JPH04274174A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH04274174A
JPH04274174A JP3036031A JP3603191A JPH04274174A JP H04274174 A JPH04274174 A JP H04274174A JP 3036031 A JP3036031 A JP 3036031A JP 3603191 A JP3603191 A JP 3603191A JP H04274174 A JPH04274174 A JP H04274174A
Authority
JP
Japan
Prior art keywords
fuel
holes
air
electrode
shutter plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3036031A
Other languages
Japanese (ja)
Inventor
Katsuji Tanizaki
谷崎 勝二
Masashi Nakamura
正志 中村
Shigeo Tsuzuki
繁男 都築
Hitoshi Dogoshi
堂腰 仁
Taizo Yamamoto
泰三 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP3036031A priority Critical patent/JPH04274174A/en
Publication of JPH04274174A publication Critical patent/JPH04274174A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To achieve load fluctuation operation at a good responsiveness by providing through-holes of corresponding forms to each other in a shutter plate and a collector plate disposed in contact with each other, and changing a through aperture area by the through-holes. CONSTITUTION:A fuel oxidation electrode 3 and an air reduction electrode 5 are provided with a shutter 7 having a number of through-holes 6 and a collector plate 10 having through-holes 8 of the same pitch and the same area as the through-holes 6 in the shutter plate 7 respectively. The shutter plates 7, 7 are movable up and down. A through aperture area formed by the through- holes 6 in the shutter plate and the through-holes in the collector plate 10 is changed by vertical motion of the shutter plate 7, so a passing quantity of fuel such as methanol or air can be controlled. When a cell reaction is stopped, by setting the through-hole area between the through-holes 6, 8 at zero, diffusion of fuel through an electrolyte chamber 12 to an air reduction pole 5 is eliminated.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は燃料電池に関し、特に負
荷変動に対して応答性の高い燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell, and more particularly to a fuel cell that is highly responsive to load fluctuations.

【0002】0002

【従来の技術】負極に例えば、メタノール等の燃料を供
給し(以下、燃料酸化電極という。)、電解質を介して
負極と反対側の正極(以下、空気還元電極という。)に
空気を供給する。燃料酸化電極では、供給されるメタノ
ール等の燃料が水と反応してCO2ガスとプロトンと電
子を生成する。燃料酸化電極で生成した電子は集電板を
介して負荷側に供給される。
[Prior Art] A fuel such as methanol is supplied to a negative electrode (hereinafter referred to as a fuel oxidation electrode), and air is supplied to a positive electrode on the opposite side of the negative electrode (hereinafter referred to as an air reduction electrode) via an electrolyte. . At the fuel oxidation electrode, supplied fuel such as methanol reacts with water to generate CO2 gas, protons, and electrons. Electrons generated at the fuel oxidation electrode are supplied to the load side via a current collector plate.

【0003】また、空気還元電極では負荷を介して空気
還元電極に供給される電子と電解質から供給されるプロ
トンと空気が水を生成する。
[0003] Further, in the air reduction electrode, water is produced by electrons supplied to the air reduction electrode via a load, protons supplied from the electrolyte, and air.

【0004】こうして、メタノール等の燃料の燃焼反応
を電気化学的に行わせることにより、その酸化反応に伴
う自由エネルギー変化を直接電気エネルギーとして取り
出すことができる。
[0004] By electrochemically performing the combustion reaction of fuel such as methanol, the free energy change accompanying the oxidation reaction can be directly extracted as electrical energy.

【0005】前記各電極の詳細図を図5に示す。同図に
は燃料室32に隣接して、集電体39、ガス状になった
燃料のガス供給層33aと燃料の酸化反応層33bとか
らなる燃料酸化電極33があり、空気室37にも同じく
集電体39、ガス供給層36a、空気の還元反応層36
bとからなる空気還元電極36が隣接し、この二つの電
極33、36間に電解質室35とがある。集電体39は
メッシュ状の金属材料で構成される。両電極33、36
のガス供給層33a、36aはメタノール等の燃料が直
接反応層33b、36bに到達しないように調整するた
めに設けられるもので、例えば、疎水性の直径約400
Åのカーボンクラスターで構成される。また、両電極3
3、36の反応層33b、36bは、ガス状になった燃
料または空気が反応する領域であり、隣接する電解質室
35の電解質(例えば数十%濃度の硫酸水を含有する。 )との湿潤性を向上させるために、例えば、親水性のカ
ーボンをクラスター状にして構成されている。また、燃
料室32側の反応層33bには燃料の酸化反応用触媒、
例えば、PtとRuとの合金が、また空気室37側の反
応層36bには空気還元用の触媒、例えばPtが含まれ
ている。
FIG. 5 shows a detailed diagram of each of the electrodes. In the figure, adjacent to the fuel chamber 32, there is a fuel oxidation electrode 33 consisting of a current collector 39, a gas supply layer 33a of gaseous fuel, and a fuel oxidation reaction layer 33b, and an air chamber 37 is also located. Similarly, the current collector 39, the gas supply layer 36a, and the air reduction reaction layer 36
An air reduction electrode 36 consisting of an electrode 33 and b is adjacent to each other, and an electrolyte chamber 35 is located between these two electrodes 33 and 36. The current collector 39 is made of a mesh-like metal material. Both electrodes 33, 36
The gas supply layers 33a and 36a are provided to prevent fuel such as methanol from directly reaching the reaction layers 33b and 36b.
Consists of carbon clusters of Å. Also, both electrodes 3
The reaction layers 33b and 36b of 3 and 36 are regions in which gaseous fuel or air reacts, and are wetted with the electrolyte (containing, for example, sulfuric acid water at a concentration of several tens of percent) in the adjacent electrolyte chamber 35. In order to improve the properties, for example, hydrophilic carbon is formed into clusters. Further, the reaction layer 33b on the side of the fuel chamber 32 includes a fuel oxidation reaction catalyst,
For example, an alloy of Pt and Ru is contained, and the reaction layer 36b on the side of the air chamber 37 contains a catalyst for air reduction, such as Pt.

【0006】前記各電極33、36のガス供給層33a
、36aにはガス化したメタノールまたは酸素ガスの供
給機能と反応層33b、36bで電池反応により生成し
たガスの排出機能および電解質が燃料室32側に漏れ出
るのを防止する機能がある。また、反応層33b、36
bには触媒が含まれており、電池反応を起こさせる機能
がある。
Gas supply layer 33a of each electrode 33, 36
, 36a have a function of supplying gasified methanol or oxygen gas, a function of discharging gas generated by the cell reaction in the reaction layers 33b and 36b, and a function of preventing electrolyte from leaking to the fuel chamber 32 side. In addition, reaction layers 33b and 36
b contains a catalyst and has the function of causing a battery reaction.

【0007】[0007]

【発明が解決しようとする課題】前記従来の背面燃料供
給型燃料電池は、定常運転は可能であるが、負荷変動運
転に対応できないという問題がある。この負荷変動対策
として、従来は供給する燃料の濃度や量を制御すること
が考えられるが、上記制御の正確性や応答性に難点があ
る上に、補機類の大型化等の問題が残る。
SUMMARY OF THE INVENTION The conventional backside fuel supply type fuel cell described above is capable of steady operation, but has a problem in that it cannot cope with load fluctuation operation. Conventionally, as a countermeasure against this load fluctuation, it has been considered to control the concentration and amount of fuel to be supplied, but there are problems with the accuracy and responsiveness of the above control, and problems such as increasing the size of auxiliary equipment remain. .

【0008】また、メタノール等の燃料が電解質室35
を透過して空気還元電極36へ拡散する問題点もある。 特に、電池反応停止時に燃料が電解質室35に多量に拡
散し、始動時の電池性能の低下や発熱等の問題が生じる
おそれがある。
[0008]Furthermore, fuel such as methanol is used in the electrolyte chamber 35.
There is also the problem that the air passes through the air and diffuses into the air reduction electrode 36. In particular, when the battery reaction is stopped, a large amount of fuel diffuses into the electrolyte chamber 35, which may cause problems such as deterioration of battery performance and heat generation during startup.

【0009】そこで、本発明の目的は応答性よく負荷変
動運転ができ、電池反応停止時に燃料の電解質透過性を
完全に遮断した燃料電池を提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a fuel cell that can operate with load fluctuations with good responsiveness and completely shuts off the electrolyte permeability of the fuel when the cell reaction is stopped.

【0010】0010

【課題を解決するための手段】本発明の上記目的は次の
構成により達成される。すなわち、燃料酸化電極に燃料
を供給した後、排出する燃料給排路を備えた燃料室と、
空気還元電極に空気を供給した後、排出する空気給排路
を備えた空気室と、集電板をそれぞれ備えた燃料酸化電
極と空気還元電極間に電解質室を設けた燃料電極におい
て、燃料室または空気室と前記各室に隣接する電極との
境界部の少なくともいずれかの境界部に、複数の貫通孔
を形成した摺動自在のシャッタ板を設け、前記集電板に
は、前記シャッタ板の前記複数の貫通孔の各孔に対応し
た形状の貫通孔をシャッタ板の貫通孔と同数形成し、該
シャッタ板に接して配置することを特徴とする燃料電池
である。
[Means for Solving the Problems] The above objects of the present invention are achieved by the following configuration. That is, a fuel chamber equipped with a fuel supply/discharge path for supplying and discharging fuel to the fuel oxidation electrode;
In a fuel electrode, an air chamber is provided with an air supply/discharge path for discharging air after supplying air to the air reduction electrode, and an electrolyte chamber is provided between the fuel oxidation electrode and the air reduction electrode, each of which is provided with a current collector plate. Alternatively, a slidable shutter plate having a plurality of through holes is provided at at least one of the boundaries between the air chamber and the electrode adjacent to each of the chambers, and the current collector plate includes the shutter plate. The fuel cell is characterized in that the number of through holes corresponding to each of the plurality of through holes is formed in the same number as the through holes of the shutter plate, and the through holes are arranged in contact with the shutter plate.

【0011】シャッタの駆動方法は、油圧、電動モータ
、超音波モータ、電圧変化による歪みを利用する圧電素
子、電磁石、バイメタル、形状記憶合金等で行うことが
できる。また、シャッタ板、集電板の貫通状の細孔径は
数ミリメータにする。また、シャッタ板の材質はステン
レススチール、フッ素樹脂等の耐食材料が好ましく、そ
の厚さは数ミリメータ以下にすることで充分制御性が確
保できる。
The shutter can be driven using hydraulic pressure, an electric motor, an ultrasonic motor, a piezoelectric element that utilizes distortion caused by voltage changes, an electromagnet, a bimetal, a shape memory alloy, or the like. In addition, the diameter of the through-holes in the shutter plate and the current collector plate should be several millimeters. Further, the material of the shutter plate is preferably a corrosion-resistant material such as stainless steel or fluororesin, and sufficient controllability can be ensured by setting the thickness to several millimeters or less.

【0012】また、シャッタ板の剛性を保つためシャッ
タ板を貫通状の細孔を設けた二つのコレクタ板で挟んで
もよい。
Furthermore, in order to maintain the rigidity of the shutter plate, the shutter plate may be sandwiched between two collector plates provided with through-holes.

【0013】[0013]

【作用および発明の効果】シャッタ板を摺動させるとシ
ャッタ板と集電板のそれぞれに設けられた複数の貫通孔
の各貫通孔同士で形成する燃料または空気が流通できる
貫通状の開口面積を変えることができ、電極の燃料反応
層への燃料の供給量または空気反応層への空気供給量を
応答性よく制御できる。また、電池反応停止時には、前
記シャッタ板と集電板の貫通孔同士が作る貫通口面積を
零にすることにより、燃料が電解質室を経て空気還元電
極に拡散するおそれがなくなる。
[Operation and Effects of the Invention] When the shutter plate is slid, the area of the through-hole through which fuel or air can flow, which is formed between the through holes of the plurality of through holes provided in each of the shutter plate and the current collector plate, is increased. The amount of fuel supplied to the fuel reaction layer of the electrode or the amount of air supplied to the air reaction layer of the electrode can be controlled with good responsiveness. Further, when the battery reaction is stopped, the area of the through-holes formed by the through-holes of the shutter plate and the current collector plate is reduced to zero, thereby eliminating the possibility that fuel will diffuse into the air reduction electrode via the electrolyte chamber.

【0014】こうして、シャッタ板と集電板に貫通孔を
設け、この両者の貫通孔による貫通状開口面積を変える
ことで燃料および空気の供給量を任意にコントロールで
きるので、電池反応の負荷変化への応答性がよい。
[0014] In this way, by providing through holes in the shutter plate and the current collecting plate and changing the area of the through-holes formed by the through holes in both, the amount of fuel and air supplied can be controlled arbitrarily, so that changes in the load of the cell reaction can be achieved. Good responsiveness.

【0015】また、電池反応停止時には前記貫通状開口
面積を零にすることで燃料が空気還元電極側へ拡散して
、電池性能の低下、発熱等を引き起こすおそれがない。
Furthermore, by reducing the area of the through-hole to zero when the battery reaction is stopped, there is no fear that the fuel will diffuse toward the air reduction electrode, causing deterioration in battery performance, heat generation, etc.

【0016】[0016]

【実施例】本発明の実施例を図面と共に説明する。 実施例1 燃料電池1の縦断面図を図1に、図1の燃料室側の側断
面図を図2に示す。燃料酸化電極3および空気還元電極
5に貫通孔6を多数設けたシャッタ7と、該シャッタ板
7の貫通孔6と同一ピッチ、同一面積の貫通孔8を設け
た集電板10をそれぞれ設ける。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described with reference to the drawings. Example 1 A vertical cross-sectional view of a fuel cell 1 is shown in FIG. 1, and a side cross-sectional view on the fuel chamber side of FIG. 1 is shown in FIG. A shutter 7 having a large number of through holes 6 in the fuel oxidation electrode 3 and the air reduction electrode 5, and a current collector plate 10 having through holes 8 having the same pitch and the same area as the through holes 6 of the shutter plate 7 are provided.

【0017】両集電板10、10間にはガス供給層、反
応層11を介して電解質室12を設ける。各シャッタ板
7、7は燃料電池下室14にあるカム15を介してモー
タ16(図2)により上下動できる。このときモータ1
6とカム15の連結軸18にはワンウェイクラッチ19
を設けておくとカム15の回転方向を一方向のみとして
、モータ16オフ時でもシャッタ板7を中途で保持でき
る。このシャッタ板7の上下動により、シャッタ板7の
貫通孔6と集電板10の貫通孔8とがなす貫通状の開口
面積が変化することで、例えば、メタノール等の燃料ま
たは空気の通過量を制御することが可能となる。
An electrolyte chamber 12 is provided between both current collector plates 10, 10 with a gas supply layer and a reaction layer 11 interposed therebetween. Each shutter plate 7, 7 can be moved up and down by a motor 16 (FIG. 2) via a cam 15 located in the fuel cell lower chamber 14. At this time, motor 1
A one-way clutch 19 is connected to the connecting shaft 18 between the 6 and the cam 15.
By providing this, the cam 15 can be rotated in only one direction, and the shutter plate 7 can be held halfway even when the motor 16 is turned off. As the shutter plate 7 moves up and down, the area of the through-hole formed by the through-hole 6 of the shutter plate 7 and the through-hole 8 of the current collector plate 10 changes, so that, for example, the amount of fuel such as methanol or air passing through is changed. It becomes possible to control the

【0018】また、電池反応停止時には、前記貫通孔6
、8間の貫通口面積を零にすることで、燃料が不用意に
電解質室12を透過して空気還元電極5に拡散するおそ
れはなくなる。なお、シャッタ板7の端部は燃料電池壁
面のシール材20でシールしておく。また、図2の左半
分が貫通状の開口が開時であり右半分が貫通状の開口閉
時の状態を示している。
Furthermore, when the battery reaction is stopped, the through hole 6
, 8 eliminates the possibility that the fuel will inadvertently pass through the electrolyte chamber 12 and diffuse into the air reduction electrode 5. Note that the end of the shutter plate 7 is sealed with a fuel cell wall sealant 20. Further, the left half of FIG. 2 shows the state when the penetrating opening is open, and the right half shows the state when the penetrating opening is closed.

【0019】実施例2 図3、図4に本実施例の燃料電池1を示す。本実施例は
燃料室21と燃料酸化電極3との境界部に多数の貫通孔
22を形成した隔壁23を設け、この隔壁23に中心軸
を支持された、回転自在なシャッタ板25に設ける。こ
のシャッタ板25にも隔壁23の細孔22と同一ピッチ
で同一面積の細孔26を形成する。シャッタ板25はそ
の延出ラック部27がモータ29駆動されるピオニン3
0で回動される。
Example 2 FIGS. 3 and 4 show the fuel cell 1 of this example. In this embodiment, a partition wall 23 having a large number of through holes 22 is provided at the boundary between the fuel chamber 21 and the fuel oxidizing electrode 3, and a rotatable shutter plate 25 is provided with a central axis supported by the partition wall 23. This shutter plate 25 is also formed with pores 26 having the same pitch and the same area as the pores 22 of the partition wall 23. The shutter plate 25 has an extended rack portion 27 driven by a motor 29.
Rotated at 0.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の燃料電池の断面図である。FIG. 1 is a sectional view of a fuel cell according to an embodiment of the present invention.

【図2】図1の燃料電池の正面から見た一部断面図であ
る。
FIG. 2 is a partial cross-sectional view of the fuel cell of FIG. 1 seen from the front.

【図3】本発明の他の実施例の燃料電池の断面図である
FIG. 3 is a sectional view of a fuel cell according to another embodiment of the present invention.

【図4】図3の実施例の燃料電池の正面から見た一部断
面図である。
FIG. 4 is a partial cross-sectional view of the fuel cell of the embodiment shown in FIG. 3, seen from the front.

【図5】燃料電池の各電極の詳細図である。FIG. 5 is a detailed diagram of each electrode of the fuel cell.

【符号の説明】[Explanation of symbols]

3    燃料酸化電極 5    空気還元電極 7    シャッター板 10  集電体 6、8、22、26  細孔 7、25  シャッタ板 3 Fuel oxidation electrode 5 Air reduction electrode 7 Shutter board 10 Current collector 6, 8, 22, 26 Pore 7, 25 Shutter board

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  燃料酸化電極に燃料を供給した後、排
出する燃料給排路を備えた燃料室と、空気還元電極に空
気を供給した後、排出する空気給排路を備えた空気室と
、集電板をそれぞれ備えた燃料酸化電極と空気還元電極
間に電解質室を設けた燃料電極において、燃料室または
空気室と前記各室に隣接する電極との境界部の少なくと
もいずれかの境界部に、複数の貫通孔を形成した摺動自
在のシャッタ板を設け、前記集電板には、前記シャッタ
板の前記複数の貫通孔の各孔に対応した形状の貫通孔を
シャッタ板の貫通孔と同数形成し、該シャッタ板に接し
て配置することを特徴とする燃料電池。
Claim 1: A fuel chamber equipped with a fuel supply/discharge passage for supplying and discharging fuel to a fuel oxidation electrode, and an air chamber equipped with an air supply/discharge passage for supplying and discharging air to an air reduction electrode. , in a fuel electrode in which an electrolyte chamber is provided between a fuel oxidation electrode and an air reduction electrode, each of which has a current collector plate, at least one of the boundaries between the fuel chamber or the air chamber and an electrode adjacent to each chamber; is provided with a slidable shutter plate having a plurality of through holes formed therein, and the current collector plate is provided with a through hole having a shape corresponding to each of the plurality of through holes of the shutter plate. A fuel cell, characterized in that the same number of fuel cells are formed and arranged in contact with the shutter plate.
JP3036031A 1991-03-01 1991-03-01 Fuel cell Pending JPH04274174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3036031A JPH04274174A (en) 1991-03-01 1991-03-01 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3036031A JPH04274174A (en) 1991-03-01 1991-03-01 Fuel cell

Publications (1)

Publication Number Publication Date
JPH04274174A true JPH04274174A (en) 1992-09-30

Family

ID=12458348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3036031A Pending JPH04274174A (en) 1991-03-01 1991-03-01 Fuel cell

Country Status (1)

Country Link
JP (1) JPH04274174A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249419A (en) * 1994-03-08 1995-09-26 Hitachi Ltd Fuel cell
WO1999005739A1 (en) * 1997-07-26 1999-02-04 Volkswagen Aktiengesellschaft Method and device for filling a fuel cell stack
US6497971B1 (en) * 1999-03-08 2002-12-24 Utc Fuel Cells, Llc Method and apparatus for improved delivery of input reactants to a fuel cell assembly
JP2003031240A (en) * 2001-07-12 2003-01-31 Kemitsukusu:Kk Small-sized solid polymer fuel cell and separator for fuel cell
JP2005122972A (en) * 2003-10-15 2005-05-12 Matsushita Electric Ind Co Ltd Fuel cell system, and operating method of the same
JP2005322591A (en) * 2004-05-11 2005-11-17 Toyota Motor Corp Fuel cell
JP2006120441A (en) * 2004-10-21 2006-05-11 Electric Power Dev Co Ltd Fuel cell
JP2006523938A (en) * 2003-04-15 2006-10-19 エムティーアイ・マイクロフューエル・セルズ・インコーポレイテッド Steam fuel supply fuel cell using controllable fuel supply
JP2006338932A (en) * 2005-05-31 2006-12-14 Sanyo Electric Co Ltd Fuel cell
JP2007123039A (en) * 2005-10-27 2007-05-17 Fujitsu Ltd Fuel cell
JP2007123145A (en) * 2005-10-31 2007-05-17 Equos Research Co Ltd Fuel cell stack and its controlling method
JP2007317371A (en) * 2006-05-23 2007-12-06 Sharp Corp Fuel cell and fuel cell mounting apparatus
WO2008026245A1 (en) * 2006-08-29 2008-03-06 Fujitsu Limited Fuel cell
JP2008091045A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Fuel cell
JP2010103033A (en) * 2008-10-27 2010-05-06 Fujitsu Ltd Fuel cell
US20100239943A1 (en) * 2007-05-14 2010-09-23 Kenji Kobayashi Solid polymer fuel cell
JP2011505673A (en) * 2007-12-06 2011-02-24 ダイムラー・アクチェンゲゼルシャフト Fuel cell system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249419A (en) * 1994-03-08 1995-09-26 Hitachi Ltd Fuel cell
WO1999005739A1 (en) * 1997-07-26 1999-02-04 Volkswagen Aktiengesellschaft Method and device for filling a fuel cell stack
US6534209B1 (en) 1997-07-26 2003-03-18 Volkswagen Ag Method and device for filling a fuel cell stack
US6497971B1 (en) * 1999-03-08 2002-12-24 Utc Fuel Cells, Llc Method and apparatus for improved delivery of input reactants to a fuel cell assembly
JP2003031240A (en) * 2001-07-12 2003-01-31 Kemitsukusu:Kk Small-sized solid polymer fuel cell and separator for fuel cell
JP2006523938A (en) * 2003-04-15 2006-10-19 エムティーアイ・マイクロフューエル・セルズ・インコーポレイテッド Steam fuel supply fuel cell using controllable fuel supply
JP2005122972A (en) * 2003-10-15 2005-05-12 Matsushita Electric Ind Co Ltd Fuel cell system, and operating method of the same
JP2005322591A (en) * 2004-05-11 2005-11-17 Toyota Motor Corp Fuel cell
JP2006120441A (en) * 2004-10-21 2006-05-11 Electric Power Dev Co Ltd Fuel cell
JP2006338932A (en) * 2005-05-31 2006-12-14 Sanyo Electric Co Ltd Fuel cell
JP2007123039A (en) * 2005-10-27 2007-05-17 Fujitsu Ltd Fuel cell
JP2007123145A (en) * 2005-10-31 2007-05-17 Equos Research Co Ltd Fuel cell stack and its controlling method
JP2007317371A (en) * 2006-05-23 2007-12-06 Sharp Corp Fuel cell and fuel cell mounting apparatus
WO2008026245A1 (en) * 2006-08-29 2008-03-06 Fujitsu Limited Fuel cell
JP2008091045A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Fuel cell
US20100239943A1 (en) * 2007-05-14 2010-09-23 Kenji Kobayashi Solid polymer fuel cell
US8252482B2 (en) * 2007-05-14 2012-08-28 Nec Corporation Solid polymer fuel cell
JP2011505673A (en) * 2007-12-06 2011-02-24 ダイムラー・アクチェンゲゼルシャフト Fuel cell system
JP2010103033A (en) * 2008-10-27 2010-05-06 Fujitsu Ltd Fuel cell

Similar Documents

Publication Publication Date Title
JPH04274174A (en) Fuel cell
JP4172174B2 (en) Fuel cell
JP2007234543A (en) Fuel cell
JPH1131520A (en) Solid high molecular type fuel cell
KR20210011204A (en) Humidifier for fuel cell
KR20200101590A (en) Humidifier for a fuel cell
JP3502508B2 (en) Direct methanol fuel cell
JP2002334708A (en) Fuel cell
JPH03238759A (en) Fuel cell of solid electrolyte type
JP4643393B2 (en) Fuel cell
JP2007048517A (en) Fuel cell system
KR20200069944A (en) Humidifier for a fuel cell
JP4606038B2 (en) POLYMER ELECTROLYTE FUEL CELL AND METHOD OF OPERATING THE SAME
JP2006120572A (en) Fuel cell
JPH10208757A (en) Fuel cell generating set
JPH09161819A (en) Solid polymer electrolytic fuel cell
JP3575650B2 (en) Molten carbonate fuel cell
JP2006147503A (en) Fuel cell stack
JP4643394B2 (en) Fuel cell
US3337368A (en) Non-porous hydrogen diffusion fuel cell electrodes
KR100689332B1 (en) Methanol supply apparatus for fuel cell and method thereof
KR101008738B1 (en) Fuel Cell Assembly
JPH06267562A (en) Solid high polymer electrolyte fuel cell
JPH04370664A (en) Fuel cell
JP2005203301A (en) Fuel cell and fuel cell stack