JPH0427224B2 - - Google Patents
Info
- Publication number
- JPH0427224B2 JPH0427224B2 JP56133454A JP13345481A JPH0427224B2 JP H0427224 B2 JPH0427224 B2 JP H0427224B2 JP 56133454 A JP56133454 A JP 56133454A JP 13345481 A JP13345481 A JP 13345481A JP H0427224 B2 JPH0427224 B2 JP H0427224B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- metal oxide
- value
- isobutyric acid
- silicon dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003054 catalyst Substances 0.000 claims description 50
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 claims description 50
- 238000000034 method Methods 0.000 claims description 26
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 22
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 229910001868 water Inorganic materials 0.000 claims description 13
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 12
- 238000005839 oxidative dehydrogenation reaction Methods 0.000 claims description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 235000012239 silicon dioxide Nutrition 0.000 claims description 7
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 229910044991 metal oxide Inorganic materials 0.000 claims description 5
- 150000004706 metal oxides Chemical class 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910000476 molybdenum oxide Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 2
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 238000010574 gas phase reaction Methods 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- 239000005909 Kieselgur Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- AMIMRNSIRUDHCM-UHFFFAOYSA-N Isopropylaldehyde Chemical compound CC(C)C=O AMIMRNSIRUDHCM-UHFFFAOYSA-N 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 4
- 229910002012 Aerosil® Inorganic materials 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 239000003570 air Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000009849 deactivation Effects 0.000 description 3
- 235000011007 phosphoric acid Nutrition 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000012429 reaction media Substances 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- STNJBCKSHOAVAJ-UHFFFAOYSA-N Methacrolein Chemical compound CC(=C)C=O STNJBCKSHOAVAJ-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- -1 ammonium salts Chemical class 0.000 description 2
- 238000006356 dehydrogenation reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910000398 iron phosphate Inorganic materials 0.000 description 2
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 150000002927 oxygen compounds Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 239000011949 solid catalyst Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 2
- 229910052716 thallium Inorganic materials 0.000 description 2
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical group [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- MWFMGBPGAXYFAR-UHFFFAOYSA-N 2-hydroxy-2-methylpropanenitrile Chemical compound CC(C)(O)C#N MWFMGBPGAXYFAR-UHFFFAOYSA-N 0.000 description 1
- 229910002016 Aerosil® 200 Inorganic materials 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229910003294 NiMo Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052936 alkali metal sulfate Inorganic materials 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000003868 ammonium compounds Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- HUTDDBSSHVOYJR-UHFFFAOYSA-H bis[(2-oxo-1,3,2$l^{5},4$l^{2}-dioxaphosphaplumbetan-2-yl)oxy]lead Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O HUTDDBSSHVOYJR-UHFFFAOYSA-H 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000007210 heterogeneous catalysis Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 1
- 239000005078 molybdenum compound Substances 0.000 description 1
- 150000002752 molybdenum compounds Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- VVRQVWSVLMGPRN-UHFFFAOYSA-N oxotungsten Chemical class [W]=O VVRQVWSVLMGPRN-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- RPACBEVZENYWOL-XFULWGLBSA-M sodium;(2r)-2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate Chemical compound [Na+].C=1C=C(Cl)C=CC=1OCCCCCC[C@]1(C(=O)[O-])CO1 RPACBEVZENYWOL-XFULWGLBSA-M 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/195—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
- B01J27/198—Vanadium
- B01J27/199—Vanadium with chromium, molybdenum, tungsten or polonium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/347—Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
- C07C51/377—Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
本発明は接触触媒を使用してイソ酪酸をメタク
リル酸に酸化脱水素する方法に関する。
重合体製造用に使用するためのメタクリル酸及
びそのエステルの合成は経済的に非常に重要な意
味をもつ。アセトンを出発物質とし、アセトンシ
アンヒドリンを鹸化してメタクリラート系中の最
重要モノマーであるメチルメタクリラートを製造
する一般的な工業的方法の他に、最近では出発物
質としてイソブチルアルデヒド又はオレフイン例
えばイソブチレン、エチレン又はプロピレンを使
用する合成法も技術的に関心を持たれている。
西ドイツ国特許公開公報第2517148号には、例
えばイソブチレン又はイソブチルアルデヒドから
取得されるメタクロレインを出発物質とし、酸素
を使用して接触気相酸化することによるメタクリ
ル酸の製法が記述されている。
この反応に使用される触媒は式:
Mo12PaXbYcWdOe
[式中:Xはバナジウム、ニオブ及び/又はタ
ンタルを表わし、Yはセシウム、カリウム及び/
又はタリウムを表わし、a及びbは0.1〜10の値
を有し、cは0..1〜8の値を有し、dは0〜10の
値を有し、eの値はその他の原子の原子価に依存
し、a+b+cの合計は0.3〜20の値を有する]
に相当する。
メタクリル酸へのイソ酪酸の酸化脱水素用に多
くの触媒が提案されている。特開昭50−4017号に
は、イソ酪酸の気相脱水素用にモリブデン、燐、
タリウム及び酸素を含有する触媒が提案されてい
る。
又特開昭50−4014号には、気相中でのイソ酪酸
の酸化脱水素用触媒として、ニツケル−、コバル
ト−又はアルカリ金属硫酸塩で処理されたモリブ
ド−又はモリブドバナジウム燐酸を使用すること
が記述されている。
更に脱水素触媒として焼成燐酸鉄/燐酸鉛を使
用してアルカンカルボン酸及び−エステルをα,
β−不飽和脂肪族酸及びエステルに酸化脱水素す
る方法も提案されている(西ドイツ国特許公開公
報第2450878号)。
ビスマス、鉄及び場合により鉛を含有する焼成
沈降燐酸塩を使用してこの種の化合物を酸素によ
り脱水素することは西ドイツ国特許公開公報第
2118904号に教示されている。
しかし公知法は完全に満足のゆくものではなか
つた。最近の見解では、単なる設備費用の他に、
時空収率及び反応の選択率に対する動力−及び原
料消費の釣合いが決定的に重要になつている。す
なわち例えば鉄−燐酸塩ベースを接触触媒とする
反応ではイソ酪酸の反応率が比較的低い。換言す
れば未反応イソ酪酸を反応工程中に還流させなけ
ればならない。イソ酪酸とメタクリル酸の物理的
性質が非常に類似しているために、この両化合物
の工業規模での分離には問題があり、いずれにし
ても費用がかかる。
西ドイツ国特許公開公報第2550979号には大体
においてモリブデン及び/又はタングステンない
しはそれらの酸化物からなる固体触媒を300〜500
℃の温度で使用することが記述されている。西ド
イツ国特許公開公報第2722375号から、モリブデ
ン、バナジウム、燐及び場合によりタングステン
の酸化物ないしはオキシ酸からのヘチロ多重酸を
ベースとする触媒を製造するための熱水法が公知
であり、これはイソ酪酸ないしはそのメチルエス
テル及びメタクロレインの酸化脱水素用に適す
る。しかしヘテロ多重酸−触媒を使用した試験で
は、良好な選択率を伴つた比較的高い反応率は
330℃以上の温度の比較的狭い範囲(約330〜350
℃)で作業する場合にのみ達成されることが示さ
れた。この温度範囲より低い温度では反応は著し
く低下し、又350℃よりも高い温度では明らかに
触媒は不可逆的に損ぜられ、従つて反応率も又反
応の選択率も著しく低下する。不均一系触媒反応
の条件下で比較的高い温度水準においてその様に
狭い温度範囲を保持することは費用を著しくかけ
ることなしには技術的に実現困難である。換言す
れば実際にはその種の触媒系は上記の反応条件下
では耐久性が僅少である。
ところで酸化モリブデンをベースとし、その他
に必須元素としてP及びVを含み、更にNa、ア
ルカリ土類金属、Zn、Ag、Al、Ti、Mn、Fe、
Co、Ni又はSnの群から選択される1種、2種又
は数種の元素Mからなり、また触媒の組成が式:
MaMobVcPdOe
[式中aは0.4〜2.5の値を有し、bはほぼ12の
値を有し、cは1〜2の値を有し、dは0.5〜3
の値を有し、eはその他の元素の原子価及び含量
から定まる値を有する]で表わされる、実質的に
硫酸塩不含の金属酸化物触媒を使用することによ
り、メタクリル酸へのイソ酪酸の酸化脱水素法を
極めてすぐれた収率及び高い選択率で実施出来る
ことが見出された。金属Mの有利なものはマグネ
シウム、カルシウム及びアルミニウムである。
特別に有利なものは、上記式中でbが約6aの
値を有し、dはほぼaと同様の値を有し、cは約
0.75aの値を有する触媒群である。
触媒を製造するためには出発物質としてモリブ
デン化合物例えば酸化モリブデンないしはモリブ
デン酸H2MoO4又は塩例えばアンモニウム塩、5
価の燐の化合物例えば燐酸又はポリ燐酸ないしは
その塩、又は五酸化燐、パナジウムの塩例えば硝
酸塩、炭酸塩、硫酸塩又はハロゲン化物又は有機
酸の塩又はパナジウムの酸化物及び上記した金属
Mの塩又は水酸化物例えば金属ハロゲン化物、−
炭酸塩、−硝酸塩、−硫酸塩又は有機酸の塩を使用
することができる。上記金属の一つを硫酸塩の形
で触媒生成混合物に加える場合には、硫酸塩分が
触媒製造の間にほぼ完全に分離除去される様に留
意しなければならない。有利には硫酸塩の形の形
成成分は使用しない。触媒製造には複合組成の酸
化金属触媒を製造するための公知法を適用するこ
とが出来る。例えば液体反応媒体例えば水中に溶
解ないしは懸濁させた成分を混合することによつ
て触媒系を得る。その際出来るだけ均一な分配が
される様に留意すべきである。有利には、特にア
ンモニウム化合物を使用する場合には、水溶液に
なおアルカノールアミン例えばモノエタノールア
ミンを添加することが出来る。液体反応媒体は引
続いて、有利には加熱下で、蒸発させることによ
り除去出来る。反応媒体として水を使用する場合
には水の除去は100〜150℃、特にほぼ120℃にお
いて行なうことが出来る。引続いて有利には触媒
系の〓焼を、例えば200〜400℃の温度において行
なう。これは約1〜2時間かかり得る。
本発明による触媒系のために固体担体を使用す
る実施形式が特別に有利である。アルミニウム、
チタン及び特に珪素の酸素化合物ないしはその種
の種々の酸素化合物の混合物をベースとする担体
が有利である。特に有利なものは二酸化珪素と
“活性化二酸化珪素”とをベースとする担体系
(Unger、アンゲヴアンテ ケミー(Angew.
Chemie)1972年第84巻331頁)、特に珪藻土とア
エロシル(Aerosil)とをベースとするもので
ある。二酸化珪素(例えば珪藻土)及び活性化二
酸化珪素(例えばアエロシル)の有利な混合比
は14:2〜9:2、特に5:1である。その場合
触媒対担体の比率はある一定限度内で変化させる
ことが出来る。一般に全重量(触媒+担体)に対
して触媒5〜80重量%、有利には20〜70重量%で
ある。
同生成物を触媒系として使用するために適当な
方法で、例えば微小体化、顆粒化、タブレツト形
化等により調製することが出来る。顆粒化ないし
は微小体化及びタブレツト形化に引続いて、例え
ば300〜500℃の間で、再び熱処理を行なうことが
出来、これは例えば約1〜約24時間かかり得る。
触媒作用系はそれ自体で使用することも出来る
し又は有利には不活性物質例えば石英又は二酸化
ジルコニウムと混合して使用することも出来る。
後者の方法は経済的及び技術的利点を有し、例え
ば温度分布の改善、反応器状態の安定化等が達せ
られる。
本発明による触媒系はイソ酪酸の酸化脱水素工
程に比較的広い温度範囲内で、作用の低下ないし
は不活性化を起こすことなく、適用することが出
来る。
有利に本発明方法は300〜450℃、特に340〜370
℃で行なわれる。その場合滞留時間は一般に0.1
〜5秒間である。つまり接触作業の間に最適な温
度範囲以上の温度が生じる場合、通例それによつ
て触媒系の不可逆的不活性化が起こることはな
い。本発明による触媒系は極めて良好な時空収率
及び高い選択率によつてすぐれている。本発明に
よる酸化脱水素工程は酸化剤として酸素を、例え
ば空気の形で使用する。同反応は有利に気相反応
として行われ、その場合イソ酪酸と酸素を使用し
て気相で、有利にはイソ酪酸、水、酸素及び窒素
からなるガス混合物を使用して作業する。
上記の順序での各成分間の比率は有利に以下の
限界範囲内である:(1−2.5):(0−3):(1−
2):(4−20)モル、特別に有利な比率は1:
2:1.7:20モルである。本発明方法において水
の存在は反応作業に有利に作用する。本発明方法
は常用の反応器中で、例えば加圧下に、行なうこ
とが出来る。該当する圧力は0.5〜5バール、有
利には0.8〜2.0バールである。反応の間に酸素量
の割合が高まると少なからず温度が上昇し得る
が、触媒系の意想外に高い安定性のために通例そ
れによつて触媒が不活性化することはない。本発
明方法において触媒は固定床としても又は流動床
としても使用することが出来る。以下の実施例は
本発明を詳述するものである。%値は別に記載の
ない限り重量に対する。記載の反応率ないしは選
択率は次の様に定義される:
イソ酪酸の反応率(%)
=反応したイソ酪酸の量(モル)/イソ酪酸の使用
量(モル)・100
メタクリル酸生成の選択率(%)
=メタクリル酸生成量(モル)/反応したイソ酪酸
の量(モル)・100
A) 触媒の製造
1 10%のアンモニア溶液300ml中の
(NH4)6Mo7O24・4H2O106gの溶液に、水100
ml中に溶かした85%のオルト燐酸11.52gを添
加し、その全体を、水200ml中に溶かした硝酸
ナトリウム8.5g中に混入攪拌する。それに10
%の含水モノエタノールアミン140ml中に溶か
したNH4VO38.8gを添加する。その様に得ら
れた溶液に触媒担体として精製及び熱処理した
珪藻土±40.8g及びアエロシル(Aerosil)
200 8.18gを攪拌下に添加し、次いで蒸発濃縮
する。同固体触媒体を120℃において7時間乾
燥し、引続いて300℃において3時間〓焼する。
その様に得られた珪藻土/アエロシル200上
の70%のNa2Mo12V1.5P2O45.8−触媒は非常に
硬い物質で、それから反応器充填用に粒径約3
mmの触媒粒を製造する。
2 後記の表中に記載されている実施例中の触媒
を製造するには、Na塩の代りに表に記載の金
属を塩の形で当量使用し、その他は1と同様に
作業する。
B イソ酪酸の酸化脱水素性
例 1〜10
下記の表に一般式:MaMobVcPdOeの更に別の
触媒を使用してイソ酪酸のメタクリル酸への酸化
脱水素を行つて得られた結果を総括する。
その場合340〜370℃の温度範囲においてイソ酪
酸、水及び酸素(空気として)からなるモル比
1:2:1.7の混合物を滞留時間0.3〜0.4秒で触媒
上に導いた。
The present invention relates to a method for the oxidative dehydrogenation of isobutyric acid to methacrylic acid using a catalytic catalyst. The synthesis of methacrylic acid and its esters for use in polymer production is of great economic importance. In addition to the common industrial method of saponifying acetone cyanohydrin to produce methyl methacrylate, which is the most important monomer in the methacrylate system, using acetone as a starting material, recently, isobutyraldehyde or olefin, e.g. Synthetic methods using isobutylene, ethylene or propylene are also of technical interest. DE 2517148 describes a process for the preparation of methacrylic acid starting from methacrolein, obtained for example from isobutylene or isobutyraldehyde, by catalytic gas phase oxidation using oxygen. The catalyst used in this reaction has the formula : Mo 12 P a
or represents thallium, a and b have a value of 0.1 to 10, c has a value of 0..1 to 8, d has a value of 0 to 10, and the value of e is another atom. Depending on the valence of , the sum of a + b + c has a value from 0.3 to 20]
corresponds to Many catalysts have been proposed for the oxidative dehydrogenation of isobutyric acid to methacrylic acid. JP-A-50-4017 discloses molybdenum, phosphorus,
Catalysts containing thallium and oxygen have been proposed. JP-A-50-4014 also discloses the use of molybdo or molybdovanadium phosphoric acid treated with nickel, cobalt or alkali metal sulfates as a catalyst for the oxidative dehydrogenation of isobutyric acid in the gas phase. This is described. Furthermore, using calcined iron phosphate/lead phosphate as a dehydrogenation catalyst, alkanecarboxylic acids and -esters were
A method of oxidative dehydrogenation to β-unsaturated aliphatic acids and esters has also been proposed (German Published Patent Application No. 2450878). The dehydrogenation of compounds of this type with oxygen using calcined precipitated phosphates containing bismuth, iron and optionally lead is described in German Patent Application No.
No. 2118904. However, the known methods were not completely satisfactory. Recent observations suggest that in addition to mere equipment costs,
The balance between power and raw material consumption against space-time yield and reaction selectivity has become of decisive importance. That is, for example, in a reaction using an iron-phosphate base as a catalyst, the conversion rate of isobutyric acid is relatively low. In other words, unreacted isobutyric acid must be refluxed during the reaction process. Because the physical properties of isobutyric acid and methacrylic acid are very similar, separation of both compounds on an industrial scale is problematic and in any case expensive. According to West German Patent Publication No. 2550979, solid catalysts consisting of molybdenum and/or tungsten or their oxides are generally used in amounts of 300 to 500%.
It is described to be used at a temperature of °C. From DE 2722375 A1 a hydrothermal process is known for the preparation of catalysts based on heteromultiacids from molybdenum, vanadium, phosphorus and optionally tungsten oxides or oxyacids, which Suitable for oxidative dehydrogenation of isobutyric acid or its methyl ester and methacrolein. However, in tests using heteromultiacid catalysts, relatively high conversion rates with good selectivity were achieved.
A relatively narrow range of temperatures above 330℃ (approximately 330-350
It was shown that this can only be achieved when working at Below this temperature range, the reaction is significantly reduced, and above 350° C. the catalyst is apparently irreversibly damaged and the reaction rate and therefore the selectivity of the reaction are also significantly reduced. Maintaining such a narrow temperature range at relatively high temperature levels under conditions of heterogeneous catalysis is technically difficult to achieve without significant expense. In other words, in practice such catalyst systems are only slightly durable under the reaction conditions mentioned above. By the way, it is based on molybdenum oxide and also contains P and V as essential elements, as well as Na, alkaline earth metals, Zn, Ag, Al, Ti, Mn, Fe,
It consists of one, two, or several elements M selected from the group of Co, Ni, or Sn, and the composition of the catalyst is the formula: M a Mo b V c P d O e [where a is 0.4 to 2.5] b has a value of approximately 12, c has a value of 1 to 2, and d has a value of 0.5 to 3
isobutyric acid to methacrylic acid by using a substantially sulfate-free metal oxide catalyst represented by It has been found that the oxidative dehydrogenation process can be carried out with very good yields and high selectivities. Preferred metals M are magnesium, calcium and aluminum. Particularly advantageous is that in the above formula b has a value of approximately 6a, d has a value approximately similar to a, and c approximately
This is a group of catalysts with a value of 0.75a. Molybdenum compounds such as molybdenum oxide or molybdate H 2 MoO 4 or salts such as ammonium salts, 5
Compounds of valent phosphorus such as phosphoric acid or polyphosphoric acid or salts thereof, phosphorus pentoxide, salts of panadium such as nitrates, carbonates, sulfates or halides or salts of organic acids or oxides of panadium and salts of the metals M mentioned above. or hydroxides such as metal halides, -
Carbonates, -nitrates, -sulphates or salts of organic acids can be used. If one of the metals mentioned above is added to the catalyst production mixture in the form of a sulfate, care must be taken that the sulfate salt is almost completely separated off during catalyst preparation. Preferably no forming components in the form of sulfates are used. Known methods for producing metal oxide catalysts with complex compositions can be applied to the production of the catalyst. The catalyst system is obtained, for example, by mixing the components dissolved or suspended in a liquid reaction medium, such as water. At this time, care should be taken to ensure that the distribution is as uniform as possible. Advantageously, especially when ammonium compounds are used, alkanolamines such as monoethanolamine can also be added to the aqueous solution. The liquid reaction medium can subsequently be removed by evaporation, preferably under heating. If water is used as the reaction medium, the water removal can be carried out at 100-150°C, in particular at approximately 120°C. Subsequently, the catalyst system is preferably calcined, for example at a temperature of 200 DEG to 400 DEG C. This can take about 1-2 hours. Particular preference is given to the embodiment in which a solid support is used for the catalyst system according to the invention. aluminum,
Preference is given to supports based on oxygen compounds of titanium and especially silicon or mixtures of various oxygen compounds thereof. Particularly advantageous are support systems based on silicon dioxide and "activated silicon dioxide" (Unger, Angew.
Chemie (1972, Vol. 84, p. 331), especially those based on diatomaceous earth and Aerosil. Preferred mixing ratios of silicon dioxide (eg diatomaceous earth) and activated silicon dioxide (eg Aerosil) are from 14:2 to 9:2, especially 5:1. The ratio of catalyst to support can then be varied within certain limits. Generally from 5 to 80% by weight of catalyst, preferably from 20 to 70% by weight, based on the total weight (catalyst+support). The same products can be prepared in any suitable manner for use as catalyst systems, such as by micronization, granulation, tabletting, etc. Granulation or micronization and tabletting can be followed by another heat treatment, for example at between 300 and 500°C, which can take for example from about 1 to about 24 hours. The catalytic system can be used on its own or advantageously mixed with inert substances such as quartz or zirconium dioxide.
The latter method has economic and technical advantages, such as improved temperature distribution, stabilization of reactor conditions, etc. The catalyst system according to the invention can be applied to the oxidative dehydrogenation process of isobutyric acid within a relatively wide temperature range without loss of activity or deactivation. Advantageously, the process according to the invention is carried out at temperatures between 300 and 450°C, especially between 340 and 370°C.
It is carried out at ℃. In that case the residence time is generally 0.1
~5 seconds. Thus, if temperatures above the optimum temperature range occur during the contacting operation, this generally does not result in irreversible deactivation of the catalyst system. The catalyst system according to the invention is distinguished by very good space-time yields and high selectivities. The oxidative dehydrogenation process according to the invention uses oxygen as oxidizing agent, for example in the form of air. The reaction is preferably carried out as a gas phase reaction, using isobutyric acid and oxygen in the gas phase, preferably using a gas mixture of isobutyric acid, water, oxygen and nitrogen. The ratio between each component in the above order is advantageously within the following limits: (1-2.5): (0-3): (1-
2):(4-20) mol, a particularly advantageous ratio is 1:
2:1.7:20 mol. In the process of the invention, the presence of water has an advantageous effect on the reaction process. The process according to the invention can be carried out in conventional reactors, for example under pressure. The relevant pressures are between 0.5 and 5 bar, preferably between 0.8 and 2.0 bar. If the proportion of oxygen increases during the reaction, the temperature may increase considerably, but this does not usually lead to deactivation of the catalyst due to the unexpectedly high stability of the catalyst system. In the process according to the invention, the catalyst can be used either as a fixed bed or as a fluidized bed. The following examples illustrate the invention in detail. Percentage values are by weight unless otherwise stated. The stated reaction rate or selectivity is defined as follows: Reaction rate of isobutyric acid (%) = Amount of isobutyric acid reacted (mol) / Amount of isobutyric acid used (mol) ・100 Selection of methacrylic acid production Rate (%) = Amount of methacrylic acid produced (mol) / Amount of reacted isobutyric acid (mol)・100 A) Catalyst production 1 (NH 4 ) 6 Mo 7 O 24・4H 2 in 300 ml of 10% ammonia solution A solution of 106 g of O, 100 g of water
11.52 g of 85% orthophosphoric acid dissolved in 200 ml of water are added and the whole is stirred into 8.5 g of sodium nitrate dissolved in 200 ml of water. And 10
8.8 g of NH 4 VO 3 dissolved in 140 ml of % hydrous monoethanolamine are added. The solution thus obtained contains ±40.8 g of purified and heat-treated diatomaceous earth as a catalyst carrier and Aerosil.
8.18 g of 200 are added under stirring and then evaporated. The solid catalyst body is dried at 120° C. for 7 hours and then calcined at 300° C. for 3 hours.
70% Na 2 Mo 12 V 1.5 P 2 O 45.8 on diatomaceous earth/Aerosil 200 so obtained - the catalyst is a very hard material and then for the reactor filling a particle size of about 3
Produce catalyst particles of mm. 2. To produce the catalysts in the examples listed in the table below, the metals listed in the table are used in equivalent amounts in the form of salts in place of the Na salt, and the process is otherwise carried out in the same manner as in 1. B Examples of oxidative dehydrogenation of isobutyric acid 1 to 10 The table below shows the oxidative dehydrogenation of isobutyric acid to methacrylic acid using yet another catalyst with the general formula: M a Mo b V c P d O e . We summarize the results obtained. In this case, a mixture of isobutyric acid, water and oxygen (as air) in a molar ratio of 1:2:1.7 was passed over the catalyst in a temperature range of 340 DEG to 370 DEG C. with a residence time of 0.3 to 0.4 seconds.
【表】
例 11〜17
A)2に記載と同様の作業方法で下記の組成の
4種の触媒A〜Dを製造する:
A) MnMo12V1.5P2O45.8
B) Fe0.67Mo12V1.5P2O45.8
C) CoMo12V1.5P2O45.8
D) NiMo12V1.5P2O45.8
320〜350℃の温度範囲において触媒A〜D上に
イソ酪酸、水及び空気酸素からなるモル比1:
2:1.7の混合物を対流時間0.3秒で導いた。下記
の表にイソ酪酸の反応率及びメタクリル酸生成の
選択率に対して得られた値を記載する。[Table] Examples 11 to 17 A) Four types of catalysts A to D having the following compositions are prepared using the same working method as described in 2: A) MnMo 12 V 1.5 P 2 O 45.8 B) Fe 0.67 Mo 12 V 1.5 P 2 O 45.8 C) CoMo 12 V 1.5 P 2 O 45.8 D) NiMo 12 V 1.5 P 2 O 45.8 Molar ratio of isobutyric acid, water and air oxygen on catalysts A to D in the temperature range from 320 to 350 °C 1:
A 2:1.7 mixture was introduced with a convection time of 0.3 seconds. The table below lists the values obtained for the reaction rate of isobutyric acid and the selectivity for the production of methacrylic acid.
【表】
例 18
例11〜17による組成Cの触媒(珪藻土担体上)
13ml上に温度360℃及び滞留時間0.5秒において、
イソ酪酸、水、酸素及び窒素からなるモル比1:
2:1.5:20のガス混合物を導いた。イソ酪酸の
反応率99.8%においてメタクリル酸が74.1%の選
択率で得られた。[Table] Example 18 Catalysts of composition C according to Examples 11 to 17 (on diatomaceous earth support)
At a temperature of 360 °C and a residence time of 0.5 seconds on 13 ml,
Molar ratio of isobutyric acid, water, oxygen and nitrogen: 1:
A gas mixture of 2:1.5:20 was introduced. Methacrylic acid was obtained with a selectivity of 74.1% at a reaction rate of isobutyric acid of 99.8%.
Claims (1)
触媒を使用してイソ酪酸をメタクリル酸に酸化脱
水素するに当り、実質的に硫酸塩不含の金属酸化
物触媒がモリブデンの他に元素P及びVを含み、
更にNa、アルカリ土類金属、Zn、Ag、Al、Ti、
Mn、Fe、Co、Ni又はSnの群から選択される1
種、2種又は数種の元素Mからなり、また触媒の
組成が式: MaMobVcPdOe [式中aは0.4〜2.5の値を有し、bはほぼ12の
値を有し、cは1〜2の値を有し、dは0.5〜3
の値を有し、eはその他の元素の原子価及び含量
から定まる値を有する]で表わされることを特徴
とするメタクリル酸へのイソ酪酸の酸化脱水素
法。 2 金属酸化物−触媒を二酸化珪素/活性化二酸
化珪素をベースとする固体担体と一緒に使用する
特許請求の範囲第1項記載の方法。 3 担体中の二酸化珪素/活性化二酸化珪素の比
率が14:2〜9:2である特許請求の範囲第2項
記載の方法。 4 金属酸化物−触媒が全重量(担体+金属酸化
物−触媒)に対して5〜80重量%の量を占める特
許請求の範囲第1項から第3項までのいずれか1
項記載の方法。 5 触媒を200〜400℃の温度で〓焼する特許請求
の範囲第1項から第4項までのいずれか1項記載
の方法。 6 気相反応として行う特許請求の範囲第1項か
ら第5項までのいずれか1項記載の方法。 7 イソ酪酸、水、酸素及び窒素からなるガス混
合物を使用して作業する特許請求の範囲第6項記
載の方法。 8 イソ酪酸対水対酸素対窒素のモル比が(1−
2.5):(0−3):(1−2):(4−20)である特
許請求の範囲第6項又は第7項記載の方法。 9 反応を300〜450℃で行う特許請求の範囲第1
項から第8項までのいずれか1項記載の方法。 10 ガス混合物を約100〜15000ガス/触
媒・hの空間速度で導入する特許請求の範囲第7
項記載の方法。 11 0.5〜5バールの圧力で作業する特許請求
の範囲第7項から第10項までのいずれか1項記
載の方法。 12 金属酸化物−触媒がマグネシウム、カルシ
ウム、アルミニウムの群から選ばれる1種の金属
を含有する特許請求の範囲第1項記載の方法。[Claims] 1. Metal oxide based on molybdenum oxide
In the oxidative dehydrogenation of isobutyric acid to methacrylic acid using a catalyst, the substantially sulfate-free metal oxide catalyst contains elements P and V in addition to molybdenum;
Furthermore, Na, alkaline earth metals, Zn, Ag, Al, Ti,
1 selected from the group of Mn, Fe, Co, Ni or Sn
The composition of the catalyst is represented by the formula: M a Mo b V c P d O e [where a has a value of 0.4 to 2.5 and b has a value of approximately 12]. , c has a value of 1 to 2, and d has a value of 0.5 to 3
, and e has a value determined from the valence and content of other elements. 2. Process according to claim 1, in which a metal oxide catalyst is used together with a solid support based on silicon dioxide/activated silicon dioxide. 3. The method according to claim 2, wherein the ratio of silicon dioxide/activated silicon dioxide in the carrier is from 14:2 to 9:2. 4. Any one of claims 1 to 3 in which the metal oxide-catalyst occupies 5 to 80% by weight based on the total weight (support + metal oxide-catalyst)
The method described in section. 5. The method according to any one of claims 1 to 4, wherein the catalyst is calcined at a temperature of 200 to 400°C. 6. The method according to any one of claims 1 to 5, which is carried out as a gas phase reaction. 7. Process according to claim 6, working with a gas mixture consisting of isobutyric acid, water, oxygen and nitrogen. 8 The molar ratio of isobutyric acid to water to oxygen to nitrogen is (1-
2.5):(0-3):(1-2):(4-20) The method according to claim 6 or 7. 9 Claim 1 in which the reaction is carried out at 300 to 450°C
The method described in any one of paragraphs to paragraphs 8 to 8. 10 The gas mixture is introduced at a space velocity of about 100 to 15,000 gas/catalyst/h.
The method described in section. 11. The method according to any one of claims 7 to 10, operating at a pressure of 0.5 to 5 bar. 12. The method according to claim 1, wherein the metal oxide-catalyst contains one metal selected from the group of magnesium, calcium, and aluminum.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19803032423 DE3032423A1 (en) | 1980-08-28 | 1980-08-28 | Oxidative isobutyric acid dehydrogenation to methacrylic acid - over molybdenum oxide catalyst contg. also vanadium, phosphorus and additional metal cation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5772936A JPS5772936A (en) | 1982-05-07 |
JPH0427224B2 true JPH0427224B2 (en) | 1992-05-11 |
Family
ID=6110588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13345481A Granted JPS5772936A (en) | 1980-08-28 | 1981-08-27 | Oxidation dehydrogenation of isobutyric acid to methacrylic acid |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS5772936A (en) |
DE (1) | DE3032423A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3626256A1 (en) * | 1986-08-02 | 1988-02-11 | Roehm Gmbh | HETEROPOLYMOLYBDAT MIXTURES AND THEIR USE AS CATALYSTS |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS504014A (en) * | 1973-05-17 | 1975-01-16 | ||
JPS5382720A (en) * | 1976-11-24 | 1978-07-21 | Mitsubishi Rayon Co Ltd | Preparation of unsaturated carboxylic acids and their esters |
JPS5615238A (en) * | 1979-07-17 | 1981-02-14 | Mitsubishi Chem Ind Ltd | Production of methacrylic acid |
-
1980
- 1980-08-28 DE DE19803032423 patent/DE3032423A1/en not_active Withdrawn
-
1981
- 1981-08-27 JP JP13345481A patent/JPS5772936A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS504014A (en) * | 1973-05-17 | 1975-01-16 | ||
JPS5382720A (en) * | 1976-11-24 | 1978-07-21 | Mitsubishi Rayon Co Ltd | Preparation of unsaturated carboxylic acids and their esters |
JPS5615238A (en) * | 1979-07-17 | 1981-02-14 | Mitsubishi Chem Ind Ltd | Production of methacrylic acid |
Also Published As
Publication number | Publication date |
---|---|
DE3032423A1 (en) | 1982-04-08 |
JPS5772936A (en) | 1982-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4370490A (en) | Process for producing methacrylic acid by oxidative dehydration of isobutyric acid and catalyst therefor | |
US6060419A (en) | Wells-Dawson type heteropolyacids, their preparation and use as oxidation catalysts | |
JP3767309B2 (en) | Method for producing heteropolyacid catalyst and method for producing methacrylic acid | |
JPS5811416B2 (en) | Method for producing methacrylic acid | |
US5245083A (en) | Method for preparing methacrolein and method for preparing a catalyst for use in the preparation of methacrolein | |
US4925823A (en) | Process and catalyst for the preparation of methacrylic acid | |
US4182907A (en) | Process for the oxidation of olefins to aldehydes and acids | |
KR20030027036A (en) | Improved catalyst for the manufacture of acrylonitrile | |
US4745217A (en) | Process for producing methacrylic acid | |
US4405498A (en) | Oxidation and ammoxidation catalysts | |
JPH0532323B2 (en) | ||
EP0032012B1 (en) | Oxidation and ammoxidation catalysts and their use | |
US4171328A (en) | Catalytic oxidation of isobutylene | |
US5070061A (en) | Heteropolymolybdate catalysts and method for oxydehydrogenation | |
JP3465350B2 (en) | Method for producing catalyst for methacrylic acid production | |
US4000176A (en) | Process for simultaneously producing methacrylo-nitrile and butadiene by vapor-phase catalytic oxidation of mixed butenes | |
JPH0210695B2 (en) | ||
JP2558036B2 (en) | Method for producing methacrolein and / or methacrylic acid | |
JPH0232017B2 (en) | ||
JPH0427224B2 (en) | ||
US3532734A (en) | Manufacture of acrylonitrile | |
JP3482476B2 (en) | Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid | |
JPH0463139A (en) | Catalyst for production of methacrylic acid | |
JP3316880B2 (en) | Method for producing catalyst for producing methacrylic acid | |
JP4629886B2 (en) | Catalyst for producing methacrolein and / or methacrylic acid, method for producing the same, and method for producing methacrolein and / or methacrylic acid |