JPH04273782A - X-ray fluoroscopic image processor - Google Patents
X-ray fluoroscopic image processorInfo
- Publication number
- JPH04273782A JPH04273782A JP3059301A JP5930191A JPH04273782A JP H04273782 A JPH04273782 A JP H04273782A JP 3059301 A JP3059301 A JP 3059301A JP 5930191 A JP5930191 A JP 5930191A JP H04273782 A JPH04273782 A JP H04273782A
- Authority
- JP
- Japan
- Prior art keywords
- image
- ray fluoroscopic
- integration
- processing
- picture element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000015654 memory Effects 0.000 abstract description 19
- 230000010354 integration Effects 0.000 abstract description 8
- 238000002594 fluoroscopy Methods 0.000 description 10
- 230000000873 masking effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
Landscapes
- Processing Or Creating Images (AREA)
- Image Processing (AREA)
- Closed-Circuit Television Systems (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は、X線TV透視システ
ムで得られるX線透視画像の画像処理を行なうX線透視
画像処理装置に関し、とくにX線透視下で得られる連続
的な複数フレームの画像の処理を行なうX線透視画像処
理装置に関する。[Field of Industrial Application] The present invention relates to an X-ray fluoroscopic image processing device that performs image processing of X-ray fluoroscopic images obtained by an X-ray TV fluoroscopy system, and in particular, relates to an X-ray fluoroscopic image processing device that processes a plurality of continuous frames obtained under The present invention relates to an X-ray fluoroscopic image processing device that processes images.
【0002】0002
【従来の技術】X線TV透視システムは、X線管からの
X線照射により得られるX線透視画像を、イメージイン
テンシファイアとTVカメラとを組み合わせてビデオ信
号に変換し、これをTVモニター装置に送って表示し、
観察するものである。このX線TV透視システムにおい
て、従来より、患者のX線被曝の軽減のため、X線透視
を終了する際、その最後の透視像をフレームメモリ等に
記憶しておいて、再生することにより終了後も透視像を
表示するという、いわゆるラストフレームメモリ処理の
手法がよく使われている。その際、透視画像はX線量が
少ない状態で得るために量子ノイズが多いことから、透
視画像の記録・再生に関して積分処理等のノイズ低減処
理を行なうことが多い。[Prior Art] An X-ray TV fluoroscopy system converts an X-ray fluoroscopic image obtained by irradiating X-rays from an X-ray tube into a video signal by combining an image intensifier and a TV camera, and displays the video signal on a TV monitor. send it to the device and display it,
It is something to observe. In this X-ray TV fluoroscopy system, in order to reduce the patient's X-ray exposure, when the X-ray fluoroscopy is finished, the last fluoroscopy image is stored in a frame memory etc. and the end is played back. A so-called last frame memory processing technique is often used, in which the perspective image is displayed even after the image has been captured. At this time, since fluoroscopic images are obtained with a small amount of X-rays and therefore contain a lot of quantum noise, noise reduction processing such as integral processing is often performed when recording and reproducing fluoroscopic images.
【0003】0003
【発明が解決しようとする課題】しかしながら、従来で
は、単に積分処理を行なうだけなので、ノイズの低減効
果しか得られず、画像のコントラストなどは不十分であ
るという問題がある。とくに、胸部などのように、肺野
のような明るい部分と心臓部のような暗い部分とが共存
する部位では、双方に重畳する微細構造の部分の読解が
困難となる。このような場合、双方に共存する微細構造
を同時に明瞭に表示するためのコントラスト処理が自動
的に行なわれることが望まれ、その処理としてアンシャ
ープマスキング処理が考えられるが、処理時間が長いと
いう欠点がある。However, in the conventional method, only an integral process is performed, so that only a noise reduction effect can be obtained, and the contrast of the image is insufficient. In particular, in areas such as the chest where bright areas such as the lung field and dark areas such as the heart area coexist, it is difficult to read the fine structure that overlaps with both. In such cases, it is desirable to automatically perform contrast processing to clearly display the fine structures that coexist on both sides at the same time, and unsharp masking processing may be considered as such processing, but it has the disadvantage of taking a long processing time. There is.
【0004】この発明は、微細構造の観察が容易な、コ
ントラストの高いアンシャープマスキング像を短時間に
得ることができる、X線透視画像処理装置を提供するこ
とを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to provide an X-ray fluoroscopic image processing apparatus capable of obtaining a high-contrast unsharp masked image in a short time in which microstructures can be easily observed.
【0005】[0005]
【課題を解決するための手段】上記の目的を達成するた
め、この発明によるX線透視画像処理装置においては、
X線透視画像のビデオ信号を、複数フレームの間で、対
応する画素位置を一致させながら加算することにより積
分像を得るとともに、対応する画素位置をシフトさせな
がら加算することによりボケ像を得て、これらをそれぞ
れ重み付けした後に減算することが特徴となっている。
積分像の作成とボケ像の作成とを同時に平行して行なう
ことができるため、高速にこれらの像を得ることができ
、従来の積分処理のみの場合と同程度の短い時間でアン
シャープマスキング像を得ることができる。[Means for Solving the Problems] In order to achieve the above object, an X-ray fluoroscopic image processing apparatus according to the present invention has the following features:
An integral image is obtained by adding the video signals of an X-ray fluoroscopic image while matching the corresponding pixel positions between multiple frames, and a blurred image is obtained by adding the video signals while shifting the corresponding pixel positions. , is characterized in that these are weighted and then subtracted. Since the creation of an integral image and the creation of a blurred image can be performed simultaneously in parallel, these images can be obtained at high speed, and an unsharp masking image can be created in the same amount of time as conventional integral processing alone. can be obtained.
【0006】[0006]
【実施例】以下、この発明の一実施例について図面を参
照しながら詳細に説明する。図1において、図示しない
X線透視TVシステムのTVカメラからX線透視画像の
ビデオ信号が、1フレームずつ順次送られてきており、
このビデオ信号がA/D変換器2においてデジタル信号
に変換される。通常の透視時には、このデジタル信号は
、b側に倒れているスイッチ1を経てウインドウ処理器
3に送られ、階調のうちの所定のウインドウ内のみが強
調されるウインドウ処理(一種の階調変換)を受ける。
その後D/A変換器4を経てアナログのビデオ信号に戻
され、図示しないTVモニター装置などに送られて表示
される。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. In FIG. 1, a video signal of an X-ray fluoroscopic image is sequentially sent frame by frame from a TV camera of an X-ray fluoroscopy TV system (not shown).
This video signal is converted into a digital signal by an A/D converter 2. During normal fluoroscopy, this digital signal is sent to the window processor 3 via the switch 1, which is tilted toward the b side, and undergoes window processing (a type of gradation conversion) in which only a predetermined window of the gradations is emphasized. ). Thereafter, the signal is returned to an analog video signal via the D/A converter 4, and sent to a TV monitor (not shown) for display.
【0007】図示しない透視スイッチをオフすると、デ
ジタル化された画像データは、フレームメモリ5、6の
出力データと加算器7、8において加算されて再びフレ
ームメモリ5、6に書き込まれる。すなわち透視スイッ
チをオフした後も、しばらくの間はX線照射が行なわれ
てX線透視画像のビデオ信号が送られてくるようになっ
ており、その画像データが上記のようにフレームメモリ
5、6に書き込まれる。When a perspective switch (not shown) is turned off, the digitized image data is added to the output data of the frame memories 5 and 6 in adders 7 and 8, and then written into the frame memories 5 and 6 again. In other words, even after the fluoroscopy switch is turned off, X-ray irradiation continues for a while and a video signal of the X-ray fluoroscopic image is sent, and the image data is stored in the frame memory 5 as described above. 6 is written.
【0008】フレームメモリ5、6はそれらのアドレス
がメモリアドレスコントローラ12で制御されている。
フレームメモリ5については、新たなフレームの画像デ
ータが加算器7に送られてきたとき、その各画素と対応
する画素位置のデータが読出される。これにより対応す
る画素の位置を一致させながら画素毎にデータの加算が
行なわれ、その加算後のデータがフレームメモリ5に書
き込まれる。したがって、画像の、時間方向での積分が
行なわれることになり、このフレームメモリ5には積分
像が形成されていく。The addresses of the frame memories 5 and 6 are controlled by a memory address controller 12. Regarding the frame memory 5, when the image data of a new frame is sent to the adder 7, the data at the pixel position corresponding to each pixel is read out. As a result, data is added pixel by pixel while matching the positions of corresponding pixels, and the data after the addition is written into the frame memory 5. Therefore, the image is integrated in the time direction, and an integrated image is formed in the frame memory 5.
【0009】これに対して、フレームメモリ6の読出ア
ドレスは、垂直方向及び水平方向にずらされる。すなわ
ち、加算器8では、入力画像データのある位置の画素デ
ータと、フレームメモリ6からの読出画像データの同じ
位置の画素データとを加算するのではなく、ずれた位置
の画素データとを加算する。これにより画像全体をシフ
トさせた状態で重ね合わせたような処理(いわゆるシフ
ト積分)を行なうことができ、フレームメモリ6におい
てボケ像を作成することができる。On the other hand, the read addresses of the frame memory 6 are shifted in the vertical and horizontal directions. That is, the adder 8 does not add pixel data at a certain position in the input image data and pixel data at the same position in the read image data from the frame memory 6, but adds pixel data at a shifted position. . This makes it possible to perform processing (so-called shift integration) in which the entire image is superimposed in a shifted state, and a blurred image can be created in the frame memory 6.
【0010】これらフレームメモリ5、6における単純
な積分およびシフト積分が終了した後、それらで形成さ
れた積分像の画像データ及びボケ像の画像データは、そ
れぞれ乗算器9、10によって重み付けされる。そして
重み付け後のこれらの画像データは減算器11に送られ
て対応する画素データ同士の減算が行なわれる。このと
き、a側に倒れているスイッチ1を経て減算器11の出
力データがウインドウ処理器3に送られる。このウイン
ドウ処理器3でのウインドウ処理は上記の透視時と同様
であり、その後D/A変換器4を経てアナログのビデオ
信号に戻され、図示しないTVモニター装置などに送ら
れて表示される点も同様である。After the simple integration and shift integration in the frame memories 5 and 6 are completed, the image data of the integral image and the image data of the blurred image formed by these are weighted by multipliers 9 and 10, respectively. These weighted image data are then sent to a subtracter 11, where corresponding pixel data are subtracted from each other. At this time, the output data of the subtracter 11 is sent to the window processor 3 via the switch 1 which is tilted to the a side. The window processing by the window processor 3 is the same as that for fluoroscopy described above, and is then converted back to an analog video signal via the D/A converter 4 and sent to a TV monitor (not shown) for display. The same is true.
【0011】このように積分像からボケ像が減算される
ため、アンシャープマスキング処理を行なったことにな
り、コントラストの高い画像を得ることができる。しか
も、積分像の作成とボケ像の作成とは同時に平行して行
なわれるため、従来の積分処理のみの場合と比較して処
理時間が余計にかかることもない。Since the blurred image is subtracted from the integral image in this way, unsharp masking processing is performed, and an image with high contrast can be obtained. Moreover, since the creation of the integral image and the creation of the blurred image are performed simultaneously and in parallel, no additional processing time is required compared to the conventional case of only integral processing.
【0012】なお、上記の実施例では透視終了時のいわ
ゆるラストフレームメモリ処理においてアンシャープマ
スキング処理を行なっているが、このようなラストフレ
ームメモリ処理に限らず、透視中の任意の時間にボタン
操作などによってこのような処理を行なわせることもで
きる。In the above embodiment, unsharp masking processing is performed in so-called last frame memory processing at the end of fluoroscopy, but it is not limited to such last frame memory processing. Such processing can also be performed by, for example.
【0013】[0013]
【発明の効果】以上、実施例について説明したように、
この発明のX線透視画像処理装置によれば、アンシャー
プマスキング像が高速に得られるため、術者が最も見た
い微細構造を明瞭に表すX線透視画像を、従来の積分処
理のみの場合と同程度の処理時間で得ることができる。[Effects of the Invention] As described above with respect to the embodiments,
According to the X-ray fluoroscopic image processing apparatus of the present invention, an unsharp masked image can be obtained at high speed, so that an X-ray fluoroscopic image that clearly represents the microstructure that the operator most wants to see can be obtained compared to the conventional integral processing alone. can be obtained in approximately the same processing time.
【図1】この発明の一実施例のブロック図。FIG. 1 is a block diagram of an embodiment of the present invention.
1 スイッチ
2 A/D変換器
3 ウインドウ処理器4
D/A変換器
5 積分像用フレームメモリ6
ボケ像用フレームメモリ7、8
加算器
9、10 乗算器
11 減算器1 Switch 2 A/D converter 3 Window processor 4
D/A converter 5 Integral image frame memory 6
Frame memory for blurred images 7, 8
Adders 9, 10 Multiplier 11 Subtractor
Claims (1)
レームの間で、対応する画素位置を一致させながら加算
する第1の積分手段と、対応する画素位置をシフトさせ
ながら加算する第2の積分手段と、それらの積分結果を
それぞれ重み付けする手段と、重み付け後の両積分結果
を減算する減算手段とを備えることを特徴とするX線透
視画像処理装置。1. A first integrating means that adds video signals of an X-ray fluoroscopic image while matching corresponding pixel positions between a plurality of frames, and a second integrating means that adds video signals while shifting corresponding pixel positions between a plurality of frames. An X-ray fluoroscopic image processing apparatus comprising an integrating means, a means for weighting the integral results, and a subtracting means for subtracting the weighted integral results.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3059301A JP3028626B2 (en) | 1991-02-28 | 1991-02-28 | X-ray fluoroscopic image processing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3059301A JP3028626B2 (en) | 1991-02-28 | 1991-02-28 | X-ray fluoroscopic image processing device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04273782A true JPH04273782A (en) | 1992-09-29 |
JP3028626B2 JP3028626B2 (en) | 2000-04-04 |
Family
ID=13109416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3059301A Expired - Lifetime JP3028626B2 (en) | 1991-02-28 | 1991-02-28 | X-ray fluoroscopic image processing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3028626B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013114360A (en) * | 2011-11-25 | 2013-06-10 | Univ Of Tokyo | Image processing method and device |
JP2013198751A (en) * | 2013-06-05 | 2013-10-03 | Toshiba Corp | X-ray diagnosis apparatus, and image processing device |
-
1991
- 1991-02-28 JP JP3059301A patent/JP3028626B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013114360A (en) * | 2011-11-25 | 2013-06-10 | Univ Of Tokyo | Image processing method and device |
JP2013198751A (en) * | 2013-06-05 | 2013-10-03 | Toshiba Corp | X-ray diagnosis apparatus, and image processing device |
Also Published As
Publication number | Publication date |
---|---|
JP3028626B2 (en) | 2000-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4636850A (en) | Apparatus and method for enhancement of video images | |
JP2508078B2 (en) | X-ray image processing device | |
US20100067818A1 (en) | System and method for high quality image and video upscaling | |
JP3159465B2 (en) | Image display device | |
US5018179A (en) | Recursive filter and image display apparatus including the same | |
JP2921973B2 (en) | Image extraction method and image extraction device for specific object | |
JPH04273782A (en) | X-ray fluoroscopic image processor | |
JP2885066B2 (en) | Image processing device | |
JP3326819B2 (en) | Image processing device | |
JPH0647035A (en) | Image processing system | |
JPH10229519A (en) | X-ray image digital processor | |
JPH04329778A (en) | X-ray transmitting picture processing unit | |
JPH10243289A (en) | Image adder | |
JPS5896364A (en) | Picture processor | |
JPH0669447B2 (en) | X-ray image processing device | |
JP3197087B2 (en) | Diagnostic imaging device | |
JPH0833922B2 (en) | Image noise reduction device | |
JPS59158687A (en) | Processing device of x-ray picture | |
JPH03277348A (en) | X-ray radiographing device | |
JP3195255B2 (en) | Image extraction device for specific objects | |
JPH04205572A (en) | Signal processor | |
JPH0551294B2 (en) | ||
JP3070041B2 (en) | Video / still image converter | |
JPS59133790A (en) | Processor of x-ray picture | |
JPH03114443A (en) | Digital x-ray television apparatus |