JPH04273954A - Refrigerant amount adjusting device in refrigerating cycle - Google Patents

Refrigerant amount adjusting device in refrigerating cycle

Info

Publication number
JPH04273954A
JPH04273954A JP3467891A JP3467891A JPH04273954A JP H04273954 A JPH04273954 A JP H04273954A JP 3467891 A JP3467891 A JP 3467891A JP 3467891 A JP3467891 A JP 3467891A JP H04273954 A JPH04273954 A JP H04273954A
Authority
JP
Japan
Prior art keywords
pressure reducing
heat exchanger
reducing devices
compressor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3467891A
Other languages
Japanese (ja)
Inventor
Takeshi Sato
武 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3467891A priority Critical patent/JPH04273954A/en
Publication of JPH04273954A publication Critical patent/JPH04273954A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To maintain the amount of refrigerant circulated at an appropriate level by a method wherein, in an air conditioning machine having the devices as shown in the diagram, a pair of pressure reducing devices for recycling side is provided in series connection between indoor and outdoor heat exchangers, a bypass passage connects the discharge and suction sides of a compressor and has a pair of pressure reducing devices for the bypass side connected in series and a liquid tank is disposed in communication with an intermediate point between each pair of the pressure reducing devices. CONSTITUTION:A refrigerating cycle which comprises a compressor 1; a four- way valve 2, an outdoor heat exchanger 3; a pair of pressure reducing devices 4a and 4b for refrigerating cycle side provided in series connection; an indoor heat exchanger 5, the pressure reducing devices 4a and 4b being located between the outdoor and indoor heat exchangers 3 and 5; a bypass passage 6 connecting the discharge and the suction sides of a compressor 2 and having a pair of pressure reducing devices 7a and 7b for the bypass side connected in series; and a liquid tank 9 disposed in communication with an intermediate point between each pair of the pressure reducing devices 4a, 4b and 7a, 7b.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、空気調和機の冷凍サイ
クルに係り、特に冷凍サイクル内の冷媒循環量を適正に
保つことができる冷凍サイクルの冷媒量調整装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle for an air conditioner, and more particularly to a refrigerant amount adjusting device for a refrigeration cycle that can maintain an appropriate amount of refrigerant circulating within the refrigeration cycle.

【0002】0002

【従来の技術】空気調和機の冷凍サイクルは、図3に示
すように圧縮機1,四方弁2,室外熱交換器3,膨張弁
などの減圧装置4,室内熱交換器5を順次接続してなり
、冷房時は圧縮機1からの高温高圧冷媒ガスを室外熱交
換器3に流して凝縮させ、減圧装置4で減圧し、室内熱
交換器5で蒸発させて室内冷房を行った後、圧縮機1に
戻し、暖房時は四方弁2の切り替えで冷房時と逆に高温
高圧冷媒ガスを室内熱交換器5に流し、そこで凝縮させ
て室内を暖房し、減圧装置4で減圧した後、室外熱交換
器3で蒸発させて圧縮機に戻すようにしている。
2. Description of the Related Art As shown in FIG. 3, the refrigeration cycle of an air conditioner consists of a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a pressure reducing device 4 such as an expansion valve, and an indoor heat exchanger 5 connected in sequence. Therefore, during cooling, high-temperature, high-pressure refrigerant gas from the compressor 1 is passed through the outdoor heat exchanger 3 to be condensed, reduced in pressure by the pressure reducing device 4, and evaporated in the indoor heat exchanger 5 to perform indoor cooling. The refrigerant gas is returned to the compressor 1, and during heating, the four-way valve 2 is switched to flow the high-temperature, high-pressure refrigerant gas to the indoor heat exchanger 5, in the opposite direction to that during cooling, where it is condensed to heat the room, and after being depressurized by the pressure reducing device 4, It is evaporated in the outdoor heat exchanger 3 and returned to the compressor.

【0003】この冷凍サイクルにおいて、減圧装置は圧
縮機1の吸込み温度でその開度が制御され、吸込温度が
高いときはその開度を開くよう、また吸込温度が低いと
きは開度を絞るように制御している。
[0003] In this refrigeration cycle, the opening degree of the pressure reducing device is controlled by the suction temperature of the compressor 1, and when the suction temperature is high, the opening degree is opened, and when the suction temperature is low, the opening degree is narrowed. is controlled.

【0004】0004

【発明が解決しようとする課題】しかしながら、この冷
凍サイクル内に封入する冷媒量が過多状態であるとき、
凝縮側の熱交換器に液冷媒が溜りやすくなり、その熱交
換器の放熱性能が低下し、圧縮機1の消費電力の増加や
冷凍能力(冷暖房能力)の低下などの問題が生じる。ま
たさらに最悪の状態では蒸発側熱交換器での冷媒蒸発が
十分に行われず、圧縮機の液バックが生じ、圧縮機の故
障を引き起こす原因ともなる。
[Problem to be solved by the invention] However, when the amount of refrigerant sealed in this refrigeration cycle is excessive,
Liquid refrigerant tends to accumulate in the heat exchanger on the condensing side, and the heat dissipation performance of the heat exchanger decreases, causing problems such as an increase in power consumption of the compressor 1 and a decrease in refrigeration capacity (cooling and heating capacity). Furthermore, in the worst case, the refrigerant is not sufficiently evaporated in the evaporation side heat exchanger, causing liquid backflow in the compressor, which may cause a failure of the compressor.

【0005】またスプリット形などの分離型冷凍サイク
ルの場合には、冷媒の封入量は室内機と室外機とを接続
する接続配管長さの据付状況によって変りやすく、適正
な冷媒封入量とすることが難しく、冷媒の追加や放出な
どの調整が必要となり、その据付工事の悪化を招く問題
がある。
[0005] Furthermore, in the case of a separate type refrigeration cycle such as a split type, the amount of refrigerant charged tends to change depending on the installation situation of the length of the connecting piping that connects the indoor unit and the outdoor unit, so it is necessary to keep the appropriate amount of refrigerant filled. This is difficult and requires adjustments such as addition and release of refrigerant, which poses a problem that leads to deterioration of the installation work.

【0006】また冷媒封入量が適切でも、冷暖房運転の
状況に応じてはサイクル内の循環冷媒が不足したり過多
となる場合があり、必ずしも減圧装置の開度制御だけで
は負荷に対応した運転ができない問題がある。
Furthermore, even if the amount of refrigerant charged is appropriate, there may be a shortage or excess of refrigerant circulating in the cycle depending on the conditions of the heating and cooling operation, and it is not always possible to operate the refrigerant according to the load by simply controlling the opening of the pressure reducing device. There is a problem that cannot be done.

【0007】そこで、本発明の目的は、上記課題を解決
し、冷凍サイクル内の冷媒循環量を適切に保つことがで
きる冷凍サイクルの冷媒量調整装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a refrigerant amount adjusting device for a refrigeration cycle that can solve the above-mentioned problems and maintain an appropriate amount of refrigerant circulating within the refrigeration cycle.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明は、圧縮機、室外熱交換器、減圧装置、室内熱
交換器を順次接続した冷凍サイクルにおいて、室外熱交
換器と室内熱交換器の間に二つのサイクル側減圧装置を
直列に接続し、他方圧縮機の吐出側と吸込側間をパイパ
ス通路で接続すると共にそのバイパス通路に二つのバイ
パス側減圧装置を直列に接続し、これらサイクル側とバ
イパス側の減圧装置の中間点を液タンクで連通したもの
である。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a refrigeration cycle in which a compressor, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger are sequentially connected. Two cycle-side pressure reducing devices are connected in series between the exchanger, and a bypass passage connects the discharge side and suction side of the other compressor, and two bypass-side pressure reducing devices are connected in series to the bypass passage, The middle point between the pressure reducing devices on the cycle side and the bypass side is connected through a liquid tank.

【0009】[0009]

【作用】上記構成によれば、運転状況に応じてサイクル
側の二つの減圧装置の開度を調整することで、サイクル
側の減圧装置間とバイパス側の減圧装置間の圧力差を調
整でき、これにより液タンクに溜まった冷媒液を冷凍サ
イクルに戻したり或いは冷凍サイクル内の冷媒を液タン
クに貯溜して、冷凍サイクルを実質的に流れる冷媒循環
量を最適に調整できる。
[Operation] According to the above configuration, by adjusting the opening degrees of the two pressure reducing devices on the cycle side according to the operating conditions, the pressure difference between the pressure reducing devices on the cycle side and the pressure reducing device on the bypass side can be adjusted. Thereby, the refrigerant liquid accumulated in the liquid tank can be returned to the refrigeration cycle, or the refrigerant in the refrigeration cycle can be stored in the liquid tank, so that the amount of refrigerant circulated that substantially flows through the refrigeration cycle can be optimally adjusted.

【0010】0010

【実施例】以下、本発明の一実施例を添付図面に基づい
て詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

【0011】図1において、1は圧縮機、2は四方弁,
3は室外熱交換器,4a,4bは二つ直列接続された電
子膨張弁などからなるサイクル側第1及び第2減圧装置
,4は室内熱交換器で、これらは順次接続されて冷凍サ
イクルが構成される。
In FIG. 1, 1 is a compressor, 2 is a four-way valve,
3 is an outdoor heat exchanger, 4a and 4b are cycle-side first and second pressure reducing devices consisting of two electronic expansion valves connected in series, and 4 is an indoor heat exchanger, which are connected in sequence to form a refrigeration cycle. configured.

【0012】圧縮機1の吐出側と吸込側とはバイパス通
路6で接続されると共にそのバイパス通路6にキャピラ
リーチューブなどからなる二つのバイパス側第1及び第
2減圧装置7a,7bが直列に接続される。
The discharge side and suction side of the compressor 1 are connected by a bypass passage 6, and two bypass side first and second pressure reducing devices 7a and 7b, each made of a capillary tube or the like, are connected in series to the bypass passage 6. be done.

【0013】このサイクル側第1及び第2減圧装置4a
,4bの中間点Aとバイパス側第1及び第2減圧装置7
a,7bの中間点Bとは連通パイプ8で接続され、その
パイプ8に液タンク9が接続される。この液タンク9は
、略垂直に起立されて設けられ、底部が中間点A側に接
続され、上部が中間点B側に接続される。
[0013] This cycle side first and second pressure reducing devices 4a
, 4b and the bypass side first and second pressure reducing devices 7
The intermediate point B between a and 7b is connected by a communication pipe 8, and a liquid tank 9 is connected to the pipe 8. This liquid tank 9 is provided to stand up substantially vertically, and its bottom portion is connected to the intermediate point A side, and its upper portion is connected to the intermediate point B side.

【0014】この冷凍サイクルには各箇所の冷媒温度を
検出するセンサが設けられる。すなわち圧縮機1の吸込
側配管には吸込温度センサ10が設けられ、また室外熱
交換器3には、室外熱交中間温度センサ11が設けられ
、またその熱交換器3の冷房時の出口側には、出口温度
センサ12が設けられる。さらに室内熱交換器5には室
内熱交中間温度センサ13が設けられ、また暖房時の出
口側に出口温度センサ14が設けられる。
[0014] This refrigeration cycle is provided with a sensor for detecting the refrigerant temperature at each location. That is, the suction side piping of the compressor 1 is provided with a suction temperature sensor 10, and the outdoor heat exchanger 3 is provided with an outdoor heat exchange intermediate temperature sensor 11, and the outlet side of the heat exchanger 3 during cooling is provided with an outdoor heat exchanger intermediate temperature sensor 11. is provided with an outlet temperature sensor 12. Further, the indoor heat exchanger 5 is provided with an indoor heat exchange intermediate temperature sensor 13, and an outlet temperature sensor 14 is provided on the exit side during heating.

【0015】液タンク9には、液面レベル検出センサ1
5が設けられる。
A liquid level detection sensor 1 is installed in the liquid tank 9.
5 is provided.

【0016】これらセンサ10,11,12,13,1
4,15の検出値は制御装置16に入力され、その検出
値に応じてサイクル側第1及び第2減圧装置4a,4b
の弁開度が制御されるようになっている。
These sensors 10, 11, 12, 13, 1
The detected values 4 and 15 are input to the control device 16, and the cycle side first and second pressure reducing devices 4a and 4b are activated according to the detected values.
The valve opening degree of the valve is controlled.

【0017】次に本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

【0018】冷房運転時、圧縮機1からの高温高圧冷媒
ガスは四方弁2を介して室外熱交換器3に流れ、そこで
凝縮され、サイクル側第1及び第2減圧装置4a,4b
で減圧され、室内熱交換器5で蒸発されて室内の冷房を
行った後、四方弁2を介して圧縮機1に戻される。また
暖房運転時、四方弁2の切り替えで冷房時と逆に高温高
圧冷媒ガスが室内熱交換器5に流れ、そこで凝縮されて
室内を暖房した後、サイクル側第2及び第1減圧装置4
b,4aで減圧された後、室外熱交換器3に流れ、そこ
で蒸発されて圧縮機1に戻るようになっている。
During cooling operation, high-temperature, high-pressure refrigerant gas from the compressor 1 flows through the four-way valve 2 to the outdoor heat exchanger 3, where it is condensed, and is then transferred to the cycle-side first and second pressure reducing devices 4a, 4b.
After being evaporated in the indoor heat exchanger 5 to cool the room, it is returned to the compressor 1 via the four-way valve 2. In addition, during heating operation, high-temperature, high-pressure refrigerant gas flows into the indoor heat exchanger 5 by switching the four-way valve 2, contrary to the case during cooling, and is condensed there to heat the room.
After being depressurized in b and 4a, it flows to the outdoor heat exchanger 3, where it is evaporated and returned to the compressor 1.

【0019】この冷暖房運転時、圧縮機1から高温高圧
冷媒ガスの一部は、バイパス通路6に流れバイパス側第
1及び第2減圧装置7a,7bを通って圧縮機1に戻る
が、このバイパス側第1及び第2減圧装置7a,7bの
中間点Bとサイクル側第1及び第2減圧装置4a,4b
の中間点A間圧力差により、すなわち中間点Aの圧力が
中間点Bより高い時は、液タンク9内に冷房時はサイク
ル側第1減圧装置4aから、暖房時はサイクル側第2減
圧装置4bからの冷媒液が流入して貯溜され、また中間
点Aの圧力が中間点Bの圧力より低い時は液タンク9内
の冷媒液が蒸発器(冷房時は室内熱交換器5,暖房時は
室外熱交換器3)に流れ、冷凍サイクル内の冷媒循環量
が調整される。
During this heating and cooling operation, a part of the high temperature and high pressure refrigerant gas from the compressor 1 flows into the bypass passage 6 and returns to the compressor 1 through the bypass side first and second pressure reducing devices 7a and 7b. Intermediate point B between the first and second pressure reducing devices 7a and 7b on the side and the first and second pressure reducing devices 4a and 4b on the cycle side
Due to the pressure difference between intermediate points A, that is, when the pressure at intermediate point A is higher than intermediate point B, the liquid is supplied into the tank 9 from the first pressure reducing device 4a on the cycle side during cooling, and from the second pressure reducing device on the cycle side during heating. The refrigerant liquid from 4b flows in and is stored, and when the pressure at intermediate point A is lower than the pressure at intermediate point B, the refrigerant liquid in liquid tank 9 is transferred to the evaporator (indoor heat exchanger 5 during cooling, indoor heat exchanger 5 during heating) flows to the outdoor heat exchanger 3), and the amount of refrigerant circulated within the refrigeration cycle is adjusted.

【0020】この冷凍サイクル内の冷媒循環量の調整は
、制御装置16が、センサー10,11,12,13,
14の検出値よりサイクル側第1及び第2減圧装置4a
,4bの開度を調節することで行う。すなわち、制御装
置16は、センサー10,11,12,13,14の検
出値より冷凍サイクル内でのアンダークールの大小とス
ーパーヒートの大小を検出し、それに応じてサイクル側
第1及び第2減圧装置4a,4bの開度を調節する。先
ずアンダークールは、冷房時室外熱交中間温度センサ1
1と出口温度センサ12の温度差より、また暖房時室内
熱交中間温度センサ13と出口温度センサ14の温度差
より求める。またスーパーヒートは、冷房時吸込温度セ
ンサ10と出口温度センサ14(又は室外熱交中間温度
センサ11)の温度差、暖房時吸込温度センサ10と出
口温度センサ14(又は室内熱交中間温度センサ13)
の温度差より求める。
The control device 16 controls the amount of refrigerant circulated within the refrigeration cycle using the sensors 10, 11, 12, 13,
From the detected value of 14, the cycle side first and second pressure reducing devices 4a
, 4b by adjusting the opening degree. That is, the control device 16 detects the magnitude of undercooling and superheating in the refrigeration cycle from the detected values of the sensors 10, 11, 12, 13, and 14, and adjusts the first and second reduced pressures on the cycle side accordingly. Adjust the opening degrees of devices 4a and 4b. First, undercool is the outdoor heat exchanger intermediate temperature sensor 1 during cooling.
1 and the outlet temperature sensor 12, and also from the temperature difference between the indoor heat exchange intermediate temperature sensor 13 and the outlet temperature sensor 14 during heating. In addition, superheat is caused by the temperature difference between the cooling suction temperature sensor 10 and the outlet temperature sensor 14 (or the outdoor heat exchanger intermediate temperature sensor 11), the heating suction temperature sensor 10 and the outlet temperature sensor 14 (or the indoor heat exchanger intermediate temperature sensor 13), )
Calculated from the temperature difference between

【0021】このアンダークールが大きい時は冷媒循環
量が多いとして液タンク9内に液を溜め、また小さい時
は液タンク9内の冷媒液を冷凍サイクルに戻すようにサ
イクル側第1及び第2減圧装置4a,4bの開度を調節
し、またスーパーヒートが大きい時は、その第1及び第
2減圧装置4a,4bの開度を開きまた小さいときはサ
イクル側第1及び第2減圧装置4a,4bの開度を絞る
ように調節する。また液タンク9内の冷媒液は、液面レ
ベル検出センサ15で検出され、タンク9内の冷媒液が
満液又は空の時、制御装置16は圧縮機1の運転を停止
する。
When this undercool is large, the refrigerant circulation amount is large and the liquid is stored in the liquid tank 9, and when it is small, the refrigerant liquid in the liquid tank 9 is returned to the refrigeration cycle by the cycle side first and second The opening degrees of the pressure reducing devices 4a and 4b are adjusted, and when the superheat is large, the opening degrees of the first and second pressure reducing devices 4a and 4b are adjusted, and when the superheat is small, the opening degrees of the first and second pressure reducing devices 4a on the cycle side are adjusted. , 4b to narrow the opening. Further, the refrigerant liquid in the liquid tank 9 is detected by a liquid level detection sensor 15, and when the refrigerant liquid in the tank 9 is full or empty, the control device 16 stops the operation of the compressor 1.

【0022】次にこの制御装置16を図2のフローチャ
ートを基にさらに詳しく説明する。
Next, this control device 16 will be explained in more detail based on the flowchart of FIG.

【0023】先ずこのフローチャートは冷房運転時の例
を示したもので、冷房運転が開始されると、アンダーク
ールが設定範囲より大きいか小さいかを判断20し、大
きければ、第1減圧装置4aを開方向に、また第2減圧
装置4bを閉方向に開度調整21を行う。この開度調整
により中間点Aの圧力が中間点Bの圧力より高くなり、
第1減圧装置4aから凝縮液冷媒が液タンク9に溜めら
れるため、アンダークールが適正になるよう調整される
。また判断20でアンダークールが設定より小さければ
、第1減圧装置4aを閉方向に、また第2減圧装置4b
を開方向に開度調整22を行う。この開度調整により中
間点Aの圧力が中間点Bの圧力より低くなりタンク9内
の液冷媒が第2減圧装置4bを介してサイクル側に供給
されることとなりアンダークールが適正になるよう調整
される。
First, this flowchart shows an example during cooling operation. When cooling operation is started, it is determined 20 whether the undercool is larger or smaller than the set range, and if it is larger, the first pressure reducing device 4a is activated. The opening degree adjustment 21 is performed in the opening direction and in the closing direction of the second pressure reducing device 4b. Due to this opening adjustment, the pressure at intermediate point A becomes higher than the pressure at intermediate point B.
Since the condensed refrigerant from the first pressure reducing device 4a is stored in the liquid tank 9, undercooling is adjusted to be appropriate. Further, if the undercool is smaller than the setting in judgment 20, the first pressure reducing device 4a is moved to the closing direction, and the second pressure reducing device 4b is moved to the closing direction.
Opening adjustment 22 is performed in the opening direction. By adjusting the opening, the pressure at intermediate point A becomes lower than the pressure at intermediate point B, and the liquid refrigerant in the tank 9 is supplied to the cycle side via the second pressure reducing device 4b, so that the undercooling is adjusted to be appropriate. be done.

【0024】次にアンダークールが適正であれば、次に
スーパーヒートが設定範囲より大きいか小さいかを判断
23し、大きければ、過熱状態を防止すべく第1及び第
2減圧装置4a,4bを共に開方向に開度を開いて減圧
度を低くしてスーパーヒートを適正値まで下げる調整2
4を行い、またスーパーヒートが小さければ、液バック
を防止すべく、第1及び第2減圧装置4a,4bを共に
閉方向に開度を絞ってスーパーヒートを適正値まで上げ
る調整25を行う。またスーパーヒートが適正であれば
次に液面レベルの判断26を行い、タンク内が満液や空
の時は圧縮機を停止するなどの異常停止処理27を行う
Next, if the undercool is appropriate, it is then determined 23 whether the superheat is larger or smaller than the set range, and if it is, the first and second pressure reducing devices 4a and 4b are activated to prevent overheating. Adjustment 2 to lower the super heat to the appropriate value by opening both in the opening direction and lowering the degree of decompression.
4, and if the superheat is small, adjustment 25 is performed to increase the superheat to an appropriate value by narrowing the opening degrees of both the first and second pressure reducing devices 4a and 4b in the closing direction in order to prevent liquid back. Furthermore, if the superheat is appropriate, the liquid level is next determined 26, and if the tank is full or empty, an abnormal stop process 27 such as stopping the compressor is performed.

【0025】[0025]

【発明の効果】以上要するに本発明によれば、冷凍サイ
クルに二つの減圧装置を設け、他方圧縮機の吐出側と吸
込側間に二つのバイパス側減圧装置を接続し、これらサ
イクル側とバイパス側の減圧装置の中間点を液タンクで
連通することで、バイパス側の減圧装置の開度を調整し
て液タンクに溜まった冷媒液を冷凍サイクルに戻したり
或いは冷凍サイクル内の冷媒を液タンクに貯溜して、冷
凍サイクルを実質的に流れる冷媒循環量を最適に調整で
きる。従って(1) アンダークール過多となり凝縮側
の性能が低下し、消費電力の増大、冷凍能力の低下と言
った問題がなくなる。(2) 冷媒過多時に圧縮機に液
冷媒が戻り故障を起こす危険がなくなる。(3) 施工
時に冷媒の追加・放出などの調整が不要となり工事性が
改善される。 (4) 異なる形態の室内ユニットを接続する場合に冷
媒量、絞りなどを自己調整するため、開発にかかる負荷
が低減できる。(5) 異なる空調条件でも常に最適な
制御を行える等の効果を奏する。
In summary, according to the present invention, two pressure reducing devices are provided in the refrigeration cycle, and two bypass side pressure reducing devices are connected between the discharge side and the suction side of the compressor. By communicating the intermediate point of the pressure reducing device with a liquid tank, the opening degree of the pressure reducing device on the bypass side can be adjusted to return the refrigerant liquid accumulated in the liquid tank to the refrigeration cycle, or to transfer the refrigerant in the refrigeration cycle to the liquid tank. By storing the refrigerant, it is possible to optimally adjust the circulating amount of refrigerant that essentially flows through the refrigeration cycle. Therefore, problems such as (1) excessive undercooling and deterioration of performance on the condensing side, increased power consumption, and decreased refrigerating capacity are eliminated. (2) When there is an excess of refrigerant, liquid refrigerant returns to the compressor, eliminating the risk of malfunction. (3) There is no need to make adjustments such as adding or releasing refrigerant during construction, improving workability. (4) When connecting indoor units of different types, the amount of refrigerant, throttle, etc. are self-adjusted, reducing the development load. (5) It is possible to always perform optimal control even under different air conditioning conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を示す冷凍サイクル図である
FIG. 1 is a refrigeration cycle diagram showing one embodiment of the present invention.

【図2】本発明のフローチャートを示す図である。FIG. 2 is a diagram showing a flowchart of the present invention.

【図3】従来の冷凍サイクルを示す図である。FIG. 3 is a diagram showing a conventional refrigeration cycle.

【符号の説明】[Explanation of symbols]

1  圧縮機 2  四方弁 3  室外熱交換器 4a,4b  サイクル側減圧装置 5  室内熱交換器 7a,7b  バイパス側減圧装置 9  液タンク 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4a, 4b Cycle side pressure reducing device 5 Indoor heat exchanger 7a, 7b Bypass side pressure reducing device 9 Liquid tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  圧縮機、室外熱交換器、減圧装置、室
内熱交換器を順次接続した冷凍サイクルにおいて、室外
熱交換器と室内熱交換器の間に二つのサイクル側減圧装
置を直列に接続し、他方圧縮機の吐出側と吸込側間をパ
イパス通路で接続すると共にそのバイパス通路に二つの
バイパス側減圧装置を直列に接続し、これらサイクル側
とバイパス側の減圧装置の中間点を液タンクで連通した
ことを特徴とする冷凍サイクルの冷媒量調整装置。
Claim 1: In a refrigeration cycle in which a compressor, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger are connected in sequence, two cycle-side pressure reducing devices are connected in series between the outdoor heat exchanger and the indoor heat exchanger. On the other hand, the discharge side and suction side of the compressor are connected by a bypass passage, and two bypass side pressure reducing devices are connected in series to the bypass passage, and the intermediate point between the cycle side and bypass side pressure reducing devices is connected to the liquid tank. A refrigerant amount adjusting device for a refrigeration cycle, characterized in that the device communicates with the refrigerant amount.
JP3467891A 1991-02-28 1991-02-28 Refrigerant amount adjusting device in refrigerating cycle Pending JPH04273954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3467891A JPH04273954A (en) 1991-02-28 1991-02-28 Refrigerant amount adjusting device in refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3467891A JPH04273954A (en) 1991-02-28 1991-02-28 Refrigerant amount adjusting device in refrigerating cycle

Publications (1)

Publication Number Publication Date
JPH04273954A true JPH04273954A (en) 1992-09-30

Family

ID=12421081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3467891A Pending JPH04273954A (en) 1991-02-28 1991-02-28 Refrigerant amount adjusting device in refrigerating cycle

Country Status (1)

Country Link
JP (1) JPH04273954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111649446A (en) * 2020-05-13 2020-09-11 宁波奥克斯电气股份有限公司 Automatic liquid collection control method and system for air conditioner and air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111649446A (en) * 2020-05-13 2020-09-11 宁波奥克斯电气股份有限公司 Automatic liquid collection control method and system for air conditioner and air conditioner

Similar Documents

Publication Publication Date Title
WO2013088590A1 (en) Outdoor unit and air-conditioning device
AU2010238051B2 (en) Heat source unit
CN114322106B (en) Air conditioning system
JPH11142010A (en) Refrigeration air conditioner
JP2019086251A (en) Control device of multi-type air conditioning device, multi-type air conditioning device, control method of multi-type air conditioning device, and control program of multi-type air conditioning device
US20040107709A1 (en) Method for operating compressors of air conditioner
JPH08254376A (en) Air conditioner
EP0622594B1 (en) Air-conditioner
JP2987951B2 (en) Operation control device for air conditioner
JPH11173698A (en) Refrigeration cycle
JPH04324069A (en) Refrigerating plant
JP2910260B2 (en) Air conditioner and operation controller of air conditioner
JPH04273954A (en) Refrigerant amount adjusting device in refrigerating cycle
JPH0682113A (en) Multi-room air-conditioning apparatus
JPH06317360A (en) Multi-chamber type air conditioner
JP2001099512A (en) Heat source unit for heat pump type air conditioner
JPH04214153A (en) Refrigerating cycle device
EP4310416A1 (en) Hybrid multi-air conditioning system
JP2003065584A (en) Air-conditioning apparatus and its control method
JPH03122460A (en) Operating controller for refrigerating machine
JPH04222354A (en) Operation controller for refrigerating equipment
JPH01169272A (en) Device for coolant
JPH01121641A (en) Air conditioning system for building
JP2719456B2 (en) Air conditioner
JPH07158981A (en) Air conditioning device