JPH04276632A - Substrate for semiconductor epitaxial growth use - Google Patents

Substrate for semiconductor epitaxial growth use

Info

Publication number
JPH04276632A
JPH04276632A JP3828791A JP3828791A JPH04276632A JP H04276632 A JPH04276632 A JP H04276632A JP 3828791 A JP3828791 A JP 3828791A JP 3828791 A JP3828791 A JP 3828791A JP H04276632 A JPH04276632 A JP H04276632A
Authority
JP
Japan
Prior art keywords
layer
crystal layer
substrate
layers
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3828791A
Other languages
Japanese (ja)
Inventor
Iwao Sugiyama
杉山 巖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3828791A priority Critical patent/JPH04276632A/en
Publication of JPH04276632A publication Critical patent/JPH04276632A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To prevent the propagation of a penetrating transition inside a semiconductor crystal layer by a method wherein a CdTe crystal layer whose lattice constant is different is formed on a GaAs substrate as a buffer layer and strain superlattice layers in which crystal layers whose prescribed lattice constant is different from each other have been laminated alternately are formed on it. CONSTITUTION:Strain superlattice layers 4 are formed on a buffer layer 3 by a CdTe crystal layer having a proper thickness. Intermediate layers 12 by CdTe crystal layers are inserted between the strain superlattice layers 4 in which five layers of ZnTe crystal layers 9 and CdTe crystal layers 2 have been formed alternately. A CdTe crystal layer having a proper thickness is formed as a top layer 5 on the uppermost layer of a substrate for semiconductor epitaxial growth use. At this structure, one strain superlattice layer out of the strain superlattice layers 4 which are formed of at least two or more layers must be formed in a position at 1.5mum or higher from the boundary face between the GaAs substrate 1 and the buffer layer 3 by the CdTe crystal layer.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体基板上に該基板と
格子定数の異なる半導体結晶層をエピタキシャル成長し
た半導体エピタキシャル成長用基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate for semiconductor epitaxial growth, in which a semiconductor crystal layer having a lattice constant different from that of the substrate is epitaxially grown on a semiconductor substrate.

【0002】近年、結晶性が良好で高品質な大面積の基
板が得難い、例えばカドミウムテルル(CdTe)の基
板を形成する方法として、大面積の基板を得ようとする
場合、例えば大面積に製作が容易なガリウム砒素(Ga
As)基板上に、CdTe結晶層をエピタキシャル成長
によって形成する方法が採られている。
[0002] In recent years, when trying to obtain a large-area substrate, for example, as a method for forming a substrate of cadmium tellurium (CdTe), where it is difficult to obtain a high-quality, large-area substrate with good crystallinity, Gallium arsenide (Ga
A method is adopted in which a CdTe crystal layer is formed on an As) substrate by epitaxial growth.

【0003】この方法により例えば赤外線検知素子の形
成用材料として水銀・カドミウム・テルル(Hg1−x
 Cdx Te)結晶をエピタキシャル成長するための
基板として、GaAs基板上にCdTe、或いはカドミ
ウム・亜鉛・テルル(Cd y Zn1−y Te) 
結晶をエピタキシャル成長した半導体エピタキシャル成
長用基板が用いられている。
By this method, for example, mercury, cadmium, tellurium (Hg1-x
CdTe or cadmium-zinc-tellurium (Cd y Zn1-y Te) is grown on a GaAs substrate as a substrate for epitaxial growth of Cdx Te) crystal.
A semiconductor epitaxial growth substrate on which crystals are epitaxially grown is used.

【0004】0004

【従来の技術】上記した半導体エピタキシャル成長用基
板は、分子線エピタキシャル成長(Molecular
 Beam Epitaxy;MBE)方法、或いは有
機金属気相成長(Metal Organic Che
mical Vapor Deposition;MO
CVD) 方法等の気相成長方法で形成され、図5に示
すように、GaAs基板1上に前記した方法で所定の厚
さのCdTe結晶層2を成長したものである。
[Prior Art] The above-mentioned semiconductor epitaxial growth substrate is manufactured by molecular beam epitaxial growth (Molecular Beam Epitaxial Growth).
Beam Epitaxy (MBE) method or metal organic chemical vapor phase epitaxy (Metal Organic Chemistry) method.
Mical Vapor Deposition;MO
As shown in FIG. 5, a CdTe crystal layer 2 of a predetermined thickness is grown on a GaAs substrate 1 by the method described above.

【0005】[0005]

【発明が解決しようとする課題】上記したGaAs基板
の格子定数は5.653 Åであり、CdTe結晶層の
格子定数は6.481 Åであり、両者の間には(6.
481−5.653)/5.653×100 =14.
6%の値の大きい格子不整合があり、エピタキシャル成
長したCdTe結晶層中には多数の結晶欠陥が発生する
。特にGaAs基板と、エピタキシャル成長したCdT
e結晶層の境界面で発生した結晶欠陥の一種の貫通転位
は、エピタキシャル成長したCdTe結晶層中を伝播し
、このCdTe結晶層の表面近傍まで到達する不都合が
生じる。
Problems to be Solved by the Invention The lattice constant of the GaAs substrate described above is 5.653 Å, and the lattice constant of the CdTe crystal layer is 6.481 Å.
481-5.653)/5.653×100 =14.
There is a large lattice mismatch with a value of 6%, and a large number of crystal defects occur in the epitaxially grown CdTe crystal layer. In particular, GaAs substrates and epitaxially grown CdT
A kind of threading dislocation, which is a crystal defect generated at the interface of the e-crystal layer, propagates through the epitaxially grown CdTe crystal layer and reaches the vicinity of the surface of the CdTe crystal layer.

【0006】このような結晶欠陥を多く含んだ半導体エ
ピタキシャル成長用基板に、Hg1−x Cdx Te
のような半導体結晶層をエピタキシャル成長し、該半導
体結晶層を用いて赤外線検知素子のような半導体素子を
形成すると、転位がHg1−x Cdx Te結晶層に
伝播し、形成される検知素子の電気的特性も悪いものし
か得られない。
[0006] On a substrate for semiconductor epitaxial growth containing many crystal defects, Hg1-x Cdx Te
When a semiconductor crystal layer is epitaxially grown and used to form a semiconductor element such as an infrared sensing element, dislocations propagate to the Hg1-x Cdx Te crystal layer and the electrical Only bad characteristics can be obtained.

【0007】この問題を解決するために、特開平1−1
58719号に於いて、半絶縁性化合物半導体基板に歪
超格子層と中間層を結晶成長させ、アモルファスに近い
物性にすることで、ミスフィット転位をこれ等の層で吸
収できるようにした歪吸収層と、基板上に形成したバッ
ファ層と前記歪吸収層の応力を緩和する応力緩和層と、
基板より伝播する転位をトラップする転位トラップ層と
を備えた結晶を形成し、これを用いた化合物半導体装置
が提案されているが、構造が複雑で、前記歪吸収層に対
して応力緩和層と転位トラップ層の成長温度が異なる等
製造が容易でない。本発明は半導体基板上にエピタキシ
ャル成長した半導体結晶層内での貫通転位の伝播を阻止
し、該結晶層表面付近での転位密度が低くなるようにし
た半導体エピタキシャル成長用基板の提供を目的とする
[0007] In order to solve this problem, Japanese Patent Laid-Open No. 1-1
No. 58719 describes a strain absorption method in which a strained superlattice layer and an intermediate layer are crystal-grown on a semi-insulating compound semiconductor substrate to give physical properties close to amorphous, so that misfit dislocations can be absorbed by these layers. a buffer layer formed on the substrate and a stress relaxation layer that relieves stress of the strain absorption layer;
A compound semiconductor device has been proposed in which a crystal is formed with a dislocation trap layer that traps dislocations propagating from the substrate, but the structure is complicated, and a stress relaxation layer and a stress relaxation layer are required in place of the strain absorption layer. Manufacturing is not easy as the growth temperature of the dislocation trap layer is different. An object of the present invention is to provide a substrate for semiconductor epitaxial growth, which prevents the propagation of threading dislocations within a semiconductor crystal layer epitaxially grown on a semiconductor substrate, and reduces the dislocation density near the surface of the crystal layer.

【0008】[0008]

【課題を解決するための手段】本発明の半導体エピタキ
シャル基板は、図1(a)および図1(b)に示すよう
に、ガリウム砒素基板1、或いは絶縁性基板上にエピタ
キシャル成長したガリウム砒素結晶層上に、カドミウム
を含む化合物半導体結晶層をバッファ層3として設け、
該バッファ層3上にカドミウムテルル結晶層2と亜鉛テ
ルル結晶層9、或いはカドミウムテルル結晶層2と亜鉛
、カドミウム、テルルの化合物半導体結晶層とで構成し
た歪超格子層4を、基板1とバッファ層3との境界面、
或いは絶縁性基板上にエピタキシャル成長したガリウム
砒素結晶層と前記バッファ層3との境界面より1.5 
μm 以上離れた位置に設ける。
[Means for Solving the Problems] As shown in FIGS. 1(a) and 1(b), the semiconductor epitaxial substrate of the present invention includes a gallium arsenide crystal layer epitaxially grown on a gallium arsenide substrate 1 or an insulating substrate. A compound semiconductor crystal layer containing cadmium is provided thereon as a buffer layer 3,
On the buffer layer 3, a strained superlattice layer 4 composed of a cadmium tellurium crystal layer 2 and a zinc tellurium crystal layer 9, or a cadmium tellurium crystal layer 2 and a compound semiconductor crystal layer of zinc, cadmium, and tellurium is placed between the substrate 1 and the buffer layer 3. interface with layer 3,
Or 1.5 from the interface between the gallium arsenide crystal layer epitaxially grown on the insulating substrate and the buffer layer 3.
Provided at a distance of µm or more.

【0009】または、ガリウム砒素基板1、或いは絶縁
性基板上にエピタキシャル成長したガリウム砒素結晶層
上にカドミウムを含む化合物半導体結晶層をバッファ層
3として設け、該バッファ層3上にカドミウムテルル結
晶層2と亜鉛テルル結晶層9、或いはカドミウムテルル
結晶層と亜鉛、カドミウム、テルルの化合物半導体結晶
層とで構成した歪超格子層4をテルルを含む化合物半導
体結晶層の中間層12を挟んで少なくとも2層以上設け
、該歪超格子層4の少なくとも一つが基板1とバッファ
層2との境界面より1.5 μm 以上離れた位置にあ
り、最上層にテルルを含む化合物半導体結晶層をトップ
層5として設けたことを特徴とする。また前記歪超格子
層4を構成する亜鉛テルル結晶層9の厚さが3 〜19
Åであることを特徴とするものである。
Alternatively, a compound semiconductor crystal layer containing cadmium is provided as a buffer layer 3 on a gallium arsenide substrate 1 or a gallium arsenide crystal layer epitaxially grown on an insulating substrate, and a cadmium telluride crystal layer 2 and a cadmium tellurium crystal layer 2 are formed on the buffer layer 3. At least two or more strained superlattice layers 4 composed of a zinc-tellurium crystal layer 9 or a cadmium-tellurium crystal layer and a compound semiconductor crystal layer of zinc, cadmium, and tellurium with an intermediate layer 12 of a compound semiconductor crystal layer containing tellurium in between. At least one of the strained superlattice layers 4 is located at a distance of 1.5 μm or more from the interface between the substrate 1 and the buffer layer 2, and a compound semiconductor crystal layer containing tellurium is provided as the top layer 5. It is characterized by: Further, the thickness of the zinc tellurium crystal layer 9 constituting the strained superlattice layer 4 is 3 to 19
Å.

【0010】0010

【作用】図4に示すように、例えばGaAs基板1上に
該基板と格子定数の異なるCdTe結晶層をバッファ層
3として設け、このバッファ層3上に例えば500 Å
のCdTe結晶層と10ÅのZnTe結晶層のように格
子定数の互いに異なる結晶層を交互に積層した歪超格子
層4を設けると、歪超格子層4内に発生するストレス(
応力)によって、従来のように歪超格子層が無い場合は
、点線で示すように、CdTe結晶層のトップ層5の表
面に到達していた貫通転位6が、実線で示すように歪超
格子層4に沿って、或いは転位7および8のように歪超
格子層4とバッファ層3の界面で屈曲し、互いに作用し
あって消滅し、転位の伝播が阻止される。
[Operation] As shown in FIG. 4, a CdTe crystal layer having a different lattice constant from that of the GaAs substrate 1 is provided as a buffer layer 3 on, for example, a GaAs substrate 1.
When a strained superlattice layer 4 is provided in which crystal layers having different lattice constants are alternately laminated, such as a CdTe crystal layer of 10 Å and a ZnTe crystal layer of 10 Å,
When there is no strained superlattice layer as in the conventional case, the threading dislocations 6 that have reached the surface of the top layer 5 of the CdTe crystal layer, as shown by the dotted line, become distorted in the strained superlattice layer as shown by the solid line. The dislocations bend along the layer 4 or at the interface between the strained superlattice layer 4 and the buffer layer 3 like dislocations 7 and 8, interact with each other and disappear, and the propagation of the dislocations is blocked.

【0011】本発明では、この効果を更に高めるために
、図1(a) に示すような構造とする。そして歪超格
子層4は転位低減効果を高めるために、バッファ層3と
トップ層5の間に2層以上設ける。各歪超格子層4は、
図1(b)に示すように例えは10ÅのZnTe結晶層
9と、500 ÅのCdTe結晶層2とを各々5層以上
交互に成長した構造である。
In the present invention, in order to further enhance this effect, a structure as shown in FIG. 1(a) is adopted. Two or more strained superlattice layers 4 are provided between the buffer layer 3 and the top layer 5 in order to enhance the dislocation reduction effect. Each strained superlattice layer 4 is
As shown in FIG. 1(b), for example, the structure is such that five or more 10 Å ZnTe crystal layers 9 and 500 Å CdTe crystal layers 2 are grown alternately.

【0012】この歪超格子層4は適当な厚さのCdTe
結晶層のバッファ層3上に設ける。また前記ZnTe結
晶層9とCdTe結晶層2とを交互に5層設けた歪超格
子層4の間には、CdTe結晶層の中間層12を挿入す
る。またこの半導体エピタキシャル成長用基板の最上層
には、適当な厚さのCdTe結晶層をトップ層5として
設ける。この構造に於いて、図2と図3より判るように
、少なくとも2個以上設ける各歪超格子層4のうち、少
なくとも一つの歪超格子層は、GaAs基板1とCdT
e結晶層のバッファ層3の境界面より1.5 μm 以
上の位置に設けることが必要である。
This strained superlattice layer 4 is made of CdTe with an appropriate thickness.
It is provided on the buffer layer 3 of the crystal layer. Further, an intermediate layer 12 of CdTe crystal layers is inserted between the strained superlattice layer 4 in which five ZnTe crystal layers 9 and five CdTe crystal layers 2 are alternately provided. Further, a CdTe crystal layer of an appropriate thickness is provided as a top layer 5 on the uppermost layer of this substrate for semiconductor epitaxial growth. In this structure, as can be seen from FIGS. 2 and 3, at least one of the two or more strained superlattice layers 4 is formed between the GaAs substrate 1 and the CdT
It is necessary to provide it at a position of 1.5 μm or more from the interface of the buffer layer 3 of the e-crystal layer.

【0013】この理由について説明する。図2(a)は
GaAs基板1上に歪超格子層を設けずにCdTe結晶
層2を設けた場合、図2(b)はGaAs基板1上にC
dTe結晶層をバッファ層3として1.5 μm 以上
の厚さに設けた上に歪超格子層4を1層設け、その上に
CdTe結晶層をトップ層5として設けた場合、図2(
c)はGaAs基板1上にCdTe結晶層をバッファ層
として1.5 μm 以下の厚さで設け、その上に歪超
格子層4、CdTe結晶層の中間層12、および歪超格
子層4を設け、その上にトップ層5を設けた場合である
The reason for this will be explained. 2(a) shows the case where the CdTe crystal layer 2 is provided on the GaAs substrate 1 without providing a strained superlattice layer, and FIG. 2(b) shows the case where the CdTe crystal layer 2 is provided on the GaAs substrate 1.
When a dTe crystal layer is provided as a buffer layer 3 with a thickness of 1.5 μm or more, one strained superlattice layer 4 is provided, and a CdTe crystal layer is provided as a top layer 5 on top of the strained superlattice layer 4, as shown in FIG.
In c), a CdTe crystal layer is provided as a buffer layer on a GaAs substrate 1 with a thickness of 1.5 μm or less, and a strained superlattice layer 4, an intermediate layer 12 of CdTe crystal layers, and a strained superlattice layer 4 are formed thereon. This is a case where the top layer 5 is provided on top of the top layer 5.

【0014】また図2(d)はGaAs基板1上にCd
Te結晶層をバッファ層3として1.5 μm 以下の
厚さで設け、その上に歪超格子層4、CdTe結晶層の
中間層12、および歪超格子層4、CdTe結晶層の中
間層12、歪超格子層4 を設け、その上にトップ層5
を設けた場合である。
FIG. 2(d) shows Cd on the GaAs substrate 1.
A Te crystal layer is provided as a buffer layer 3 with a thickness of 1.5 μm or less, and on top of that a strained superlattice layer 4 and an intermediate layer 12 of CdTe crystal layers; , a strained superlattice layer 4 is provided, and a top layer 5 is provided thereon.
This is the case when .

【0015】また図2(e)はGaAs基板1上にCd
Te結晶層をバッファ層3として1.5 μm 以下の
厚さで設け、その上に歪超格子層4、CdTe結晶層の
中間層12、および歪超格子層4、CdTe結晶層の中
間層12、歪超格子層4 、CdTe結晶層の中間層1
2および歪超格子層4を設け、その上にトップ層5を設
けた場合である。
FIG. 2(e) shows Cd on the GaAs substrate 1.
A Te crystal layer is provided as a buffer layer 3 with a thickness of 1.5 μm or less, and on top of that a strained superlattice layer 4 and an intermediate layer 12 of CdTe crystal layers; , strained superlattice layer 4 , intermediate layer 1 of CdTe crystal layer
This is a case in which a strained superlattice layer 2 and a strained superlattice layer 4 are provided, and a top layer 5 is provided thereon.

【0016】図2(a)と図2(b)とを比較すると、
図2(a)に示すように、GaAs基板1上に歪超格子
層4を設けずに、CdTe結晶層2を直接形成すると、
そのCdTe結晶層2の転位は図3の曲線21のA点に
示すように3.4 ×108/cm2 〜4.0 ×1
08/cm2 で有った。
Comparing FIG. 2(a) and FIG. 2(b),
As shown in FIG. 2(a), when the CdTe crystal layer 2 is directly formed on the GaAs substrate 1 without providing the strained superlattice layer 4,
The dislocations in the CdTe crystal layer 2 are 3.4 × 108/cm2 to 4.0 × 1 as shown at point A of the curve 21 in FIG.
It was 0.08/cm2.

【0017】ここで図3は歪超格子層の積層数とトップ
層の転位密度の関係図である。ところで図2(b)に示
すように、GaAs基板1上にCdTe結晶層のバッフ
ァ層3とCdTe結晶層のトップ層5の間で、GaAs
基板1とバッファ層3の境界面より1.5 μm以上の
箇所に歪超格子層4を設けた構造は、そのトップ層5の
CdTe結晶層の転位密度は図3のB点に示すように3
.0 ×108/cm2 に低下している。
FIG. 3 is a diagram showing the relationship between the number of stacked strained superlattice layers and the dislocation density of the top layer. By the way, as shown in FIG. 2(b), GaAs is formed between the buffer layer 3 of the CdTe crystal layer and the top layer 5 of the CdTe crystal layer on the GaAs substrate 1.
In the structure in which the strained superlattice layer 4 is provided at a location 1.5 μm or more from the interface between the substrate 1 and the buffer layer 3, the dislocation density of the CdTe crystal layer of the top layer 5 is as shown at point B in FIG. 3
.. It has decreased to 0 × 108/cm2.

【0018】また図2(b)と図2(c)を比較すると
、図2(c)に示すようにGaAs基板1上にCdTe
結晶層のバッファ層3を形成し、GaAs基板1とバッ
ファ層3の境界面より1.5 μm以内に第1の歪超格
子層4−1 を設ける。そして、その上にCdTeの中
間層12を設け、GaAs基板1とバッファ層3の境界
面1.5 μm 以上の箇所に第2の歪超格子層4−2
 を設けた場合、図3のB点とC点に示すように、トッ
プ層の転位密度は殆ど変化せず、このことは基板表面よ
り1.5 μm 以内に設けた第1の歪超格子層4−1
 は、トップ層5のCdTe結晶層の転位低減に寄与し
ていないことが判る。
Furthermore, when comparing FIG. 2(b) and FIG. 2(c), as shown in FIG. 2(c), CdTe is deposited on the GaAs substrate 1.
A crystalline buffer layer 3 is formed, and a first strained superlattice layer 4-1 is provided within 1.5 μm from the interface between the GaAs substrate 1 and the buffer layer 3. Then, a CdTe intermediate layer 12 is provided thereon, and a second strained superlattice layer 4-2 is formed at a location 1.5 μm or more from the interface between the GaAs substrate 1 and the buffer layer 3.
As shown in points B and C in Figure 3, the dislocation density in the top layer hardly changes when the first strained superlattice layer is provided within 1.5 μm from the substrate surface. 4-1
It can be seen that this does not contribute to reducing dislocations in the CdTe crystal layer of the top layer 5.

【0019】また図2(c)と図2(d)を比較すると
、図2(d)に示すように、GaAs基板1の表面上に
CdTe結晶層のバッファ層3を形成し、基板表面より
1.5 μm 以内に第1の歪超格子層4−1 を設け
ると共に、その上にCdTe結晶層の中間層12を設け
、基板表面より1.5 μm 以上の箇所に第2の歪超
格子層4−2 、第3の歪超格子層4−3 を設けた場
合、図2(c)の場合に比して最上層に形成されるトッ
プ層5の転位密度は2 ×108/cm2 に低下して
おり、このことは基板表面より1.5μm 以上の箇所
に歪超格子層4−2 、4−3 を数を多くして設けた
分だけ、最上層に形成されるトップ層5のCdTe結晶
層の転位の数は減少していることが判る。
Comparing FIG. 2(c) and FIG. 2(d), it is found that a buffer layer 3 of a CdTe crystal layer is formed on the surface of the GaAs substrate 1, and as shown in FIG. A first strained superlattice layer 4-1 is provided within 1.5 μm, an intermediate layer 12 of a CdTe crystal layer is provided thereon, and a second strained superlattice layer is provided at a location 1.5 μm or more from the substrate surface. When the layer 4-2 and the third strained superlattice layer 4-3 are provided, the dislocation density of the top layer 5 formed as the uppermost layer is 2 × 108/cm2 compared to the case of FIG. 2(c). This means that the number of strained superlattice layers 4-2 and 4-3 that are provided at locations 1.5 μm or more above the substrate surface increases the thickness of the top layer 5 formed on the top layer. It can be seen that the number of dislocations in the CdTe crystal layer is reduced.

【0020】そしてこの1.5 μm の厚さは、Ga
As基板1とその上に形成されるCdTe結晶層のバッ
ファ層との間に於ける格子不整に起因する残留ストレス
を、充分緩和するのに必要な厚さである。
[0020] This thickness of 1.5 μm is Ga
This thickness is necessary to sufficiently alleviate residual stress caused by lattice mismatch between the As substrate 1 and the buffer layer of the CdTe crystal layer formed thereon.

【0021】このCdTe結晶層のバッファ層に於ける
残留ストレスが大きいと、転位を消滅するための歪超格
子層に於けるストレスの作用が有効に働かず、前記した
貫通転位を屈曲させる作用が弱くなる。この条件を満足
するとバッファ層上に形成される各結晶層の厚さはZn
Te結晶層の厚さを除いて限定されない。
If the residual stress in the buffer layer of this CdTe crystal layer is large, the effect of stress in the strained superlattice layer to eliminate dislocations will not work effectively, and the above-mentioned effect of bending threading dislocations will not work effectively. become weak. If this condition is satisfied, the thickness of each crystal layer formed on the buffer layer will be Zn
There are no limitations except for the thickness of the Te crystal layer.

【0022】歪超格子層を構成するZnTe結晶層の厚
さの下限は、ZnTe結晶層の格子定数より算出したZ
nTeの1分子層の厚さより決定され、またZnTe結
晶層の上限は、ZnTe結晶層とCdTe結晶層とで歪
超格子層を形成した場合、ZnTe結晶層が格子不整転
位を発生せずに、弾性限界内で留まるための実験的に得
られた値であり、このことよりZnTe結晶層の厚さは
3 〜19Åであることが望ましい。
The lower limit of the thickness of the ZnTe crystal layer constituting the strained superlattice layer is Z calculated from the lattice constant of the ZnTe crystal layer.
The upper limit of the ZnTe crystal layer is determined by the thickness of one molecular layer of nTe, and the upper limit of the ZnTe crystal layer is such that when a strained superlattice layer is formed by a ZnTe crystal layer and a CdTe crystal layer, the ZnTe crystal layer does not generate lattice misalignment dislocations. This is an experimentally obtained value for staying within the elastic limit, and for this reason it is desirable that the thickness of the ZnTe crystal layer be between 3 and 19 Å.

【0023】また各結晶層を前記したMOCVD法、或
いはMBE法で形成するためには、超格子層のCdTe
層は500 Å、CdTeバッファ層とCdTeトップ
層は1.5 μm 程度、CdTe中間層は3000Å
が実用的である。
Furthermore, in order to form each crystal layer by the MOCVD method or MBE method described above, it is necessary to form the CdTe layer of the superlattice layer.
The thickness of the layer is 500 Å, the CdTe buffer layer and the CdTe top layer are about 1.5 μm, and the CdTe middle layer is 3000 Å.
is practical.

【0024】[0024]

【実施例】以下、図面を用いて本発明の実施例につき、
従来例と比較しながら詳細に説明する。
[Examples] Hereinafter, examples of the present invention will be explained using the drawings.
This will be explained in detail while comparing with a conventional example.

【0025】図2(e)に示すように、本発明の半導体
エピタキシャル成長用基板は、GaAs基板1上に、C
dTe結晶層よりなるバッファ層3を1.6 μm の
厚さにホットウォールエピタキシャル成長方法を用いて
形成した。
As shown in FIG. 2(e), the substrate for semiconductor epitaxial growth of the present invention has carbon on a GaAs substrate 1.
A buffer layer 3 made of a dTe crystal layer was formed to a thickness of 1.6 μm using a hot wall epitaxial growth method.

【0026】次いで、その上に10Åの厚さのZnTe
結晶層9、500 Åの厚さのCdTe結晶層2を交互
に5 層形成した第1の歪超格子層4−1 を前記した
ホットウォールエピタキシャル成長法で形成する。
[0026] Next, a 10 Å thick ZnTe layer is placed on top of it.
Crystal layers 9 and a first strained superlattice layer 4-1 in which five CdTe crystal layers 2 each having a thickness of 500 Å are formed alternately are formed by the hot wall epitaxial growth method described above.

【0027】このようにホットウォールエピタキシャル
成長法でCdTe結晶層、或いはZnTe結晶層を形成
するには、図示しないが前記GaAs基板を、回転可能
で加熱ヒータを有する基板設置台に設置し、該基板を高
真空の容器内に設置する。そして該容器内に加熱ヒータ
を備え、CdTe合金、ZnTe合金が充填されたソー
ス坩堝を設け、この所定の坩堝上に前記GaAs基板を
加熱しながら回転移動して設置し、所定時間保つように
すると良い。
In order to form a CdTe crystal layer or a ZnTe crystal layer by the hot wall epitaxial growth method as described above, the GaAs substrate is placed on a rotatable substrate mounting stand equipped with a heater (not shown), and the substrate is Place in a high vacuum container. Then, a heater is provided in the container and a source crucible filled with CdTe alloy and ZnTe alloy is provided, and the GaAs substrate is placed on this predetermined crucible while being heated and rotated, and is maintained for a predetermined period of time. good.

【0028】次いで前記した第1の歪超格子層4−1 
上に厚さが3000ÅのCdTe結晶層よりなる中間層
12を前記したホットウォールエピタキシャル成長法で
形成する。次いで、前記した第1の歪超格子層4−1 
と同一構造の第2の歪超格子層4−2 、第3の歪超格
子層4−3 、第4の歪超格子層4−4 を前記した中
間層12を介在させた状態で前記したホットウォールエ
ピタキシャル成長法で形成する。
Next, the first strained superlattice layer 4-1 described above
An intermediate layer 12 made of a CdTe crystal layer having a thickness of 3000 Å is formed thereon by the hot wall epitaxial growth method described above. Next, the first strained superlattice layer 4-1 described above
The second strained superlattice layer 4-2, the third strained superlattice layer 4-3, and the fourth strained superlattice layer 4-4 having the same structure as described above with the intermediate layer 12 interposed therebetween. Formed by hot wall epitaxial growth method.

【0029】そして最上層にCdTe結晶層よりなる厚
さが1.5 μm のトップ層5を前記したホットウォ
ールエピタキシャル成長法で形成する。このようにして
形成したCdTe結晶層よりなるトップ層5の転位密度
は図3のE点に示すように、2×108/cm2 に低
下した良好なCdTe結晶が得られた。
A top layer 5 having a thickness of 1.5 μm and consisting of a CdTe crystal layer is formed on the uppermost layer by the hot wall epitaxial growth method described above. A good CdTe crystal was obtained in which the dislocation density of the top layer 5 made of the CdTe crystal layer formed in this way was reduced to 2×10 8 /cm 2 as shown at point E in FIG.

【0030】またこのように形成した結晶片を研磨し、
その縦断面の表面を透過型電子顕微鏡で観察したところ
、図4に示したようにGaAs基板1から延びる転位は
、基板上より1.5 μm 以内に形成した歪超格子層
4の部分は貫通しているが、基板上より1.5 μm 
以上離れた、歪超格子層4のバッファ層3との境界面で
は消滅しいることが観察できた。
[0030] Furthermore, the crystal pieces formed in this manner are polished,
When the surface of the longitudinal section was observed with a transmission electron microscope, it was found that the dislocations extending from the GaAs substrate 1 penetrate through the strained superlattice layer 4 formed within 1.5 μm from the top of the substrate, as shown in FIG. However, the distance is 1.5 μm from the top of the substrate.
It has been observed that the strain disappears at the interface between the strained superlattice layer 4 and the buffer layer 3, which is far away.

【0031】なお、本実施例では中間層にCdTe結晶
層を用いたが、その他、カドミウム・亜鉛・テルル〔C
dy Zn1−y Te(0<y <1)〕結晶層を用
いても良く、また歪超格子層を形成するZnTe結晶層
をカドミウム・亜鉛・テルル〔Cdx Zn1−x T
e(0<x <1)〕結晶層を用いても良い。
In this example, a CdTe crystal layer was used for the intermediate layer, but other materials such as cadmium, zinc, tellurium [C
dy Zn1-y Te (0 < y < 1)] crystal layer may be used, and the ZnTe crystal layer forming the strained superlattice layer may be replaced with cadmium-zinc-tellurium [Cdx Zn1-x T
e(0<x<1)] crystal layer may be used.

【0032】またGaAs基板の代わりに、シリコンの
ような絶縁性基板上にGaAs結晶層をエピタキシャル
成長して用いても良い。
Further, instead of the GaAs substrate, a GaAs crystal layer may be epitaxially grown on an insulating substrate such as silicon.

【0033】[0033]

【発明の効果】以上述べたように、本発明の半導体エピ
タキシャル成長基板によれば、GaAs基板上に成長し
たCdTe結晶層中の貫通転位の伝播が効果的に阻止さ
れ、転位密度の低い、高品質な基板が得られ、該基板を
用いてその上にHg1−x Cdx Te結晶層をエピ
タキシャル成長し、このHg1−x Cdx Te結晶
層を用いて赤外線検知素子を形成すると電気的特性の良
好な素子が得られる効果がある。
As described above, according to the semiconductor epitaxial growth substrate of the present invention, the propagation of threading dislocations in the CdTe crystal layer grown on the GaAs substrate is effectively prevented, resulting in a high quality product with low dislocation density. If a Hg1-x Cdx Te crystal layer is epitaxially grown on the substrate and an infrared sensing element is formed using this Hg1-x Cdx Te crystal layer, an element with good electrical characteristics can be obtained. There are benefits to be gained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の半導体エピタキシャル成長用基板
の断面図である。
FIG. 1 is a cross-sectional view of a substrate for semiconductor epitaxial growth of the present invention.

【図2】  本発明の実施例を示す断面図である。FIG. 2 is a sectional view showing an embodiment of the present invention.

【図3】  本発明の基板に於ける歪超格子層の積層数
と転位密度との関係図である。
FIG. 3 is a diagram showing the relationship between the number of stacked strained superlattice layers and dislocation density in the substrate of the present invention.

【図4】  本発明の基板形成に於ける転位消滅の説明
図である。
FIG. 4 is an explanatory diagram of dislocation annihilation in forming a substrate according to the present invention.

【図5】  従来の半導体エピタキシャル成長基板の断
面図である。
FIG. 5 is a cross-sectional view of a conventional semiconductor epitaxial growth substrate.

【符号の説明】[Explanation of symbols]

1  GaAs基板 2  CdTe結晶層 3  バッファ層 4,4−1,4−2,4−3,4−4  歪超格子層5
  トップ層 6,7,8  貫通転位 9  ZnTe結晶層 12  中間層
1 GaAs substrate 2 CdTe crystal layer 3 Buffer layer 4, 4-1, 4-2, 4-3, 4-4 Strained superlattice layer 5
Top layer 6, 7, 8 Threading dislocation 9 ZnTe crystal layer 12 Intermediate layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  ガリウム砒素基板(1) 、或いは絶
縁性基板上にエピタキシャル成長したガリウム砒素結晶
層上に、カドミウムを含む化合物半導体結晶層をバッフ
ァ層(3) として設け、該バッファ層上にカドミウム
テルル結晶層(2) と亜鉛テルル結晶層(9) 、或
いはカドミウムテルル結晶層と亜鉛、カドミウム、テル
ルの化合物半導体結晶層とで構成した歪超格子層(4)
 を、前記バッファ層(3) とガリウム砒素基板(1
) 、或いは絶縁性基板上に形成したガリウム砒素結晶
層との境界面より1.5 μm 以上離れた位置に設け
、最上層にテルルを含む化合物半導体結晶層をトップ層
(5)として設けたことを特徴とする半導体エピタキシ
ャル成長用基板。
1. A compound semiconductor crystal layer containing cadmium is provided as a buffer layer (3) on a gallium arsenide substrate (1) or a gallium arsenide crystal layer epitaxially grown on an insulating substrate, and a cadmium telluride layer is provided on the buffer layer. A strained superlattice layer (4) composed of a crystal layer (2) and a zinc-tellurium crystal layer (9), or a cadmium-tellurium crystal layer and a compound semiconductor crystal layer of zinc, cadmium, and tellurium.
, the buffer layer (3) and the gallium arsenide substrate (1
), or provided at a position 1.5 μm or more away from the interface with the gallium arsenide crystal layer formed on the insulating substrate, and a compound semiconductor crystal layer containing tellurium is provided as the top layer (5) as the top layer. A substrate for semiconductor epitaxial growth characterized by:
【請求項2】  ガリウム砒素基板(1) 、或いは絶
縁性基板上にエピタキシャル成長したガリウム砒素結晶
層上に、カドミウムを含む化合物半導体結晶層をバッフ
ァ層(3) として設け、該バッファ層上にカドミウム
テルル結晶層(2) と亜鉛テルル結晶層(9) 、或
いはカドミウムテルル結晶層と亜鉛、カドミウム、テル
ルの化合物半導体結晶層とで構成した歪超格子層(4)
 を、カドミウムを含む化合物半導体結晶層の中間層(
12)を挟んで2層以上設け、該歪超格子層(4) の
少なくとも一つが前記基板(1) とバッファ層(3)
 との境界面より1.5 μm 以上離れれた位置にあ
り、最上層にテルルを含む化合物半導体結晶層をトップ
層(5) として設けたことを特徴とする半導体エピタ
キシャル成長用基板。
2. A compound semiconductor crystal layer containing cadmium is provided as a buffer layer (3) on a gallium arsenide substrate (1) or a gallium arsenide crystal layer epitaxially grown on an insulating substrate, and a cadmium telluride layer is provided on the buffer layer. A strained superlattice layer (4) composed of a crystal layer (2) and a zinc-tellurium crystal layer (9), or a cadmium-tellurium crystal layer and a compound semiconductor crystal layer of zinc, cadmium, and tellurium.
, an intermediate layer of compound semiconductor crystal layers containing cadmium (
12), and at least one of the strained superlattice layers (4) is formed between the substrate (1) and the buffer layer (3).
1. A substrate for semiconductor epitaxial growth, characterized in that the top layer (5) is located at a distance of 1.5 μm or more from the interface between the semiconductor epitaxial growth substrate and the compound semiconductor crystal layer containing tellurium as the top layer.
【請求項3】  前記歪超格子層(4) を構成する亜
鉛テルル結晶層(9) の厚さが3 〜19Åであるこ
とを特徴とする請求項1記載の半導体エピタキシャル成
長用基板。
3. The substrate for semiconductor epitaxial growth according to claim 1, wherein the zinc tellurium crystal layer (9) constituting the strained superlattice layer (4) has a thickness of 3 to 19 Å.
JP3828791A 1991-03-05 1991-03-05 Substrate for semiconductor epitaxial growth use Withdrawn JPH04276632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3828791A JPH04276632A (en) 1991-03-05 1991-03-05 Substrate for semiconductor epitaxial growth use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3828791A JPH04276632A (en) 1991-03-05 1991-03-05 Substrate for semiconductor epitaxial growth use

Publications (1)

Publication Number Publication Date
JPH04276632A true JPH04276632A (en) 1992-10-01

Family

ID=12521096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3828791A Withdrawn JPH04276632A (en) 1991-03-05 1991-03-05 Substrate for semiconductor epitaxial growth use

Country Status (1)

Country Link
JP (1) JPH04276632A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116516474A (en) * 2023-06-25 2023-08-01 合肥芯胜半导体有限公司 Structure and method for growing CdTe epitaxial layer on GaAs substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116516474A (en) * 2023-06-25 2023-08-01 合肥芯胜半导体有限公司 Structure and method for growing CdTe epitaxial layer on GaAs substrate
CN116516474B (en) * 2023-06-25 2023-09-26 合肥芯胜半导体有限公司 Structure and method for growing CdTe epitaxial layer on GaAs substrate

Similar Documents

Publication Publication Date Title
EP0353423B1 (en) Unstrained defect-free epitaxial mismatched heterostructures and method of fabrication
Jain et al. Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes
US5306386A (en) Arsenic passivation for epitaxial deposition of ternary chalcogenide semiconductor films onto silicon substrates
EP1595280B1 (en) Buffer structure for heteroepitaxy on a silicon substrate
Chen et al. Structure of CdTe (111) B grown by MBE on misoriented Si (001)
EP2869333B1 (en) Semiconductor device including a semiconductor buffer structure, and method of manufacturing the semiconductor device using the semiconductor buffer structure
JP3114809B2 (en) Semiconductor device
JPH07307259A (en) Manufacture of compound semiconductor layer on silicon substrate
EP1007771A1 (en) Thermal mismatch compensation to produce free standing substrates by epitaxial deposition
JP3263964B2 (en) Crystal for forming semiconductor device and manufacturing method thereof
EP0291346B1 (en) A laminated structure of compound semiconductors
US7968438B2 (en) Ultra-thin high-quality germanium on silicon by low-temperature epitaxy and insulator-capped annealing
Million et al. Heteroepitaxy of CdTe on {211} Si substrates by molecular beam epitaxy
US5997638A (en) Localized lattice-mismatch-accomodation dislocation network epitaxy
Palmer et al. Growth and characterization of GaSe and GaAs/GaSe on As‐passivated Si (111) substrates
JPH04315419A (en) Insulating film/compound semiconductor lamination structure on element semiconductor substrate
JPH04276632A (en) Substrate for semiconductor epitaxial growth use
US8455881B2 (en) Ge quantum dots for dislocation engineering of III-N on silicon
Lee et al. Improvement in the crystalline quality of heteroepitaxial GaAs on Si films grown by modulated molecular beam epitaxy
US7687798B2 (en) Epitaxy with compliant layers of group-V species
JPH0722312A (en) Method for manufacturing strain semiconductor film
JPH07107895B2 (en) Compound semiconductor substrate
Liliental-Weber Methods to decrease defect density in GaAs/Si heteroepitaxy
Cheong et al. Improvement of Structural Properties of GaN Pendeo‐Epitaxial Layers
JPH0263115A (en) Selective growth of thin film

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514