JPH04274845A - Continuous casting method for multilayer cast billet and casting mold - Google Patents

Continuous casting method for multilayer cast billet and casting mold

Info

Publication number
JPH04274845A
JPH04274845A JP5366491A JP5366491A JPH04274845A JP H04274845 A JPH04274845 A JP H04274845A JP 5366491 A JP5366491 A JP 5366491A JP 5366491 A JP5366491 A JP 5366491A JP H04274845 A JPH04274845 A JP H04274845A
Authority
JP
Japan
Prior art keywords
mold
continuous casting
casting mold
magnetic field
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5366491A
Other languages
Japanese (ja)
Inventor
Koji Ishizawa
石沢 孝司
Minoru Honda
稔 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP5366491A priority Critical patent/JPH04274845A/en
Publication of JPH04274845A publication Critical patent/JPH04274845A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To offer a casting method and a casting mold for preventing a molten metal from being mixed by a magnetostatic field in a mold at the time of continuous casting of a multilayer cast billet, and changing easily the thickness of an outer layer, while securing a stable operating state. CONSTITUTION:Injection nozzles having the different height of a molten metal injection part are inserted into a casting mold, the magnetostatic field zone is formed in the casting mold concerned, and the casting mold provided with an induction heating coil 18 which can be subjected to electric conduction control at every stage in the upper side casting mold of the magnetostatic field zone, and a cooling groove 17 which can be subjected to water passing control at every stage in parallel to the induction heating coil on the inside of the induction heating coil is used. In such a manner, the installation cost and the maintenance cost, and also, the refractory cost are curtailed, the flaw of the cast billet is decreased and a good ingot quality is obtained, and moreover, a steel delivery schedule is ensured by a stable operation.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、鋳型内の静磁場により
溶融金属の混合を防止し、かつ外層部の厚みを容易に変
更可能とする複層鋳片の連続鋳造方法および連続鋳造鋳
型に関する。
[Field of Industrial Application] The present invention relates to a continuous casting method and a continuous casting mold for multi-layer slabs, in which mixing of molten metals is prevented by a static magnetic field within the mold, and the thickness of the outer layer can be easily changed. .

【0002】0002

【従来の技術】従来の複層鋳片の鋳造方法として、例え
ば特開昭63−108947号公報や、特願平2−13
0185号に、電磁制動力と2本ノズル,又は電磁制動
力と添加材との組み合わせにより複層鋳片を製造する技
術が提案されている。
[Prior Art] Conventional methods for casting multi-layer slabs include, for example, Japanese Patent Application Laid-open No. 108947/1983 and Japanese Patent Application No. 13/1999.
No. 0185 proposes a technique for producing a multilayer slab using a combination of an electromagnetic braking force and two nozzles, or a combination of an electromagnetic braking force and an additive material.

【0003】5図に2本ノズル方式による複層鋳片の鋳
造の模式図を示す。
FIG. 5 shows a schematic diagram of casting a multilayer slab using the two-nozzle method.

【0004】図において、別々に溶製された組成の異な
る溶鋼は、それぞれ外層用鍋1a,内層用鍋1bからそ
れぞれ外層用タンディッシュ2a,内層用タンディッシ
ュ2b,および外層用注入ノズル3a,内層用注入ノズ
ル3bを介して鋳型30に注入される。
In the figure, separately produced molten steel with different compositions is transferred from an outer layer pot 1a and an inner layer pot 1b to an outer layer tundish 2a, an inner layer tundish 2b, an outer layer injection nozzle 3a, and an inner layer injection nozzle 3a, respectively. It is injected into the mold 30 through the injection nozzle 3b.

【0005】注入されたそれぞれの溶鋼は、電磁石8の
溶鋼制動力を受け、鋳型内にて上下に分離されて凝固を
開始する。1次メニスカス4は通常の連続鋳造に於ける
大気と接する湯面であり、2次メニスカス5は外層と内
層の分離位置,即ち内層の凝固開始点に相当するもので
ある。従って、鋳片の外層厚み14bはこれら2つのメ
ニスカスの間で成長する凝固シェル厚で決定される。な
お図において、6aは外層溶鋼プール,6bは内層溶鋼
プールである。
Each of the injected molten steel receives the molten steel braking force of the electromagnet 8, is separated into upper and lower parts in the mold, and begins to solidify. The primary meniscus 4 is the surface of the melt in contact with the atmosphere in normal continuous casting, and the secondary meniscus 5 corresponds to the separation position between the outer layer and the inner layer, that is, the solidification start point of the inner layer. Therefore, the outer layer thickness 14b of the slab is determined by the solidified shell thickness that grows between these two menisci. In the figure, 6a is an outer molten steel pool, and 6b is an inner molten steel pool.

【0006】6図に1本の注入ノズルと添加材による複
層鋳片の鋳造の模式図を示す。
FIG. 6 shows a schematic diagram of casting a multi-layer slab using one injection nozzle and additive material.

【0007】これは先ず、溶鋼鍋1からタンディッシュ
2、注入ノズル3を介して溶鋼が鋳型30に注入され、
ついで溶鋼の電磁石8の上方,又は下方に添加材21を
投入し、微小成分の異なる複層鋳片を製造するものであ
る。
First, molten steel is poured into a mold 30 from a molten steel ladle 1 through a tundish 2 and an injection nozzle 3.
Next, an additive material 21 is introduced above or below the electromagnet 8 of the molten steel to produce multilayer slabs having different microcomponents.

【0008】他方、内外層の明確な境界を有する複層鋳
片を得る方法としては、湯面下凝固を利用して初期凝固
位置を制御する技術が特開平2−55641号公報に報
告されている。しかしながら、鋳造中における外層厚み
を適宜変更する方法に関する技術については、従来は報
告されていない。
[0008] On the other hand, as a method for obtaining a multi-layer slab having a clear boundary between the inner and outer layers, a technique for controlling the initial solidification position using subsurface solidification has been reported in Japanese Patent Laid-Open No. 2-55641. There is. However, no technology has been reported so far regarding a method for appropriately changing the outer layer thickness during casting.

【発明が解決しようとする課題】[Problem to be solved by the invention]

【0009】以上のようなプロセスにて、外層厚みを変
更しようとする場合の問題点について以下に説明する。
Problems encountered when trying to change the thickness of the outer layer using the above process will be explained below.

【0010】先ず図7に1次メニスカスレベルを変更す
ることにより、外層厚みを変更する方法を模式図に示す
。図中の破線は、1次メニスカスが4aのレベルにある
場合、実線はそのレベルが4aより上方の4にある場合
の外層用溶鋼鍋1a,外層用タンディッシュ2a,注入
ノズル3a,及び溶鋼の凝固シェルの、それぞれの生成
曲線7a−1,7a−2を示す。
First, FIG. 7 schematically shows a method of changing the outer layer thickness by changing the primary meniscus level. The broken line in the figure indicates the outer layer molten steel ladle 1a, the outer layer tundish 2a, the injection nozzle 3a, and the molten steel ladle 1a when the primary meniscus is at level 4a, and the solid line indicates the outer layer molten steel ladle 1a, outer layer tundish 2a, injection nozzle 3a, and molten steel when the primary meniscus is at level 4a. The respective formation curves 7a-1 and 7a-2 of solidified shells are shown.

【0011】ここで、1次メニスカスのレベル4aを4
の位置に上げれば外層厚みは厚くなり、下げれば薄くな
るが、1次メニスカス4の変化代に対する凝固厚みの変
動代は、鋼の場合せいぜい数%である。例えば鋳造速度
0.8m/minにおいて、1次メニスカスレベルを1
00mm変えたとしても、凝固厚みは1〜2mm程度し
か変わらない。
[0011] Here, the level 4a of the primary meniscus is set to 4.
If the outer layer is raised to the position of , the outer layer thickness becomes thicker, and if it is lowered to the position of , the outer layer becomes thinner, but the variation of the solidification thickness relative to the variation of the primary meniscus 4 is at most a few percent in the case of steel. For example, at a casting speed of 0.8 m/min, the primary meniscus level is set to 1
Even if the thickness is changed by 00 mm, the solidified thickness will only change by about 1 to 2 mm.

【0012】従って外層厚みを数mm変えようとすれば
、注入ノズル3aが長くなることによる耐火物コストの
増加のみならず、タンディッシュ2a,及び鍋1aの昇
降ストロークの増加等、周辺の設備仕様に与える影響が
、特に設備改造の場合などにおいて増大する。
Therefore, if we try to change the outer layer thickness by several mm, not only will the refractory cost increase due to the lengthening of the injection nozzle 3a, but also the specifications of the surrounding equipment will change, such as an increase in the lifting stroke of the tundish 2a and the pot 1a. The impact on equipment increases, especially in the case of equipment modification.

【0013】また1次メニスカスレベルを大きく変化さ
せることは、操業の安定性,鋳片品質の確保,湯面レベ
ルセンサーの追随性等の点からも好ましいものではない
[0013] Also, it is not preferable to greatly change the primary meniscus level from the viewpoint of operational stability, ensuring slab quality, followability of the molten metal level sensor, etc.

【0014】つぎに鋳造速度を変更する方法として、外
層厚みは鋳造速度を早くすれば薄く、遅くすれば厚くで
きるが、前記と同様に数mmの外層厚みの差を持たせよ
うとすれば、1:2くらいの速度比を必要とし、鍋の出
鋼スケジュールへの影響や溶鋼の温度低下といった問題
を引き起こし、操業の安定性を著しく損なったものとな
る。
Next, as a method of changing the casting speed, the outer layer thickness can be made thinner by increasing the casting speed, and thicker by slowing it down, but if you try to have a difference in the outer layer thickness of several mm as described above, This requires a speed ratio of about 1:2, which causes problems such as affecting the tapping schedule of the ladle and lowering the temperature of molten steel, which significantly impairs the stability of the operation.

【0015】また次に2次メニスカスレベルを変更する
方法として、1次メニスカスレベルを一定に保ち、2次
メニスカスレベルすなわち静磁場帯を発生させる電磁石
位置を変化させれば、外層厚みを変更可能である。
Next, as a method of changing the secondary meniscus level, the thickness of the outer layer can be changed by keeping the primary meniscus level constant and changing the secondary meniscus level, that is, the position of the electromagnet that generates the static magnetic field band. be.

【0016】しかしこの場合、鋳型と電磁石とをそれぞ
れ別個に支持する必要があるが、2種類の溶融金属を分
離させる電磁石は通常3000〜5000gaussの
磁束密度が要求されるため、磁石本体が大型となり、周
辺装置例えばタンディシュカー,鋳型振動装置等との取
り合い上設置スペースが制約され、電磁石本体の高さを
遠隔で変更する機構を組み込むことが困難である。
However, in this case, it is necessary to support the mold and the electromagnet separately, but the electromagnet that separates the two types of molten metal usually requires a magnetic flux density of 3000 to 5000 gauss, so the magnet body is large. However, installation space is limited due to interference with peripheral equipment such as a tundish car, a mold vibration device, etc., and it is difficult to incorporate a mechanism for remotely changing the height of the electromagnet body.

【0017】本発明は上記課題を解決し、安定した操業
状態を確保しつつ、外層厚みの変更を可能とする複層鋳
片の連続鋳造方法および鋳造鋳型を提供する。
The present invention solves the above-mentioned problems and provides a continuous casting method and a casting mold for multi-layer slabs, which make it possible to change the outer layer thickness while ensuring stable operating conditions.

【0018】[0018]

【課題を解決するための手段】本発明は以下の構成を要
旨とする。
[Means for Solving the Problems] The gist of the present invention is as follows.

【0019】その1は、断面長方形の連続鋳造鋳型内に
、溶融金属噴出部の高さを異にして2本の注入ノズルを
挿入し、該鋳型の長辺側にこの長辺幅とほぼ等しい幅を
有する電磁石の磁極面を対向させて前記溶融金属噴出部
の間に静磁場帯を形成し、該静磁場帯の上下に組成の異
なる金属を供給して複層鋳片を連続鋳造する方法におい
て、前記静磁場帯の上部側鋳型を囲繞するように各段毎
に温度制御可能とした複数段の加熱手段と冷却手段を並
行して設け、該加熱手段と冷却手段を制御して静磁場帯
の上部の溶融金属の冷却速度を制御し、鋳型内面に形成
される凝固シェルの生成を加減して所定厚みの外層を得
ることを特徴とする複層鋳片の連続鋳造方法である。
The first method is to insert two injection nozzles with different heights of molten metal spouting parts into a continuous casting mold with a rectangular cross section, and to insert a nozzle on the long side of the mold that is approximately equal to the width of this long side. A method of continuously casting a multilayer slab by arranging magnetic pole surfaces of electromagnets having a width to face each other to form a static magnetic field zone between the molten metal spouting parts, and supplying metals with different compositions above and below the static magnetic field zone. In this method, a plurality of heating means and cooling means whose temperature can be controlled in each stage are provided in parallel so as to surround the mold on the upper side of the static magnetic field zone, and the heating means and cooling means are controlled to reduce the static magnetic field. This continuous casting method for multilayer slabs is characterized by controlling the cooling rate of the molten metal in the upper part of the band and adjusting the production of a solidified shell formed on the inner surface of the mold to obtain an outer layer of a predetermined thickness.

【0020】その2は、断面長方形の連続鋳造鋳型内に
、溶融金属噴出部の高さを異にして2本の注入ノズルを
挿入し、該鋳型の長辺側にこの長辺幅とほぼ等しい幅を
有する電磁石の磁極面を対向させて前記溶融金属噴出部
の間に静磁場帯を形成し、該静磁場帯の上下に組成の異
なる金属を供給して複層鋳片を連続鋳造する連続鋳造鋳
型において、前記静磁場帯の上部側鋳型を囲繞するよう
に各段毎に通電制御可能とした複数段の誘導加熱コイル
を設けたことを特徴とする複層鋳片の連続鋳造鋳型であ
る。
[0020] Part 2 is to insert two injection nozzles with different heights of molten metal spouting parts into a continuous casting mold with a rectangular cross section, and to insert a mold on the long side of the mold that is approximately equal to the width of this long side. Continuous casting of multi-layer slabs by arranging the magnetic pole faces of electromagnets having widths to face each other to form a static magnetic field zone between the molten metal spouting parts, and supplying metals with different compositions above and below the static magnetic field zone. A continuous casting mold for multilayer slabs, characterized in that the casting mold is provided with a plurality of induction heating coils that can be controlled to supply electricity to each stage so as to surround the mold on the upper side of the static magnetic field zone. .

【0021】また前記連続鋳造鋳型において、誘導加熱
コイルの内側の鋳型と接する面に、該誘導加熱コイルと
並行して各段毎に通水制御可能とした複数段の冷却溝を
設けた構造とするものである。
[0021] Furthermore, the continuous casting mold has a structure in which a plurality of cooling grooves are provided on the inner side of the induction heating coil in contact with the mold, in parallel with the induction heating coil, and in which water flow can be controlled for each stage. It is something to do.

【0022】[0022]

【作用】本発明は、断面長方形の連続鋳造鋳型内に、溶
融金属噴出部の高さを異にして2本の注入ノズルを挿入
し、該鋳型の長辺側にこの長辺幅とほぼ等しい幅を有す
る電磁石の磁極面を対向させて前記溶融金属噴出部の間
に静磁場帯を形成し、該静磁場帯の上下に組成の異なる
金属を供給して複層鋳片を連続鋳造する連続鋳造鋳型に
おいて、前記静磁場帯の上部側鋳型を囲繞するように各
段毎に通電制御可能とした複数段の誘導加熱コイルを設
け、または誘導加熱コイルの内側の鋳型と接する面に、
該誘導加熱コイルと並行して各段毎に通水制御可能とし
た複数段の冷却溝を設けた複層鋳片の連続鋳造鋳型を用
いる。
[Operation] In the present invention, two injection nozzles are inserted into a continuous casting mold having a rectangular cross section, with the heights of the molten metal spouting portions being different, and the length of the injection nozzle is approximately equal to the width of the long side of the mold. Continuous casting of multi-layer slabs by arranging the magnetic pole faces of electromagnets having widths to face each other to form a static magnetic field zone between the molten metal spouting parts, and supplying metals with different compositions above and below the static magnetic field zone. In the casting mold, a multi-stage induction heating coil that can be controlled with electricity for each stage is provided so as to surround the mold on the upper side of the static magnetic field zone, or on the inner surface of the induction heating coil in contact with the mold,
A continuous casting mold of a multi-layered slab is used, which is provided with a plurality of cooling grooves in which water flow can be controlled in each stage in parallel with the induction heating coil.

【0023】上記連続鋳造鋳型において、誘導加熱コイ
ルによる加熱制御と冷却溝による冷却制御により静磁場
帯上部の鋳型内の溶融金属の冷却速度を制御し、鋳型内
面に形成される凝固シェルの凝固開始点や生成を加減し
て所定厚みの外層凝固シェルを得るものである。
In the continuous casting mold described above, the cooling rate of the molten metal in the mold above the static magnetic field zone is controlled by heating control by the induction heating coil and cooling control by the cooling groove, and the solidification shell formed on the inner surface of the mold is started to solidify. An outer solidified shell having a predetermined thickness is obtained by adjusting the number of dots and formation.

【0024】このようにして、1次メニスカスや2次メ
ニスカス,または鋳造速度を変更することなく、湯面下
凝固技術を適用して複層鋳片の外層厚みを容易に変更可
能としたものである。
[0024] In this way, the thickness of the outer layer of the multilayer slab can be easily changed by applying the subsurface solidification technology without changing the primary meniscus, secondary meniscus, or casting speed. be.

【0025】[0025]

【実施例】以下本発明の実施例を図面に基づき詳細に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below in detail with reference to the drawings.

【0026】図1は複層鋳片の連続鋳造鋳型の要部を示
す縦断面図であり、下記図2のA−A部断面を示し、図
2は連続鋳造鋳型の全体構造を説明する斜視図である。
FIG. 1 is a longitudinal cross-sectional view showing the main parts of a continuous casting mold for multilayer slabs, and a cross-sectional view taken along the line A-A in FIG. 2 below, and FIG. 2 is a perspective view showing the overall structure of the continuous casting mold. It is a diagram.

【0027】鋳型の上部は、内面側よりグラファイト等
の内張材13,後述する冷却溝16を穿設した冷却板1
4と、さらに断熱材15が積層して形成され、また下部
は内張材13と銅板11との間に銅板冷却穴17が形成
され、これらは鋳型フレーム12および鋳型固定フレー
ム20により強固に固定されて鋳型を形作っている。
The upper part of the mold has a lining material 13 made of graphite or the like and a cooling plate 1 having cooling grooves 16 (to be described later) formed from the inner side.
4 and a heat insulating material 15 are laminated, and a copper plate cooling hole 17 is formed between the lining material 13 and the copper plate 11 in the lower part, and these are firmly fixed by the mold frame 12 and the mold fixing frame 20. The mold is formed.

【0028】鋳型下部の銅板11の外部には、鋳型の長
辺側にこの長辺幅とほぼ等しい幅を有する電磁石の磁極
9を対向して設けられ、鋳型内に2次メニスカス5を形
成する静磁場帯を生じさせる。なお8は鋳型を囲繞する
ヨーク,9は電磁石のコイルである。
On the outside of the copper plate 11 at the bottom of the mold, magnetic poles 9 of an electromagnet having a width approximately equal to the width of the long side are provided facing each other on the long side of the mold to form a secondary meniscus 5 in the mold. Generates a static magnetic field. Note that 8 is a yoke surrounding the mold, and 9 is an electromagnetic coil.

【0029】なおこの電磁石の構造としては、図8に示
す片ヨーク型,図9に示す環状ヨーク型があるが、周辺
の状況に応じて適宜選択すればよい。
The structure of this electromagnet includes a single yoke type shown in FIG. 8 and an annular yoke type shown in FIG. 9, which may be selected as appropriate depending on the surrounding situation.

【0030】さらに本発明実施例においては、上記冷却
板14の外周に上部側鋳型を囲繞するように、各段毎に
通電制御可能とした複数段の誘導加熱コイル18(18
−1〜18−5)と、また前記冷却板14には、誘導加
熱コイル18と並行して各段毎に通水制御可能とした複
数段の冷却溝16(16−1〜16−6)が穿設されて
いる。なお19a,19bは冷却溝16に通水するそれ
ぞれの冷却水入口と出口、22は各段誘導加熱コイル1
8の端子箱である。
Furthermore, in the embodiment of the present invention, a plurality of induction heating coils 18 (18
-1 to 18-5), and the cooling plate 14 has a plurality of cooling grooves 16 (16-1 to 16-6) in parallel with the induction heating coil 18, in which water flow can be controlled for each stage. is drilled. Note that 19a and 19b are the respective cooling water inlets and outlets that flow into the cooling groove 16, and 22 is the induction heating coil 1 of each stage.
8 terminal box.

【0031】図3は上記冷却溝16の冷却系統の一例を
示す図面であり、冷却水は遮断弁26を経て分岐され、
それぞれの分岐管に取り付けられた各冷却溝16毎の流
量制御弁23にて流量調整され、冷却溝16−1〜16
−6にそれぞれ所定の冷却水量を送水する。このように
各冷却溝16−1〜16−6は、それぞれ冷却溝毎に独
立して冷却制御可能としている。なお図において、25
a,25bは入口および出口に取り付けられた温度計、
24は各冷却溝毎の流量計、27は逆止弁である。また
14a,14bはそれぞれ長辺側および短辺側の冷却板
である。
FIG. 3 is a drawing showing an example of the cooling system of the cooling groove 16, in which the cooling water is branched off via the cutoff valve 26,
The flow rate is adjusted by the flow rate control valve 23 for each cooling groove 16 attached to each branch pipe, and the cooling grooves 16-1 to 16
A predetermined amount of cooling water is supplied to each of -6 and 6. In this way, each of the cooling grooves 16-1 to 16-6 can be independently controlled for cooling. In addition, in the figure, 25
a, 25b are thermometers attached to the inlet and outlet;
24 is a flow meter for each cooling groove, and 27 is a check valve. Further, 14a and 14b are cooling plates on the long side and the short side, respectively.

【0032】図4(a),(b)は上記誘導加熱コイル
18の制御結線図の例を示し、(a)は直列回路,(b
)は並列回路の場合を示す。29は電源装置,28は回
路切替装置を示し、直列回路の場合は微細な温度制御が
可能であり、また並列回路の場合は局部的にまた全体を
強力に加熱することが可能であるが、いずれも回路切替
装置28を操作することにより鋳型を縦方向に亘り適宜
加熱制御することができる。
FIGS. 4(a) and 4(b) show examples of control wiring diagrams for the induction heating coil 18, in which (a) shows a series circuit, and (b) shows an example of a control connection diagram for the induction heating coil 18.
) indicates a parallel circuit. Reference numeral 29 indicates a power supply device, and 28 indicates a circuit switching device. In the case of a series circuit, fine temperature control is possible, and in the case of a parallel circuit, it is possible to strongly heat locally or the whole. In either case, by operating the circuit switching device 28, heating of the mold can be appropriately controlled in the vertical direction.

【0033】以上の如く構成された連続鋳造鋳型内に、
上方より外層用注入ノズル3aと内層用注入ノズル3b
とを挿入し、溶融金属噴出部の高さをそれぞれ静磁場帯
によって形成される2次メニスカス5の上部と下部に設
置し、それぞれ組成の異なる金属を供給した場合、それ
ぞれの金属は静磁場帯によって上下に分離されて凝固を
開始する。そして外層用注入ノズル3aより供給された
溶融金属は、鋳型上部壁にて冷却されて外層の凝固シェ
ルを形成し、下方に牽引されて複層鋳片が鋳造される。
In the continuous casting mold configured as above,
Outer layer injection nozzle 3a and inner layer injection nozzle 3b from above
If the height of the molten metal ejecting part is set at the upper and lower parts of the secondary meniscus 5 formed by the static magnetic field band, and metals with different compositions are supplied, each metal will be is separated into upper and lower parts and begins to coagulate. The molten metal supplied from the outer layer injection nozzle 3a is cooled on the upper wall of the mold to form a solidified shell of the outer layer, and is pulled downward to cast a multilayer slab.

【0034】この場合、誘導加熱コイル18と冷却溝1
6とを制御して2次メニスカス5上部の鋳型の内壁を適
宜温度に設定することによって、鋳型内壁よりの抜熱が
変化して外層凝固シェルの生成を加減することができる
。すなわち抜熱が小さければ凝固シェルの生成が遅く、
従って薄い外層が形成され、また抜熱が大きければ凝固
シェルの生成が早くなり、従って厚い外層が形成される
In this case, the induction heating coil 18 and the cooling groove 1
By controlling 6 and setting the temperature of the inner wall of the mold above the secondary meniscus 5 to an appropriate temperature, the heat removed from the inner wall of the mold can be changed and the formation of the outer solidified shell can be controlled. In other words, if the heat removal is small, the formation of solidified shell is slow;
Therefore, a thin outer layer is formed, and the greater the heat removal, the faster the formation of the solidified shell, and therefore the formation of a thicker outer layer.

【0035】さらに誘導加熱コイル18および冷却溝1
6を、それぞれ上下各段毎に個別に制御することによっ
て鋳型内壁の上下方向に対して温度制御することが可能
であり、この制御によって、外層の凝固開始点を上下方
向に適宜設定し、生成する凝固開始点を上下させて凝固
シェルの厚みを調整することができる。
Furthermore, the induction heating coil 18 and the cooling groove 1
By controlling 6 separately for the upper and lower stages, it is possible to control the temperature in the vertical direction of the inner wall of the mold, and by this control, the solidification start point of the outer layer can be appropriately set in the vertical direction, and the formation The thickness of the solidified shell can be adjusted by raising or lowering the solidification start point.

【0036】図2にその一例を示す。即ち凝固シェルの
生成曲線7a−1は誘導加熱コイル18−1〜5が非通
電で全冷却溝16−1〜6に通水した場合の凝固シェル
の生成曲線であり、この場合は鋳型内壁よりの抜熱が大
きくなり、凝固は1次メニスカス4のレベルから開始さ
れ、凝固が促進されて厚い外層t1 が形成される。
An example is shown in FIG. That is, the solidified shell formation curve 7a-1 is the solidified shell formation curve when the induction heating coils 18-1 to 5 are not energized and water is passed through all the cooling grooves 16-1 to 6. The heat removal increases, solidification starts from the level of the primary meniscus 4, the solidification is accelerated, and a thick outer layer t1 is formed.

【0037】また生成曲線7a−2は誘導加熱コイル1
8−1〜3に通電し、冷却溝は16−4〜5にのみ通水
した場合の凝固シェルの生成曲線であり、この場合は鋳
型内壁の上部がより加熱されて抜熱が少なくなり、凝固
開始点は1次メニスカス4から下方に移動し、従って凝
固が緩慢になって薄い外層t2 が形成される。
Furthermore, the generation curve 7a-2 corresponds to the induction heating coil 1.
This is the solidification shell generation curve when electricity is applied to 8-1 to 3, and water is passed only to cooling grooves 16-4 to 5. In this case, the upper part of the inner wall of the mold is heated more and less heat is removed. The starting point of solidification moves downward from the primary meniscus 4, so that solidification slows down and a thin outer layer t2 is formed.

【0038】このように本発明は、誘導加熱コイル18
および冷却溝16によって鋳型内壁の温度を制御するこ
とにより、外層の凝固開始点や外層凝固シェルの厚みを
適宜変更可能となる。
As described above, the present invention provides the induction heating coil 18
By controlling the temperature of the inner wall of the mold using the cooling grooves 16, the solidification start point of the outer layer and the thickness of the outer layer solidified shell can be changed as appropriate.

【0039】本発明は、2本の注入ノズルを有する連続
鋳造鋳型のみならず、前記図4に示した1本の注入ノズ
ルを有する連続鋳造鋳型に対しても適用可能である。
The present invention is applicable not only to a continuous casting mold having two injection nozzles, but also to a continuous casting mold having one injection nozzle as shown in FIG.

【0040】[0040]

【発明の効果】以上のように構成される本発明は、下記
の如き効果を奏する。
[Effects of the Invention] The present invention constructed as described above has the following effects.

【0041】同一の鋳型にて、従来に比して複層鋳片の
大幅な外層厚みの変更が可能となり、外層厚みの変更に
際してそれぞれ電磁石位置の異なる鋳型を保有する必要
がなく、従って設備費やメンテナンス費用の削減が可能
となる。
[0041] With the same mold, it is possible to change the outer layer thickness of a multi-layer slab to a greater extent than before, and when changing the outer layer thickness, there is no need to have molds with different electromagnet positions, thus reducing equipment costs. This makes it possible to reduce maintenance costs.

【0042】外層用注入ノズルを長くしたり、また鍋,
タンディッシュの昇降ストローク延長等が不要となり、
耐火物コストや設備改造費等が削減できる。
[0042] The injection nozzle for the outer layer may be made longer, or the pot,
Eliminates the need to extend the lifting stroke of the tundish.
Refractory costs and equipment modification costs can be reduced.

【0043】鋳造時間等の変動がないので、溶鋼の温度
低下によるノズル詰まり,鍋の出鋼スケジュール変更に
対する影響が緩和される。
[0043] Since there is no change in casting time, etc., the effects of nozzle clogging due to a drop in the temperature of molten steel and changes in the ladle tapping schedule are alleviated.

【0044】1次メニスカス,鋳造速度の変動の最小化
が図れるため、安定した操業条件、および良質の鋳片品
質が得られる。
Since fluctuations in the primary meniscus and casting speed can be minimized, stable operating conditions and good slab quality can be obtained.

【0045】外層厚み変更時間が短くなり、多品種少量
の鋼種を連続して生産する際の歩留りが向上する。
[0045] The time required to change the outer layer thickness is shortened, and the yield is improved when continuously producing a wide variety of steel types in small quantities.

【0046】湯面下凝固法が適用できるので、湯面変動
,介在物の巻き込み等に起因する鋳片欠陥が減少する。
[0046] Since the sub-molten metal solidification method can be applied, slab defects caused by fluctuations in the liquid level, entrainment of inclusions, etc. are reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明実施例の複層鋳片の連続鋳造鋳型の要部
を示す縦断面図である。
FIG. 1 is a longitudinal cross-sectional view showing the main parts of a continuous casting mold for a multilayer slab according to an embodiment of the present invention.

【図2】複層鋳片の連続鋳造鋳型の全体構造を説明する
一部断面とした斜視図である。
FIG. 2 is a partially cross-sectional perspective view illustrating the overall structure of a continuous casting mold for multilayer slabs.

【図3】冷却溝の冷却系統の一例を示す図面である。FIG. 3 is a drawing showing an example of a cooling system of cooling grooves.

【図4】誘導加熱コイルの制御結線の一例を示す図面で
ある。
FIG. 4 is a drawing showing an example of control connections of an induction heating coil.

【図5】従来の2本ノズル方式による複層鋳片の鋳造を
示す模式図である。
FIG. 5 is a schematic diagram showing casting of a multi-layer slab using a conventional two-nozzle method.

【図6】従来の1本ノズルと添加材による複層鋳片の鋳
造を示す模式図である。
FIG. 6 is a schematic diagram showing casting of a multi-layer slab using a conventional single nozzle and additive materials.

【図7】従来の1次メニスカスレベル変更により外層厚
みを変更する方式の模式図である。
FIG. 7 is a schematic diagram of a conventional method of changing the outer layer thickness by changing the primary meniscus level.

【図8】静磁場帯を発生させる電磁石の構造例を示す図
面である。
FIG. 8 is a drawing showing an example of the structure of an electromagnet that generates a static magnetic field band.

【図9】静磁場帯を発生させる電磁石の他の構造例を示
す図面である。
FIG. 9 is a drawing showing another example of the structure of an electromagnet that generates a static magnetic field band.

【符号の説明】[Explanation of symbols]

4    1次メニスカス 5    2次メニスカス 6a  外層溶鋼プール 6b  内層溶鋼プール 7a  外層凝固シェル 7b  内層凝固シェル 8    ヨーク 9    電磁石磁極 10  コイル 11  銅板 12  鋳型フレーム 13  内張材 14  冷却板 15  断熱材 16  冷却溝 17  銅板冷却穴 18  誘導加熱コイル 19a  冷却水入口 19b  冷却水出口 20  鋳型固定フレーム 22  端子箱 30  鋳型 4 Primary meniscus 5 Secondary meniscus 6a Outer molten steel pool 6b Inner molten steel pool 7a Outer layer solidified shell 7b Inner layer solidified shell 8 York 9 Electromagnet magnetic pole 10 Coil 11 Copper plate 12 Mold frame 13 Lining material 14 Cooling plate 15 Insulation material 16 Cooling groove 17 Copper plate cooling hole 18 Induction heating coil 19a Cooling water inlet 19b Cooling water outlet 20 Mold fixing frame 22 Terminal box 30 Mold

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  断面長方形の連続鋳造鋳型内に、溶融
金属噴出部の高さを異にして2本の注入ノズルを挿入し
、該鋳型の長辺側にこの長辺幅とほぼ等しい幅を有する
電磁石の磁極面を対向させて前記溶融金属噴出部の間に
静磁場帯を形成し、該静磁場帯の上下に組成の異なる金
属を供給して複層鋳片を連続鋳造する方法において、前
記静磁場帯の上部側鋳型を囲繞するように各段毎に温度
制御可能とした複数段の加熱手段と冷却手段を並行して
設け、該加熱手段と冷却手段を制御して静磁場帯の上部
の溶融金属の冷却速度を制御し、鋳型内面に形成される
凝固シェルの生成を加減して所定厚みの外層を得ること
を特徴とする複層鋳片の連続鋳造方法。
Claim 1: Two injection nozzles are inserted into a continuous casting mold having a rectangular cross section, with the heights of the molten metal spouting parts being different, and a width approximately equal to the width of the long side is formed on the long side of the mold. In a method of continuously casting a multilayer slab by arranging the magnetic pole surfaces of electromagnets facing each other to form a static magnetic field zone between the molten metal spouting parts, and supplying metals with different compositions above and below the static magnetic field zone, A plurality of stages of heating means and cooling means whose temperature can be controlled at each stage are provided in parallel so as to surround the mold on the upper side of the static magnetic field zone, and the heating means and cooling means are controlled to control the temperature of the static magnetic field zone. A continuous casting method for multi-layer slabs characterized by controlling the cooling rate of the upper molten metal and controlling the generation of a solidified shell formed on the inner surface of the mold to obtain an outer layer of a predetermined thickness.
【請求項2】  断面長方形の連続鋳造鋳型内に、溶融
金属噴出部の高さを異にして2本の注入ノズルを挿入し
、該鋳型の長辺側にこの長辺幅とほぼ等しい幅を有する
電磁石の磁極面を対向させて前記溶融金属噴出部の間に
静磁場帯を形成し、該静磁場帯の上下に組成の異なる金
属を供給して複層鋳片を連続鋳造する連続鋳造鋳型にお
いて、前記静磁場帯の上部側鋳型を囲繞するように各段
毎に通電制御可能とした複数段の誘導加熱コイルを設け
たことを特徴とする複層鋳片の連続鋳造鋳型。
2. Two injection nozzles with different heights of molten metal spouting parts are inserted into a continuous casting mold having a rectangular cross section, and a width approximately equal to the width of the long side is formed on the long side of the mold. A continuous casting mold for continuously casting a multilayer slab by forming a static magnetic field zone between the molten metal spouting portions by arranging the magnetic pole surfaces of electromagnets having the magnetic poles facing each other, and supplying metals with different compositions above and below the static magnetic field zone. A continuous casting mold for a multi-layer slab, characterized in that a plurality of induction heating coils each of which can be controlled to supply electricity to each stage are provided so as to surround the mold on the upper side of the static magnetic field zone.
【請求項3】  誘導加熱コイルの内側の鋳型と接する
面に、該誘導加熱コイルと並行して各段毎に通水制御可
能とした複数段の冷却溝を設けた請求項2記載の複層鋳
片の連続鋳造鋳型。
3. The multilayer structure according to claim 2, wherein a plurality of cooling grooves are provided on the inner side of the induction heating coil in contact with the mold in parallel with the induction heating coil, the water flow being controllable at each stage. Continuous casting mold for slabs.
JP5366491A 1991-02-27 1991-02-27 Continuous casting method for multilayer cast billet and casting mold Withdrawn JPH04274845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5366491A JPH04274845A (en) 1991-02-27 1991-02-27 Continuous casting method for multilayer cast billet and casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5366491A JPH04274845A (en) 1991-02-27 1991-02-27 Continuous casting method for multilayer cast billet and casting mold

Publications (1)

Publication Number Publication Date
JPH04274845A true JPH04274845A (en) 1992-09-30

Family

ID=12949122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5366491A Withdrawn JPH04274845A (en) 1991-02-27 1991-02-27 Continuous casting method for multilayer cast billet and casting mold

Country Status (1)

Country Link
JP (1) JPH04274845A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6089309A (en) * 1997-04-15 2000-07-18 South China University Of Technology Method for manufacturing gradient material by continuous and semi-continuous casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6089309A (en) * 1997-04-15 2000-07-18 South China University Of Technology Method for manufacturing gradient material by continuous and semi-continuous casting

Similar Documents

Publication Publication Date Title
US7305271B2 (en) Device and a method for continuous casting
US5404933A (en) Method and a device for casting in a mould
KR100618362B1 (en) Production method for continuous casting cast billet
EP0873212B1 (en) Method and device for casting of metal
JPH04274845A (en) Continuous casting method for multilayer cast billet and casting mold
SE503562C2 (en) Methods and apparatus for string casting
US4562879A (en) Electromagnetically stirring the melt in a continuous-casting mold
JP2651754B2 (en) Continuous casting mold of multilayer slab
JPH0819842A (en) Method and device for continuous casting
JP2920897B2 (en) Method and apparatus for controlling flow of molten steel in mold
JPH08141731A (en) Casting method and casting device
JPH04274844A (en) Continuous casting mold for multilayer cast billet
RU2419508C2 (en) Mixer
JPH06297091A (en) Method and apparatus for continuous casting of composite metallic material
JPH06297092A (en) Continuous width variable casting apparatus for composite metallic material
RU2004379C1 (en) Process of production of castings in travelling electromagnetic field
RU2464123C1 (en) Method of adjusting conditions of electromagnetic mixing of ingot liquid phase in slab continuous casting machine and device to this end
JP3399627B2 (en) Flow control method of molten steel in mold by DC magnetic field
WO1999021670A1 (en) Device for casting of metal
KR100244660B1 (en) Control device for molten metal of continuous casting mould
KR100314847B1 (en) Flow control device using electromagnetic force during continuous casting
JPH09277006A (en) Method for continuously casting molten metal
JPH04224058A (en) Induction heating tundish
JPH0751813A (en) Continuous casting method and its apparatus
JPH06218496A (en) Horizontal continuous casting apparatus by molten metal mold and casting starting method thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514