and the coupling current between the superconducting layers will be reduced. A high resistance metal layer allows for a significant reduction. In addition, the effect as a heat dissipation medium or a superconducting current bypass is maintained to some extent. A sandwich structure in which a high-resistance metal and a high-conductivity metal are swapped is also effective for the same reason.

【0017】上記3層のサンドイッチ構造でなく、2層
であっても相当の効果はある。もちろん4層、5層と増
やすことも可能であり、高導電金属層がより細分化され
ることから、磁束の方向にもよるが特に渦電流の抑制に
効果がある。
[0017] Considerable effects can be obtained even with two layers instead of the three-layer sandwich structure described above. Of course, it is also possible to increase the number of layers to four or five layers, and since the highly conductive metal layer is further divided, this is particularly effective in suppressing eddy currents, although it depends on the direction of magnetic flux.

【0018】また、上記常電導金属層中における高導電
金属層が筋状の高抵抗金属帯によって複数の筋状の高導
電金属帯に分割されている場合、筒形の厚さ方向だけで
なく平面方向にも分割がなされることにより、特に渦電
流の抑制に対してより大きな効果がある。厚さ方向にも
高抵抗金属層があるので、もちろん結合電流に対する抑
制効果もある。
In addition, when the highly conductive metal layer in the normal conductive metal layer is divided into a plurality of streak-like high-conductivity metal bands by streak-like high-resistance metal bands, not only the thickness direction of the cylindrical shape but also the By dividing also in the plane direction, there is a greater effect particularly on suppressing eddy currents. Since there is a high-resistance metal layer in the thickness direction, it also has the effect of suppressing the coupling current.

【0019】また、より高い磁場のシールドのために、
形状が相似でサイズが少しずつ違う筒形を複数用意して
同心状に重ね合わせ、筒形の肉厚を増やすことも可能で
ある。
[0019] Also, for higher magnetic field shielding,
It is also possible to increase the thickness of the cylinder by preparing multiple cylinders with similar shapes but slightly different sizes and stacking them concentrically.

【0020】これまでは、筒形の外からの磁場に対して
その内部空間をシールドする場合を挙げたが、筒形の内
部に超電導コイル等の磁場を発生する物体があり、それ
に対して外部空間をシールドすることももちろん可能で
ある。
So far, we have discussed the case where the internal space of a cylindrical shape is shielded from a magnetic field from outside, but there is an object that generates a magnetic field such as a superconducting coil inside the cylindrical shape, and Of course, it is also possible to shield the space.

【0021】また、これまでは筒形の軸が外部磁場また
は内部磁場の方向に対し平行になる配置を挙げたが、こ
れが垂直の場合や両者の中間に傾いた場合でも磁気シー
ルドは可能である。
[0021]Also, so far we have discussed an arrangement in which the cylindrical axis is parallel to the direction of the external magnetic field or the internal magnetic field, but magnetic shielding is also possible when the axis is perpendicular or tilted between the two. .

【0022】[0022]

【実施例】実施例1 図1に示すように、厚さ30μmのCu−Ni合金の高
抵抗金属層3を11層と、厚さ30μmのNb−Ti系
合金の超電導層2を10層交互に積層した厚さ0.63
mm、内径50mm、長さ100mmの底無し円筒形の
超電導磁気シールド体1を、パイプクラッド法とその後
の圧延法とにより製作した。また、これと比較のためC
u−Ni合金をすべてCuにおきかえただけで、同一サ
イズ、構造の底無し円筒も同一工程によって製作した。
[Example] Example 1 As shown in Figure 1, 11 layers of high-resistance metal layers 3 made of Cu-Ni alloy with a thickness of 30 μm and 10 layers of superconducting layers 2 made of Nb-Ti alloy with a thickness of 30 μm are alternately arranged. Laminated to a thickness of 0.63
A bottomless cylindrical superconducting magnetic shield 1 having an inner diameter of 50 mm and a length of 100 mm was manufactured by a pipe cladding method and a subsequent rolling method. Also, for comparison with this, C
A bottomless cylinder of the same size and structure was also manufactured using the same process, only by replacing all the u-Ni alloys with Cu.

【0023】これらの円筒を試料として変動磁場中に置
いて磁気シールド特性を評価したところ、本発明品は比
較品がフラックスジャンプによって超電導状態を喪失す
るよりも5倍以上大きい励減磁速度まで超電導状態を保
持し、磁気シールド効果を発揮することが可能であった
。サイズ、構造が全く同じで底を有する円筒にて評価し
た場合は、漏洩磁場とシールド磁場の最大値に若干の向
上があったが、励減磁速度に関してはほぼ同じ特性を示
した。
When these cylinders were placed as samples in a fluctuating magnetic field and their magnetic shielding characteristics were evaluated, it was found that the product of the present invention maintains superconductivity up to an excitation-demagnetization rate that is more than five times greater than that of the comparative product, which loses its superconducting state due to flux jumps. It was possible to maintain the state and exert a magnetic shielding effect. When a cylinder with the same size and structure and bottom was evaluated, there was a slight improvement in the maximum values of the leakage magnetic field and the shielding magnetic field, but the excitation and demagnetization speeds showed almost the same characteristics.

【0024】また、Cu−Ni合金のかわりにCu−M
n合金またはCu−Co合金を用いてもほぼ同様の結果
を得ることができた。
[0024] Also, Cu-M instead of Cu-Ni alloy
Almost similar results could be obtained using n alloy or Cu-Co alloy.

【0025】超電導層としてNb、Nb−Zr系合金を
用いた場合も、その磁気シールド可能な最大磁場は異な
るが、励減磁速度に対する効果はほぼ同様であった。
Even when Nb or Nb-Zr alloys were used as the superconducting layer, the maximum magnetic field capable of magnetic shielding was different, but the effects on the excitation/demagnetization rate were almost the same.

【0026】ここで超電導層がNb−Ti系合金または
Nb−Zr系合金である場合において、その常電導金属
層との界面にNbもしくはTaまたは両者の合金からな
る拡散防止のためのバリヤー層があっても、励磁速度に
対する効果はほぼ同様であった。
When the superconducting layer is an Nb-Ti alloy or a Nb-Zr alloy, a barrier layer for preventing diffusion made of Nb or Ta or an alloy of both is provided at the interface with the normal conducting metal layer. However, the effect on excitation speed was almost the same.

【0027】Nb3 Sn、V3 Ga、Nb3 Al
、Nb3 Ga、Nb3 Ge、Nb3 (AlGe)
等のA15型金属間化合物においては、超電導層の中心
に厚さ5μmのNbまたはV層を配し、その両側に各厚
さ12.5μmの、たとえばNb3 Snの場合Snを
含むCu合金層を配して成形後、熱処理を行っておおむ
ね厚さ数μm程度のA15型金属間化合物層を得た。こ
の場合、磁気シールド特性もきわめて良好なものが得ら
れたが、励減磁速度に対する効果はNb−Ti系合金を
用いた場合とほぼ同様であった。
[0027] Nb3 Sn, V3 Ga, Nb3 Al
, Nb3 Ga, Nb3 Ge, Nb3 (AlGe)
In the A15 type intermetallic compound such as, a 5 μm thick Nb or V layer is placed at the center of the superconducting layer, and a 12.5 μm thick Cu alloy layer containing Sn is placed on both sides of the layer, for example, in the case of Nb3Sn. After disposing and molding, heat treatment was performed to obtain an A15 type intermetallic compound layer approximately several μm thick. In this case, very good magnetic shielding properties were obtained, but the effect on excitation and demagnetization speed was almost the same as when using the Nb-Ti alloy.

【0028】La−Sr−Cu−O系、Y−Ba−Ca
−O系、Bi−Sr−Ca−Cu−O系、Tl−Ba−
Ca−Cu−O系等のセラミックス超電導材においては
、1層の厚さ30μmとし、成形後、熱処理等を行って
超電導特性を得た。この場合も、励減磁速度に対する効
果はNb−Ti系合金を用いた場合とほぼ同様であった
[0028] La-Sr-Cu-O system, Y-Ba-Ca
-O system, Bi-Sr-Ca-Cu-O system, Tl-Ba-
In the case of ceramic superconducting materials such as Ca-Cu-O type, the thickness of one layer was set to 30 μm, and after molding, heat treatment etc. were performed to obtain superconducting properties. In this case as well, the effect on the excitation/demagnetization rate was almost the same as in the case of using the Nb-Ti alloy.

【0029】[0029]

【実施例2】図2に示すように、厚さ10μmのCu−
Ni合金の高抵抗金属層3をはさんだ2層の厚さ10μ
mのCuの高導電金属層4からなるサンドイッチ構造の
常電導金属層を9層と、厚さ30μmのNb−Ti系合
金の超電導層2を10層交互に積層し、最表面は両側と
も厚さ20μmのCu−Ni合金の高抵抗金属層3と厚
さ10μmのCuの高導電金属層4を積層した厚さ0.
63mm、内径50mm、長さ100mmの底無し円筒
形の超電導磁気シールド体1をパイプクラッド法とその
後の圧延法とにより製作した。また、これと比較のため
Cu−Ni合金をすべてCuにおきかえただけで、同一
サイズ、構造の底無し円筒も同一工程によって製作した
[Example 2] As shown in Fig. 2, Cu-
The thickness of the two layers sandwiching the Ni alloy high resistance metal layer 3 is 10 μm.
Nine normal conductive metal layers in a sandwich structure consisting of a highly conductive metal layer 4 of Cu with a thickness of m and 10 superconducting layers 2 of a Nb-Ti alloy with a thickness of 30 μm are laminated alternately, and the outermost surface is thick on both sides. A high-resistance metal layer 3 made of a Cu-Ni alloy with a thickness of 20 μm and a highly conductive metal layer 4 made of Cu with a thickness of 10 μm are laminated to have a thickness of 0.0 μm.
A bottomless cylindrical superconducting magnetic shield 1 having a diameter of 63 mm, an inner diameter of 50 mm, and a length of 100 mm was manufactured by a pipe cladding method and a subsequent rolling method. In addition, for comparison, a bottomless cylinder of the same size and structure was also manufactured using the same process, except that all the Cu-Ni alloys were replaced with Cu.

【0030】これらの円筒を試料として変動磁場中に置
いて磁気シールド特性を評価したところ、本発明品は比
較品がフラックスジャンプによって超電導状態を喪失す
るよりも2倍以上大きい励減磁速度まで超電導状態を保
持し、磁気シールド効果を発揮することが可能であった
When these cylinders were placed as samples in a fluctuating magnetic field and their magnetic shielding properties were evaluated, it was found that the product of the present invention maintains superconductivity at an excitation-demagnetization rate that is more than twice as fast as the comparative product, which loses its superconducting state due to flux jumps. It was possible to maintain the state and exert a magnetic shielding effect.

【0031】また、Cu−Ni合金のかわりにCu−M
n合金またはCu−Co合金を用いてもほぼ同様の結果
を得ることができた。
[0031] Also, Cu-M instead of Cu-Ni alloy
Almost similar results could be obtained using n alloy or Cu-Co alloy.

【0032】CuのかわりにAlまたはAgを用いても
ほぼ同様の結果を得ることができた。Cuのかわりに希
薄Cu合金、Al合金、Ag合金を用いた場合は、励磁
速度に対し10%以上の向上が見られたが、磁気シール
ド可能な最大磁場値はやや低下した。
Almost the same results could be obtained using Al or Ag instead of Cu. When a dilute Cu alloy, Al alloy, or Ag alloy was used instead of Cu, an improvement of 10% or more was observed in the excitation speed, but the maximum magnetic field value capable of magnetic shielding was slightly lowered.

【0033】超電導層としてNb、Nb−Zr系合金を
用いた場合も、その磁気シールド可能な最大磁場は異な
るが、励減磁速度に対する効果はほぼ同様であった。
Even when Nb or Nb-Zr alloys were used as the superconducting layer, the maximum magnetic field capable of magnetic shielding was different, but the effect on excitation/demagnetization speed was almost the same.

【0034】ここで超電導層がNb−Ti系合金または
Nb−Zr系合金である場合において、その常電導金属
層との界面にNbもしくはTaまたは両者の合金からな
る拡散防止のためのバリヤー層があっても、励磁速度に
対する効果はほぼ同様であった。
When the superconducting layer is an Nb-Ti alloy or a Nb-Zr alloy, a barrier layer for preventing diffusion made of Nb or Ta or an alloy of both is provided at the interface with the normal conducting metal layer. However, the effect on excitation speed was almost the same.

【0035】Nb3 Sn、V3 Ga、Nb3 Al
、Nb3 Ga、Nb3 Ge、Nb3 (AlGe)
等のA15型金属間化合物においては、超電導層の中心
に厚さ5μmのNbまたはV層を配し、その両側に各厚
さ12.5μmの、たとえばNb3 Snの場合Snを
含むCu合金層を配して成形後、熱処理を行っておおむ
ね厚さ数μm程度のA15型金属間化合物層を得た。こ
の場合、磁気シールド特性もきわめて良好なものが得ら
れたが、励減磁速度に対する効果はNb−Ti系合金を
用いた場合とほぼ同様であった。
[0035] Nb3 Sn, V3 Ga, Nb3 Al
, Nb3 Ga, Nb3 Ge, Nb3 (AlGe)
In the A15 type intermetallic compound such as, a 5 μm thick Nb or V layer is placed at the center of the superconducting layer, and a 12.5 μm thick Cu alloy layer containing Sn is placed on both sides of the layer, for example, in the case of Nb3Sn. After disposing and molding, heat treatment was performed to obtain an A15 type intermetallic compound layer approximately several μm thick. In this case, very good magnetic shielding properties were obtained, but the effect on excitation and demagnetization speed was almost the same as when using the Nb-Ti alloy.

【0036】La−Sr−Cu−O系、Y−Ba−Ca
−O系、Bi−Sr−Ca−Cu−O系、Tl−Ba−
Ca−Cu−O系等のセラミックス超電導材においては
、1層の厚さ30μmとし、成形後、熱処理等を行って
超電導特性を得た。この場合も、励減磁速度に対する効
果はNb−Ti系合金を用いた場合とほぼ同様であった
[0036] La-Sr-Cu-O system, Y-Ba-Ca
-O system, Bi-Sr-Ca-Cu-O system, Tl-Ba-
In the case of ceramic superconducting materials such as Ca-Cu-O type, the thickness of one layer was set to 30 μm, and after molding, heat treatment etc. were performed to obtain superconducting properties. In this case as well, the effect on the excitation/demagnetization rate was almost the same as in the case of using the Nb-Ti alloy.

【0037】[0037]

【実施例3】図3に示すように、厚さ10μmのCu−
Ni合金の高抵抗金属層3をはさみ、厚さ10μmおよ
び幅1mmで筋状のCu−Ni合金の高抵抗金属帯3a
によって分割細分化された幅1mmで筋状のCuの高導
電金属帯4aからなるサンドイッチ構造の常電導金属層
9層と、厚さ30μmのNb−Ti系合金の超電導層2
を10層交互に積層し、最表面は両側とも厚さ20μm
のCu−Ni合金の高抵抗金属層3と厚さ10μmのC
u−Ni合金帯およびCu帯の混合層を積層した厚さ0
.63mm、内径50mm、長さ100mmの底無し円
筒形の超電導磁気シールド体1をパイプクラッド法とそ
の後の圧延法とにより製作した。また、これと比較のた
めCu−Ni合金をすべてCuにおきかえただけで、同
一サイズ、構造の底無し円筒も同一工程によって製作し
た。
[Example 3] As shown in Fig. 3, Cu-
A high-resistance metal band 3a made of a Cu-Ni alloy is sandwiched between a high-resistance metal layer 3 made of a Ni alloy and has a thickness of 10 μm and a width of 1 mm.
9 normal conducting metal layers in a sandwich structure consisting of highly conductive metal strips 4a of Cu having a width of 1 mm and finely divided into stripes, and a superconducting layer 2 of Nb-Ti alloy having a thickness of 30 μm.
10 layers are laminated alternately, and the outermost surface is 20 μm thick on both sides.
High resistance metal layer 3 of Cu-Ni alloy and 10 μm thick C
0 thickness laminated mixed layer of u-Ni alloy band and Cu band
.. A bottomless cylindrical superconducting magnetic shield 1 having a diameter of 63 mm, an inner diameter of 50 mm, and a length of 100 mm was manufactured by a pipe cladding method and a subsequent rolling method. In addition, for comparison, a bottomless cylinder of the same size and structure was also manufactured using the same process, except that all the Cu-Ni alloys were replaced with Cu.

【0038】これらの円筒を試料として変動磁場中に置
いて磁気シールド特性を評価したところ、本発明品は比
較品がフラックスジャンプによって超電導状態を喪失す
るよりも3倍以上大きい励減磁速度まで超電導状態を保
持し、磁気シールド効果を発揮することが可能であった
When these cylinders were placed as samples in a fluctuating magnetic field and their magnetic shielding characteristics were evaluated, it was found that the product of the present invention maintains superconductivity up to an excitation-demagnetization rate that is more than three times greater than that of the comparative product, which loses its superconducting state due to flux jumps. It was possible to maintain the state and exert a magnetic shielding effect.

【0039】また、Cu−Ni合金のかわりにCu−M
n合金またはCu−Co合金を用いてもほぼ同様の結果
を得ることができた。
[0039] Also, Cu-M instead of Cu-Ni alloy
Almost similar results could be obtained using n alloy or Cu-Co alloy.

【0040】CuのかわりにAlまたはAgを用いても
ほぼ同様の結果を得ることができた。CuのかわりにC
u合金、Al合金、Ag合金を用いた場合は、励磁速度
に対し10%以上の向上が見られたが、磁気シールド可
能な最大磁場値はやや低下した。
Almost the same results could be obtained using Al or Ag instead of Cu. C instead of Cu
When u alloy, Al alloy, and Ag alloy were used, the excitation speed was improved by 10% or more, but the maximum magnetic field value capable of magnetic shielding was slightly lowered.

【0041】超電導層としてNb、Nb−Zr系合金を
用いた場合も、その磁気シールド可能な最大磁場は異な
るが、励減磁速度に対する効果はほぼ同様であった。
When Nb or Nb-Zr alloys were used as the superconducting layer, the maximum magnetic field capable of magnetic shielding was different, but the effect on excitation/demagnetization speed was almost the same.

【0042】ここで超電導層がNb−Ti系合金または
Nb−Zr系合金である場合において、その常電導金属
層との界面にNbもしくはTaまたは両者の合金からな
る拡散防止のためのバリヤー層があっても、励磁速度に
対する効果はほぼ同様であった。
When the superconducting layer is an Nb-Ti alloy or a Nb-Zr alloy, a barrier layer for preventing diffusion made of Nb or Ta or an alloy of both is provided at the interface with the normal conducting metal layer. However, the effect on excitation speed was almost the same.

【0043】Nb3 Sn、V3 Ga、Nb3 Al
、Nb3 Ga、Nb3 Ge、Nb3 (AlGe)
等のA15型金属間化合物においては、超電導層の中心
に厚さ5μmのNbまたはV層を配し、その両側に各厚
さ12.5μmの、たとえばNb3 Snの場合Snを
含むCu合金層を配して成形後、熱処理を行っておおむ
ね厚さ数μm程度のA15型金属間化合物層を得た。こ
の場合、磁気シールド特性もきわめて良好なものが得ら
れたが、励減磁速度に対する効果はNb−Ti系合金を
用いた場合とほぼ同様であった。
[0043] Nb3 Sn, V3 Ga, Nb3 Al
, Nb3 Ga, Nb3 Ge, Nb3 (AlGe)
In the A15 type intermetallic compound such as, a 5 μm thick Nb or V layer is placed at the center of the superconducting layer, and a 12.5 μm thick Cu alloy layer containing Sn is placed on both sides of the layer, for example, in the case of Nb3Sn. After disposing and molding, heat treatment was performed to obtain an A15 type intermetallic compound layer approximately several μm thick. In this case, very good magnetic shielding properties were obtained, but the effect on excitation and demagnetization speed was almost the same as when using the Nb-Ti alloy.

【0044】La−Sr−Cu−O系、Y−Ba−Ca
−O系、Bi−Sr−Ca−Cu−O系、Tl−Ba−
Ca−Cu−O系等のセラミックス超電導材においては
、1層の厚さ30μmとし、成形後、熱処理等を行って
超電導特性を得た。この場合も、励減磁速度に対する効
果はNb−Ti系合金を用いた場合とほぼ同様であった
[0044] La-Sr-Cu-O system, Y-Ba-Ca
-O system, Bi-Sr-Ca-Cu-O system, Tl-Ba-
In the case of ceramic superconducting materials such as Ca-Cu-O type, the thickness of one layer was set to 30 μm, and after molding, heat treatment etc. were performed to obtain superconducting properties. In this case as well, the effect on the excitation/demagnetization rate was almost the same as in the case of using the Nb-Ti alloy.

【0045】[0045]

【発明の効果】以上説明したように、本発明の超電導磁
気シールド体によれば、従来の高導電金属層とのみ接合
させていた超電導複合筒形では対応できなかった励減磁
の速度が大きい変動磁場中でも、超電導状態の安定性に
優れかつ磁気シールド特性の高い超電導筒形を得ること
ができ、その工業的な利用価値は非常に高いものである
[Effects of the Invention] As explained above, according to the superconducting magnetic shield of the present invention, the rate of excitation and demagnetization is high, which could not be handled by the conventional superconducting composite cylindrical shape that was bonded only to a highly conductive metal layer. A superconducting cylindrical shape with excellent stability of the superconducting state and high magnetic shielding properties even in a fluctuating magnetic field can be obtained, and its industrial utility value is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】超電導層と高抵抗金属層が厚さ方向に交互に積
層された底無し円筒形の超電導磁気シールド体を示す図
である。
FIG. 1 is a diagram showing a bottomless cylindrical superconducting magnetic shield body in which superconducting layers and high-resistance metal layers are alternately laminated in the thickness direction.

【図2】超電導層に接合される側が両方とも高導電金属
層で、それらに高抵抗金属層がはさまれたサンドイッチ
構造を有しつつ交互に積層された底無し円筒形の超電導
磁気シールド体を示す図である。
[Fig. 2] A bottomless cylindrical superconducting magnetic shield body that has a sandwich structure in which both sides that are bonded to the superconducting layer are high conductive metal layers, and high resistance metal layers are sandwiched between them. FIG.

【図3】図2における常電導金属層中の高導電金属層が
、筋状の高抵抗金属帯によって複数の筋状高導電金属帯
に分割されている構造を有する底無し円筒形の超電導磁
気シールド体を示す図である。
[Figure 3] A bottomless cylindrical superconducting magnetic shield having a structure in which the highly conductive metal layer in the normal conductive metal layer in Figure 2 is divided into a plurality of streak-like high-conductivity metal bands by streak-like high-resistance metal bands. FIG.

【符号の説明】[Explanation of symbols]

1    超電導磁気シールド体 2    超電導層 3    高抵抗金属層 3a  高抵抗金属帯 4    高導電金属層 4a  高導電金属帯 1 Superconducting magnetic shield 2 Superconducting layer 3 High resistance metal layer 3a High resistance metal band 4 Highly conductive metal layer 4a Highly conductive metal strip

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  超電導層と常電導金属層がその厚さ方
向に少なくとも1層交互に積層され、周方向かつ軸方向
に接続部が無く、全体もしくは一部に底を有する筒形ま
たは底無し筒形で、常電導金属層が高抵抗金属からなる
か、または高抵抗金属層と高導電金属層がその厚さ方向
に各々少なくとも1層交互に積層されてなることを特徴
とする超電導磁気シールド体。
Claim 1: A cylindrical or bottomless cylinder in which at least one superconducting layer and one normal-conducting metal layer are alternately laminated in the thickness direction, there are no connecting parts in the circumferential direction and the axial direction, and the whole or part has a bottom. A superconducting magnetic shield body characterized in that the normal conductive metal layer is made of a high resistance metal, or at least one high resistance metal layer and one high conductivity metal layer are each alternately laminated in the thickness direction. .
【請求項2】  高導電金属層が筋状の高抵抗金属帯に
よって複数の筋状に分割されていることを特徴とする請
求項1記載の超電導磁気シールド体。
2. The superconducting magnetic shield according to claim 1, wherein the highly conductive metal layer is divided into a plurality of stripes by striped high-resistance metal bands.
【請求項3】  高抵抗金属がCu−Ni合金、Cu−
Mn合金、Cu−Co合金のうちいずれかであり、高導
電金属がCu、Cu合金、Al、Al合金、Agまたは
Ag合金のうちいずれかであることを特徴とする請求項
1または2記載の超電導磁気シールド体。
3. The high resistance metal is a Cu-Ni alloy, a Cu-
3. The highly conductive metal is either Mn alloy or Cu-Co alloy, and the highly conductive metal is Cu, Cu alloy, Al, Al alloy, Ag or Ag alloy. Superconducting magnetic shield.
JP3062404A 1991-03-05 1991-03-05 Superconducting magnetic shield Expired - Lifetime JP2920846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3062404A JP2920846B2 (en) 1991-03-05 1991-03-05 Superconducting magnetic shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3062404A JP2920846B2 (en) 1991-03-05 1991-03-05 Superconducting magnetic shield

Publications (2)

Publication Number Publication Date
JPH04276669A true JPH04276669A (en) 1992-10-01
JP2920846B2 JP2920846B2 (en) 1999-07-19

Family

ID=13199168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3062404A Expired - Lifetime JP2920846B2 (en) 1991-03-05 1991-03-05 Superconducting magnetic shield

Country Status (1)

Country Link
JP (1) JP2920846B2 (en)

Also Published As

Publication number Publication date
JP2920846B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
JP2527554B2 (en) Superconducting magnetic shield
EP2471115B1 (en) Multifilament conductor and method for producing same
US4103075A (en) Composite monolithic low-loss superconductor for power transmission line
US4797646A (en) Superconductor for magnetic field shielding
DE1232287B (en) Superconductor arrangement for shielding or capturing magnetic fields
JPH04276669A (en) Superconducting magnetic shielding body
CA2028242C (en) Superconducting magnetic shield and process for preparing the same
JP2920844B2 (en) Nb-Ti based superconducting magnetic shield material
JP3647884B2 (en) Oxide superconducting conductor
JPH01246801A (en) Superconducting magnet
KR102440393B1 (en) Flexible high temperature superconductor wire and manufacturing method thereof
Hong et al. High current density of NbTi composite
JP2893039B2 (en) Method of manufacturing superconducting three-layer foil material
JPH07122884A (en) Magnetism shielding structure
JPH03150806A (en) Superconductor
JPS58191407A (en) Superconducting coil
Tachikawa et al. Effects of the germanium addition to the matrix of bronze-processed Nb3Sn wires
JP2003332645A (en) Superconducting composite magnetic shielding material
JP2821772B2 (en) Superconducting magnetic shield material
JP3036160B2 (en) Stabilizer for superconducting conductor
JPH09283812A (en) Manufacture of nb-ti superconducting multi-layer plate
JPH0143410B2 (en)
JPS639364B2 (en)
JPH025311A (en) Superconductive wire rod
Krauth et al. Critical current density and magnetization of NbTi and Nb 3 Sn fine filament superconductors

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 12

EXPY Cancellation because of completion of term