JPH04276535A - Otdr apparatus - Google Patents

Otdr apparatus

Info

Publication number
JPH04276535A
JPH04276535A JP3061231A JP6123191A JPH04276535A JP H04276535 A JPH04276535 A JP H04276535A JP 3061231 A JP3061231 A JP 3061231A JP 6123191 A JP6123191 A JP 6123191A JP H04276535 A JPH04276535 A JP H04276535A
Authority
JP
Japan
Prior art keywords
light
optical fiber
stimulated raman
coherency
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3061231A
Other languages
Japanese (ja)
Inventor
Fumio Wada
和田 史生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP3061231A priority Critical patent/JPH04276535A/en
Publication of JPH04276535A publication Critical patent/JPH04276535A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the coherency of the light having high intensity and to make it possible to decrease the noise of an OTDR waveform by casting the pulse light having the high intensity into one end of an optical fiber, generating stimulated Raman scattering, and taking out the wavelength component of the light of an original light source among the stimulated Raman scattered lights emitted from the other. end. CONSTITUTION:High output-power pulse light which is higher than a threshold value is emitted from a semiconductor-laser excited solid laser 11 into an optical fiber 12. Thus, stimulated Raman scattering is generated. At this time, forward Rayleigh scattered light, stimulated Brillouin scattered light and stimulated Raman scattered light having the small wavelength shifting amount are superimposed on the pulse light propagating in the optical fiber 12. Thus, the coherency of the pulse light cn can be decreased. The pulse light of high intensity whose coherency is decreased is made to be the size less than a threshold value where the stimulated Raman scattering is generated in an optical fiber 9 to be measured by passing an optical attenuator 2. Only the wavelength region of the original light generated in the laser 11 is taken out with an optical filter and cast into the optical fiber.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、光ファイバの一端に
パルス光を入射したときのレーリ後方散乱光やラマン後
方散乱光を検出して後方散乱光強度の各時間ごとの値よ
り光ファイバの長さ方向各位置での損失等の特性や温度
を測定するOTDR(Optical Time−Do
main Reflectometry)装置の改良に
関する。
[Industrial Application Field] This invention detects Rayleigh backscattered light or Raman backscattered light when pulsed light is input to one end of an optical fiber, and determines the intensity of the optical fiber from the time-based value of the backscattered light intensity. OTDR (Optical Time-Do) measures characteristics such as loss and temperature at each position in the length direction.
This invention relates to an improvement of a main reflectometry device.

【0002】0002

【従来の技術】OTDR装置では、光源からパルス光を
発生させてこれを被測定光ファイバの一端に入射し、こ
の光ファイバで生じたレーリ散乱やラマン散乱により後
方に戻ってきてその一端から出射した光を分離する。そ
して、受光素子に導き電気信号に変換した上で後方散乱
光の強度についての各時間ごとのデータを得る。この時
間ごとのデータをパルス光発生タイミングを基準にして
並べれば、光ファイバの長さ方向での損失分布が得られ
る。ラマン散乱光は入射光波長からシフトした波長の光
で、短い波長にシフトした反ストークス光と、長い波長
にシフトしたストークス光とからなり、その強度は温度
により敏感に変化することから、光ファイバ長さ方向各
位置での温度分布の測定ができる。
[Prior Art] In an OTDR device, pulsed light is generated from a light source, enters one end of an optical fiber to be measured, returns to the rear by Rayleigh scattering and Raman scattering generated in this optical fiber, and is emitted from one end. The separated light is separated. Then, the backscattered light is guided to a light receiving element and converted into an electrical signal, and data on the intensity of the backscattered light at each time is obtained. By arranging this time-based data based on the pulse light generation timing, the loss distribution in the length direction of the optical fiber can be obtained. Raman scattered light is light with a wavelength shifted from the wavelength of the incident light, and consists of anti-Stokes light shifted to a shorter wavelength and Stokes light shifted to a longer wavelength, and its intensity changes sensitively depending on temperature, so it is difficult to Temperature distribution at each position in the length direction can be measured.

【0003】後方散乱光として検出されるレーリ散乱光
は入射光の1万分の1以下と微弱であり、またラマン散
乱光は1億分の1ときわめて微弱であるため、光強度の
強い光源を使用する必要がある。 半導体レーザ(LD
)を光源として使用した場合、とくにラマン散乱光強度
が弱く、十分な温度測定精度を得ることができない。 そのため、最近実用化された半導体レーザ(LD)励起
固体レーザを使用して強い光を被測定光ファイバに入射
し、強いラマン散乱光強度を得るようにしている。
[0003] Ley scattered light, which is detected as backscattered light, is weak at less than 1/10,000 of the incident light, and Raman scattered light is extremely weak at 1/100,000,000 of the incident light. need to use. Semiconductor laser (LD)
) as a light source, the Raman scattered light intensity is particularly weak, making it impossible to obtain sufficient temperature measurement accuracy. Therefore, a semiconductor laser (LD) pumped solid-state laser, which has been put into practical use recently, is used to inject strong light into the optical fiber to be measured to obtain strong Raman scattered light intensity.

【0004】0004

【発明が解決しようとする課題】しかしながら、従来の
OTDR装置のように光源としてLD励起固体レーザを
用いる場合、この光源は固体レーザであるため発振光の
コヒーレンシーが極めて高く、また直線偏光しているこ
とが多いので、ノイズが発生する問題がある。すなわち
、被測定光ファイバとしてマルチモード光ファイバを使
用する場合はモードが複数あることからコヒーレンシー
を低下させることが簡単であり、光源のコヒーレンシー
が問題となることは少ないが、シングルモード光ファイ
バの場合は、光源からのパルス光が長距離伝播した後で
もコヒーレンシーが低下せず、そのために伝播するパル
ス光とレーリ散乱光との干渉、偏光モードとの干渉、ブ
ルリアン散乱光との干渉、偏光によるブルリアン散乱発
生効率の違いなどの揺らぎが光ファイバ中に発生する。 その結果、コヒーレンシーの良好な光源でシングルモー
ド光ファイバのOTDR波形を取ると、これらの干渉に
よる揺らぎの影響が非常に大きなノイズとして観測され
る。温度測定に使用されるラマン散乱光の信号にもノイ
ズとして悪影響が及ぼされる。
[Problems to be Solved by the Invention] However, when an LD pumped solid-state laser is used as a light source as in a conventional OTDR device, since this light source is a solid-state laser, the coherency of the oscillated light is extremely high, and the oscillated light is linearly polarized. As a result, there is a problem of noise generation. In other words, when using a multimode optical fiber as the optical fiber to be measured, it is easy to reduce the coherency because there are multiple modes, and the coherency of the light source is rarely a problem, but in the case of a single mode optical fiber The coherency of the pulsed light from the light source does not decrease even after it propagates over a long distance, so there is interference between the propagating pulsed light and the Rayleigh scattered light, interference with the polarization mode, interference with the Brillouin scattered light, and interference between the propagating pulsed light and the Rayleigh scattered light. Fluctuations such as differences in scattering generation efficiency occur in optical fibers. As a result, when an OTDR waveform of a single mode optical fiber is obtained using a light source with good coherency, the effects of fluctuations due to these interferences are observed as very large noise. Raman scattered light signals used for temperature measurement are also adversely affected as noise.

【0005】この発明は、上記に鑑み、強度の強い光の
コヒーレンシーを低下させることによって、レーリ、ラ
マンOTDR波形のノイズを低減させるよう改善した、
OTDR装置を提供することを目的とする。
[0005] In view of the above, the present invention has been improved to reduce noise in Rayleigh and Raman OTDR waveforms by reducing the coherency of high-intensity light.
The purpose is to provide an OTDR device.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、この発明によるOTDR装置では、光ファイバの一
端に強度の大きなパルス光を入射して誘導ラマン散乱を
生じさせ、他端から出射する誘導ラマン散乱光のなかか
らもとの光源の光の波長成分を取り出し、この取り出し
た光を、被測定光ファイバの一端に入射する光として使
用することが特徴となっている。強いパルス光を入射す
ることによって光ファイバ中に誘導ラマン散乱を生じさ
せると、光ファイバ中に伝播するパルス光に、前方レー
リ散乱光、誘導ブルリアン散乱光、波長シフト量の小さ
い誘導ラマン散乱光が重積してパルス光のコヒーレンシ
ーを低下させることが可能となる。コヒーレンシーの低
下したパルス光を用いることによって、レーリ、ラマン
OTDR波形のノイズを低減させることができる。
[Means for Solving the Problems] In order to achieve the above object, in the OTDR device according to the present invention, a high-intensity pulsed light is incident on one end of an optical fiber to cause stimulated Raman scattering, and the light is emitted from the other end. The feature is that the wavelength component of the light from the original light source is extracted from the stimulated Raman scattered light, and this extracted light is used as light that enters one end of the optical fiber to be measured. When stimulated Raman scattering is generated in an optical fiber by inputting strong pulsed light, the pulsed light propagating in the optical fiber contains forward Rayleigh scattered light, stimulated Brillouin scattered light, and stimulated Raman scattered light with a small wavelength shift. It becomes possible to overlap and reduce the coherency of the pulsed light. By using pulsed light with reduced coherency, noise in Rayleigh and Raman OTDR waveforms can be reduced.

【0007】[0007]

【実施例】以下、この発明を、ラマン後方散乱光を検出
することにより被測定光ファイバの長さ方向温度分布を
測定するOTDR装置に適用した一実施例について図面
を参照しながら詳細に説明する。図1において、光源と
して半導体レーザ(LD)励起固体レーザ11と光ファ
イバ12とからなるファイバ・ラマンレーザ装置1が用
いられ、そこから発生したパルス光が光減衰器2、光フ
ィルタ4および分光デバイス3を経て、被測定光ファイ
バ9に入射される。分光デバイス3はたとえば回折格子
や、誘電体多層膜を使用した光学フィルタ膜などからな
る。この被測定光ファイバ9で発生したラマン後方散乱
光の波長成分は分光デバイス3で分離される。ここでは
分光デバイス3より2つの波長成分の光が取り出され、
それぞれ受光素子5およびアンプ6を経てデジタル平均
化回路7に送られる。このデジタル平均化回路7はコン
ピュータ8に接続されており、相互にデータの送受を行
なっている。デジタル平均化回路7では、LD励起固体
レーザ11に送ったパルス光発生のためのトリガ信号を
起点にして入力信号のサンプリングおよびA/D変換を
行ない、後方散乱光の強度についてのデータを、被測定
光ファイバ9にパルス光を入射した時点からの各単位時
間ごとに得ており、さらにパルス光入射を繰り返したと
きのデータを加算して加算平均化処理を行なってS/N
比を上げるようにしている。こうして得られたデータは
コンピュータ8に送られ、たとえば横軸をデータサンプ
リング時間、縦軸をデータの大きさとして表示すること
により、被測定光ファイバ9の長さ方向各位置の測定温
度が表わされることになる。
[Embodiment] Hereinafter, an embodiment in which the present invention is applied to an OTDR device that measures the longitudinal temperature distribution of an optical fiber to be measured by detecting Raman backscattered light will be described in detail with reference to the drawings. . In FIG. 1, a fiber Raman laser device 1 consisting of a semiconductor laser (LD) pumped solid-state laser 11 and an optical fiber 12 is used as a light source, and pulsed light generated therefrom is transmitted to an optical attenuator 2, an optical filter 4 and a spectroscopic device 3. The light is then input to the optical fiber 9 to be measured. The spectroscopic device 3 includes, for example, a diffraction grating, an optical filter film using a dielectric multilayer film, and the like. The wavelength components of the Raman backscattered light generated in the optical fiber 9 to be measured are separated by the spectroscopic device 3. Here, light of two wavelength components is extracted from the spectroscopic device 3,
The signals are sent to a digital averaging circuit 7 via a light receiving element 5 and an amplifier 6, respectively. This digital averaging circuit 7 is connected to a computer 8 and exchanges data with each other. The digital averaging circuit 7 performs sampling and A/D conversion of the input signal using the trigger signal for pulsed light generation sent to the LD pumped solid-state laser 11 as a starting point, and converts the data about the intensity of the backscattered light into the received signal. The S/N is obtained for each unit time from the time when the pulsed light is input into the measurement optical fiber 9, and the data obtained when the pulsed light is repeatedly input is added and averaged.
I'm trying to increase the ratio. The data thus obtained is sent to the computer 8, and the measured temperature at each position in the length direction of the optical fiber 9 to be measured is expressed by displaying, for example, the horizontal axis as the data sampling time and the vertical axis as the data size. It turns out.

【0008】ファイバ・ラマンレーザ装置1の光ファイ
バ12には誘導ラマン散乱が発生する閾値以上の大きさ
の高出力パルス光が入力されている。そのため数W以上
の高出力のパルス光が必要であるが、このように大きな
出力の光を出すことは通常のLDでは困難である。そこ
で、ここでは最近実用化されたLD励起固体レーザ11
を使用している。これは、従来の固体レーザの励起用光
源であるフラッシュランプをLDに置き換えたもので、
効率が良く、小型化も可能である。現在商品化されてい
るものとして、レーザ発振用の固体結晶がNdドープY
AGあるいはYLFからなるもので、発振波長が1.0
6μmまたは1.32μmのものが知られている。ここ
では波長1.321μmのLD励起固体レーザ11を使
用している。
[0008] High-power pulsed light having a magnitude above a threshold value at which stimulated Raman scattering occurs is input to the optical fiber 12 of the fiber Raman laser device 1. Therefore, high-output pulsed light of several watts or more is required, but it is difficult for a normal LD to emit light of such a high output. Therefore, here we introduce 11 LD-pumped solid-state lasers that have been put into practical use recently.
are using. This replaces the flash lamp, which is the excitation light source for conventional solid-state lasers, with an LD.
It is efficient and can be downsized. Currently commercialized solid crystals for laser oscillation are Nd-doped Y
It is made of AG or YLF and has an oscillation wavelength of 1.0.
Those with a diameter of 6 μm or 1.32 μm are known. Here, an LD excitation solid-state laser 11 with a wavelength of 1.321 μm is used.

【0009】ファイバ・ラマンレーザ装置1の光ファイ
バ12は、ここでは長さ数百mから1kmほどのシング
ルモード光ファイバが用いられ、この光ファイバ12で
は、閾値以上の高出力パルス光が入射されることにより
誘導ラマン散乱が発生する。すなわち、一般に光ファイ
バ中にパルス光を入射させると入射波長と同じ波長のレ
ーリ散乱光と波長のシフトしたラマン散乱光とが発生し
、これらの散乱光強度は入射光強度に比例して増加する
が、ある閾値を越えたときから非線形効果が発生し、急
激に誘導ラマン散乱が起きる。このとき、光ファイバ中
に伝播するパルス光に、前方レーリ散乱光、誘導ブルリ
アン散乱光、波長シフト量の小さい誘導ラマン散乱光が
重積してパルス光のコヒーレンシーを低下させることが
可能となる。
[0009] The optical fiber 12 of the fiber Raman laser device 1 is a single-mode optical fiber with a length of several hundred meters to about 1 km, and a high-output pulsed light of a threshold value or higher is incident on this optical fiber 12. This causes stimulated Raman scattering. In other words, generally when pulsed light is introduced into an optical fiber, Rayleigh scattered light with the same wavelength as the input wavelength and Raman scattered light with a shifted wavelength are generated, and the intensity of these scattered lights increases in proportion to the intensity of the incident light. However, once a certain threshold is exceeded, a nonlinear effect occurs and stimulated Raman scattering suddenly occurs. At this time, forward Rayleigh scattered light, stimulated Brillouin scattered light, and stimulated Raman scattered light with a small amount of wavelength shift are superimposed on the pulsed light propagating in the optical fiber, making it possible to reduce the coherency of the pulsed light.

【0010】こうして光ファイバ12からコヒーレンシ
ーの低下した強度の大きなパルス光を得ることができる
ので、これを光減衰器2に通すことによってその強度を
調整するとともに、光フィルタ4に通すことによって、
LD励起固体レーザ11から発生したもとの光の波長域
(ここでは波長1.321μm)のみを取り出す。この
ような強度調整により、被測定光ファイバ9中で誘導ラ
マン散乱を生じる閾値以下の大きさにされる。また、光
ファイバ12から出射した光には、被測定光ファイバ9
中で生じるラマン散乱光と同じ波長成分の誘導ラマン前
方散乱光が含まれているため、この重複する波長成分を
カットし、もとの入射した波長成分のみを被測定光ファ
イバ9に入射するようにしている。その結果、被測定光
ファイバ9の後方散乱光である波長1.403μmのス
トークス光と、波長1.248μmの反ストークス光と
を、分光デバイス3によって分離することができる。
[0010] In this way, it is possible to obtain a high-intensity pulsed light with reduced coherency from the optical fiber 12, so by passing it through the optical attenuator 2, its intensity is adjusted, and by passing it through the optical filter 4,
Only the wavelength range (wavelength 1.321 μm in this case) of the original light generated from the LD excitation solid-state laser 11 is extracted. By adjusting the intensity in this manner, the intensity is set to be below the threshold value at which stimulated Raman scattering occurs in the optical fiber 9 to be measured. In addition, the light emitted from the optical fiber 12 includes the optical fiber 9 to be measured.
Since stimulated Raman forward scattered light with the same wavelength component as the Raman scattered light generated inside is included, this overlapping wavelength component is cut so that only the original incident wavelength component enters the optical fiber 9 to be measured. I have to. As a result, the spectroscopic device 3 can separate Stokes light with a wavelength of 1.403 μm, which is the backscattered light of the optical fiber 9 to be measured, and anti-Stokes light with a wavelength of 1.248 μm.

【0011】このような構成でOTDR波形を得てみる
と、図2のようなものが得られた。レーリ後方散乱光に
ついては、分光デバイス3の代わりに光スイッチ(図示
しない)などを用いて入射光と同じ波長成分を取り出し
たものである。参考までにLD励起固体レーザ11から
のパルス光を光ファイバ12に通さずに直接被測定光フ
ァイバ9に入射したときのOTDR波形を図3に示す。 この図2、図3の比較から、コヒーレンシーの低下した
パルス光を用いることによって、レーリ、ラマンOTD
R波形のノイズが低減することが分かる。
When an OTDR waveform was obtained with such a configuration, the one shown in FIG. 2 was obtained. Regarding the Rayleigh backscattered light, an optical switch (not shown) or the like is used instead of the spectroscopic device 3 to extract the same wavelength component as the incident light. For reference, FIG. 3 shows an OTDR waveform when the pulsed light from the LD excitation solid-state laser 11 is directly input to the optical fiber 9 to be measured without passing through the optical fiber 12. From the comparison between Figures 2 and 3, it is clear that by using pulsed light with reduced coherency, Rayleigh and Raman OTD
It can be seen that the noise of the R waveform is reduced.

【0012】0012

【発明の効果】以上、実施例について説明したように、
この発明のOTDR装置によれば、高出力パルス光のコ
ヒーレンシーを低くすることによって干渉によるノイズ
を低減し、S/N比の高いデータを得ることが可能とな
る。
[Effects of the Invention] As described above with respect to the embodiments,
According to the OTDR device of the present invention, by lowering the coherency of high-power pulsed light, it is possible to reduce noise due to interference and obtain data with a high S/N ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例のブロック図。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】OTDR波形を表すグラフ。FIG. 2 is a graph representing an OTDR waveform.

【図3】OTDR波形を表すグラフ。FIG. 3 is a graph showing an OTDR waveform.

【符号の説明】[Explanation of symbols]

1    ファイバ・ラマンレーザ装置11  LD励
起固体レーザ 12  光ファイバ 2    光減衰器 3    分光デバイス 4    光フィルタ 5    受光素子 6    アンプ 7    デジタル平均化回路 8    コンピュータ 9    被測定光ファイバ
1 Fiber Raman laser device 11 LD pumped solid-state laser 12 Optical fiber 2 Optical attenuator 3 Spectroscopic device 4 Optical filter 5 Photodetector 6 Amplifier 7 Digital averaging circuit 8 Computer 9 Optical fiber to be measured

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  高出力のパルス光を発生する光源と、
該パルス光が一端に入射されて誘導ラマン散乱を生じる
光ファイバと、上記の光ファイバの他端から出射する誘
導ラマン散乱光よりもとの光源の光の波長成分を取り出
す光フィルタと、この光フィルタの出力光を被測定光フ
ァイバの一端に入射するとともにその一端から出射する
被測定ファイバの後方散乱光を取り出す光学装置とを備
えることを特徴とするOTDR装置。
Claim 1: A light source that generates high-power pulsed light;
an optical fiber into which the pulsed light is incident at one end and causes stimulated Raman scattering; an optical filter which extracts the wavelength component of the original light source light from the stimulated Raman scattered light emitted from the other end of the optical fiber; and this light. An OTDR device comprising: an optical device that inputs the output light of the filter into one end of an optical fiber to be measured and extracts backscattered light of the fiber to be measured that is emitted from the one end.
JP3061231A 1991-03-02 1991-03-02 Otdr apparatus Pending JPH04276535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3061231A JPH04276535A (en) 1991-03-02 1991-03-02 Otdr apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3061231A JPH04276535A (en) 1991-03-02 1991-03-02 Otdr apparatus

Publications (1)

Publication Number Publication Date
JPH04276535A true JPH04276535A (en) 1992-10-01

Family

ID=13165243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3061231A Pending JPH04276535A (en) 1991-03-02 1991-03-02 Otdr apparatus

Country Status (1)

Country Link
JP (1) JPH04276535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111089680A (en) * 2019-12-09 2020-05-01 北京航天时代光电科技有限公司 Portable fiber bragg grating pressure detection system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111089680A (en) * 2019-12-09 2020-05-01 北京航天时代光电科技有限公司 Portable fiber bragg grating pressure detection system and method

Similar Documents

Publication Publication Date Title
JP2575324B2 (en) Optical fiber type temperature distribution measuring device
JPH04274724A (en) Otdr apparatus
US5592282A (en) Suppression of stimulated scattering in optical time domain reflectometry
US6700655B2 (en) Optical fiber characteristic measuring device
US9163960B2 (en) Long-distance polarization and phase-sensitive optical time-domain reflectometry based on random laser amplification
JP5021221B2 (en) Distributed optical fiber sensor
US8693512B2 (en) Frequency referencing for tunable lasers
US7957436B2 (en) Laser for providing pulsed light and reflectometric apparatus incorporating such a laser
Ali et al. Analysis of self-homodyne and delayed self-heterodyne detections for tunable laser source linewidth measurements
CN103438916B (en) Based on the optical fiber grating wavelength demodulating equipment of saturable absorption optical fiber
CN105356210A (en) Frequency stabilized random fiber laser and narrow linewidth measuring method
JP3180746B2 (en) Optical amplifier and optical amplifier gain control method and device
CN114646941B (en) Electrically-controlled pulse laser for coherent laser radar
JPH04276535A (en) Otdr apparatus
JP3124184B2 (en) Optical fiber temperature distribution measurement method
CN104218437A (en) High-stability linear cavity sweep frequency laser light source
JP2001165808A (en) Measuring method of back-scattering light, and its apparatus
RU124062U1 (en) PASSIVELY STABILIZED BRILLUIN SINGLE FREQUENCY FIBER LASER
EP0588611B1 (en) Thermometer for optical fibre
JP3295148B2 (en) Fiber optical amplifier
JP2000081374A (en) Method and device for measuring wavelength dispersion
JPS61102081A (en) Frequency stabilization of semiconductor laser
JPH05172657A (en) Optical fiber distributed temperature sensor
JP2006308541A (en) Method and device for measuring temperature distribution
JPH06221930A (en) Distribution type temperature sensor